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1 The basic method

In this section we apply the probabilistic method in its most basic form. We will see various

examples where, in order to show that a construction with certain properties exists, we define a

probability space and show that, with positive probability, the outcome has the desired properties.

We will also see a few less direct applications of the probabilistic method.

1.1 Colouring hypergraphs

Our first example will be about 2-colourable hypergraphs. These two notions are defined next.

Definition 1.1 (Hypergraph). A hypergraph is a pair (V,E) where the elements in V are called

vertices and E is a set of subsets of V , called edges. We say that a hypergraph H is r-uniform if

all its edges have size r (see Figure 1 for an example of a 3-uniform hypergraph).

Figure 1: A 3-uniform hypergraph, and a 2-colouring of its vertices with no
monochromatic edges

Definition 1.2 (2-colourability). A hypergraph H is said to be 2-colourable (or have property B),

if its vertices can be coloured by red and blue so that every edge contains both a red vertex and a

blue one (equivalently, no edge is monochromatic, namely fully red or fully blue).

Example 1.3.

� The hypergraph in Figure 1 is 2-colourable, as can be seen from the colouring on the right.

� The complete 3-uniform hypergraph on five vertices, namely K
(3)
5 , is not 2-colourable. Indeed,

given a red-blue colouring of its vertices, without loss of generality at least three are red, but

any three vertices form an edge in this graph, so this means there is a monochromatic edge.

Notice that a 2-uniform hypergraph is a graph, and that a graph G is 2-colourable if and only if it is

bipartite, which is the case if and only if G has no odd cycles. There is no such characterisation for

2-colourable r-uniform hypergraphs, with r ≥ 3. It is thus interesting to find sufficient conditions

for 2-colourability. Here is an example of such a condition.
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Proposition 1.4 (Erdős, 1963). Every r-uniform hypergraph with fewer than 2r−1 edges is 2-

colourable.

Proof. Let H = (V,E) be an r-uniform hypergraph with fewer than 2r−1 edges. Colour each vertex

red or blue randomly1 and independently. For an edge e, let Ae be the event that e is monochromatic.

Then P(Ae) = 21−r. Thus, by the union bound,

P

(⋃

e∈E
Ae

)
≤
∑

e∈E
P(Ae) < 2r−1 · 21−r = 1.

It follows that there is a red-blue colouring of V such that no edge is monochromatic, showing that

H is 2-colourable.

Remark 1.5. The result obtained above is not far from best possible. We will see later (see

Theorem 1.19) that there are r-uniform hypergraphs on fewer than c · r2 · 2r edges which are not

2-colourable (where c is a constant). The best known improvement on Proposition 1.4 shows that

every r-uniform hypergraph with fewer than c ·
√
r · 2r edges is 2-colourable.

Remark 1.6. This proof can, in fact, be phrased as a counting argument. Indeed, let H = (V,E)

be an r-uniform hypergraph on n vertices with fewer than 2r−1 edges. The total number of 2-

colourings of V is 2n, because each vertex has two possible colours. For a given edge e, the number

of 2-colourings of V for which e is monochromatic is 2n−r+1. Indeed, there are two ways to colour

the vertices of e so that e is monochromatic (they can all be coloured red, or all blue) and 2n−r ways

to colour the remaining n− r vertices that are not in e. Thus, the total number of 2-colourings of

V for which at least one edge is monochromatic is at most |E| · 2n−r+1 < 2r−1 · 2n−r+1 = 2n. This

shows that there is a 2-colouring of V with no monochromatic edges, as desired.

In many cases a probabilistic proof could be converted into a counting proof. However, it is normally

much more convenient and insightful to use the language of probability.

1.2 Ramsey numbers

Our next example will be about Ramsey numbers. Recall that Kn is the complete graph on n

vertices.

Definition 1.7 (Ramsey numbers). For positive integers s and t, the Ramsey number r(s, t) of s

and t is the minimum n such that in every red-blue colouring of the edges of Kn, there is either a

red Ks or a blue Kt.

Notice that here, unlike in the previous section, we are colouring edges, not vertices. The notion of

Ramsey numbers is called after Frank Ramsey, who in 1930 proved that r(s, t) is finite for every s and

1By picking an element from U randomly, we mean that we pick exactly one element from U , with all elements
having equal probability (of 1/|U |) to be chosen
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t. This initial study of Ramsey numbers has developed into a prominent branch of combinatorics,

called Ramsey theory.

We first look at some examples of r(s, t) with small s and t.

Example 1.8.

� Let s ≥ 1. Then r(s, 1) = 1, because a red (or blue) K1 is a single vertex.

� Let s ≥ 2. Then r(s, 2) = s. Indeed, the fully red Ks−1 contains no blue K2 (i.e. no blue edge)

and no red Ks, showing r(s, 2) ≥ s. If we red-blue colour Ks, then either there is a blue edge,

which is a blue K2, or all edges are red, yielding a red Ks. Thus r(s, 2) ≤ s.

� It is not hard to see that r(3, 3) = 6; see Figure 2 for a proof of r(3, 3) > 5. It is also not very

hard to see that r(3, 4) = 9 and r(4, 4) = 18.

Figure 2: Example showing r(3, 3) > 5

� It is known that 43 ≤ r(5, 5) ≤ 48, with the upper bound established only in 2017.

In the next proposition we give an upper bound on Ramsey numbers.

Proposition 1.9. r(s, t) ≤ 2s+t for s, t ≥ 1.

Proof. We prove the statement by induction on s + t. Notice that the statement trivially holds

when s = 1 or t = 1. Thus, we may assume that s, t ≥ 2. We need to show that every red-blue Kn,

with n = 2s+t, has either a red Ks or blue Kt. Fix a red-blue colouring of Kn. Consider a vertex v,

and notice that v has n− 1 edges incident to it. Without loss of generality, at least
⌈
n−1
2

⌉
of them

are red. Denote by U the set of vertices u such that uv is red. So |U | ≥
⌈
n−1
2

⌉
≥
⌈
2s+t−1

2

⌉
≥ 2s+t−1.

By induction, U contains either a red Ks−1, which together with v forms a red Ks, or a blue Kt, as

required.

The case where s = t (known as diagonal Ramsey numbers) has received particular attention. Here

we give upper and lower bounds for this case.

Proposition 1.10. (t− 1)2 < r(t, t) ≤ 22t for t ≥ 1.
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Proof. Proposition 1.9 implies the upper bound. For the lower bound, partition the vertices of a

K(t−1)2 into t−1 sets of size t−1, colour the edges within each set red, and colour the edges between

sets blue.

This brings us to the second example of the probabilistic method presented in this module, vastly

improving the lower bound from Proposition 1.10.

Theorem 1.11 (Erdős, 1947). r(t, t) ≥ 2t/2 for t ≥ 5.

Proof. Write n =
⌊
2t/2

⌋
. We need to show that there is a red-blue colouring of Kn that has no

monochromatic Kt (monochromatic means that all its edges have the same colour). The colouring

will be random. We colour each edge red with probability 1/2, and blue otherwise, independently

of other edges.

For a set of t vertices S, let AS be the event that S forms a monochromatic clique, i.e. all its edges

have the same colour. Notice that P(AS) = 2 · 2−(t
2). Indeed, there are two choices for the colour

of the edges in S, and for each choice we need all
(
t
2

)
edges of S to pick that colour. Now, by the

union bound,

P

(⋃

S

AS

)
≤
∑

S

P(AS) =

(
n

t

)
· 2 · 2−(t

2)

≤ 2 ·
(en
t

)t
2−

t(t−1)
2

≤ 2 ·

(
e · 2t/2 · 2−(t−1)/2

t

)t

= 2 ·

(
e
√

2

t

)t

< 1.

Here we used also the very useful bound
(
n
t

)
≤
(
en
t

)t
, and the assumption t ≥ 5.

Since the probability of the event
⋃

S AS is less than 1, this shows that with positive probability

none of the events AS hold, and so there is a red-blue colouring of Kn without a monochromatic

Kt, as claimed.

Remark 1.12. This is one of the earliest examples of the use of probabilistic methods in combi-

natorics. Erdős was the first to realise the great potential of the method, and has applied it to

numerous combinatorial problems.

Remark 1.13. Both bounds 2t/2 ≤ r(t, t) ≤ 22t were improved only slightly since they became

known in the 1940s. It is a major open problem to determine which of these two bounds in closer

to the truth.
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1.3 Tournaments

Our next example is about certain directed graphs called tournaments. We first define directed

graphs and then tournaments.

Definition 1.14 (Directed graph). A directed graph (or digraph) is a pair (V,E) where E is a set

of ordered pairs (u, v) where u, v are distinct elements in V . As usual, we refer to elements in V as

vertices and to elements in E as edges. We think of the edge (u, v) (often denoted simply as uv) as

an edge directed from u to v, and if the edge uv exists we say that v is an out-neighbour of u and

that u is an in-neighbour of v. (See Figure 3.)

Figure 3: A directed graph

In particular, for any two vertices u, v in a digraph D = (V,E), both edges uv and vu could be

present, or none, or exactly one of the two.

Definition 1.15 (Tournament). A tournament is a directed graph T where for any two distinct

vertices u, v in T , exactly one of the pairs uv and vu is an edge (see Figure 4).

Figure 4: A tournament on four vertices and a directed triangle

One can think of a tournament as representing the results of a round robin tournament, with the

vertices representing the players, and an edge uv signifying that u beat v (hence the name).

Definition 1.16 (Property Sk). We say that a tournament has property Sk if for every k players,

there is a player who beat all of them; in other words, every k vertices have a common in-neighbour.

Example 1.17. The directed triangle (see Figure 4) is a tournament with property S1.

It seems hard to construct tournaments with property Sk, with k ≥ 2, explicitly. A random

construction, however, yields the property very easily.
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Proposition 1.18 (Erdős, 1963). For every k there is a tournament (on at least k vertices) with

property Sk.

Proof. Let V be a set of n vertices, where n will be determined later. Form a random tournament

by picking the direction of the edge between any two vertices u, v randomly and independently of

other edges. For a set T of k vertices, denote by AT the event that there is no vertex that beats all

players in T . Then

P(AT ) =
∏

u∈V−T

P ({u does not beats all of T}) =
(
1 − 2−k

)n−k
.

because the events {u does not beats all of T}, for u ∈ V − T , are independent (as they depend on

pairwise disjoint sets of edges); moreover, the only scenario in which u does beat all of T is when

all the edges between u and T are directed from u to T . By the union bound,

P

(⋃

T

AT

)
≤
∑

T

P(AT ) =

(
n

k

)(
1 − 2−k

)n−k
< 1,

where n is picked to satisfy the last inequality (notice that limn→∞
(
n
k

) (
1 − 2−k

)n−k
= 0, be-

cause exponential functions grow faster than polynomial, and so a suitably n can be found).

This shows that there is a tournament in which none of the events AT hold, i.e. the events

(AT )C = {there is a vertex that beats all of T} all hold, i.e. property Sk is satisfied.

1.4 Colouring hypergraphs – continued

Let m(r) be the minimum possible number of edges in a r-uniform hypergraph that is not 2-

colourable. We saw in Proposition 1.4 that m(r) ≥ 2r−1. The best known bound is only a bit better

(by a factor of less than
√
r). The following theorem shows that, indeed, one cannot do much better

than m(r) ≥ 2r−1.

Theorem 1.19 (Erdős, 1964). m(r) ≤ 8r22r.

Proof. Let V be a set of size n = 8r2 and m = n2r = 8r22r.

The idea is to ‘turn the probability space on its head’, meaning that we will pick the edges at

random, rather than the colours. Let e1, . . . , em be chosen randomly and independently among all

subsets of V of size r (so we could have two or more of the edges be the same).

For a red-blue colouring χ of V let Aχ,i be the event that the edge ei is monochromatic with respect

to χ. Denote by b the number of vertices in V coloured blue by χ. Then

P(Aχ,i) =

(
b
r

)
+
(
n−b
r

)
(
n
r

) ≥
2
(
n/2
r

)
(
n
r

) ≥ 2 ·
(n/2−r)r

r!
nr

r!

= 2 ·
(
n/2 − r

n

)r

= 2−r · 2 ·
(

1 − 2r

n

)r

≥ 2−r · 2e−4r2/n = 2−r · 2e−1/2 ≥ 2−r.
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For the first inequality, we used the convexity of the function f(x) :=
(
x
r

)
, which implies that

1
2(f(x) + f(y)) ≥ f(x+y

2 ) for all x, y; to get the inequality, take x = b and y = n− b. For the second

inequality we used the bounds (n−r)r

r! ≤
(
n
r

)
≤ nr

r! . The third inequality follows from 1 − x ≥ e−2x

which holds for x ∈ [0, 1/4].

Now, let Bχ be the event that none of the edges e1, . . . , em are monochromatic. Then

P(Bχ) = P


 ⋂

1≤i≤m

AC
χ,i


 =

∏

1≤i≤m

(
1 − P(Aχ,i)

)

≤ (1 − 2−r)m ≤ exp
(
−2−rm

)
= e−n < 2−n.

Here the second equality follows from the independence of the events Aχ,i, and the first inequality

follows from 1 − x ≤ e−x.

Thus, by a union bound,

P

(⋃

χ

Bχ

)
≤
∑

χ

P(Bχ) < 1,

using that there are exactly 2n red-blue colourings of V . This means that, with positive probability,

there is a way to choose e1, . . . , em such that for every red-blue colouring of V there is a monochro-

matic ei. Take H to be the hypergraph with vertex set V and edges {e1, . . . , em}. So H is not

2-colourable, and has at most m edges (we get an upper bound, and not an exact number, for the

number of edges because some ei’s could be the same). This shows m(r) ≤ m = 8r22r.

1.5 Set systems

We now present a less direct application of the probabilistic method. We denote by [m] the set

{1, . . . ,m}.

Theorem 1.20 (Bollobás, 1965). Let (Ai, Bi)i∈[m] be a sequence of pairs of sets, such that

� |Ai| = a and |Bi| = b for i ∈ [m],

� Ai ∩Bi = ∅ for i ∈ [m],

� Ai ∩Bj ̸= ∅ for all distinct i, j ∈ [m]

Then m ≤
(
a+b
a

)
.

Proof. Let S =
⋃

i∈[m](Ai ∪Bi). Let σ be a random ordering of the elements of S (namely, we pick

one of |S|! orderings randomly). Let Ei be the event that the elements of Ai precede those of Bi

in the ordering σ. Notice that P(Ei) = 1

(a+b
a )

. Indeed, we can think of the ordering σ as defined as

follows: first, we determine the location of the elements in S − (Ai ∪ Bi), and then we determine

the locations of the elements in Ai∪Bi. Given any outcome of the first step, there are (a+ b)! ways
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to order Ai ∪Bi in the remaining spots, and a! · b! ways to do it so that the elements of Ai precede

those of Bi.

Next, we claim that the events Ei, with i ∈ [m], are pairwise disjoint, i.e. no two of them can occur

at the same time. Indeed, suppose that Ei occurs, meaning that the elements of Ai precede the

elements of Bi in σ, and consider some j ∈ [m]−{i}. Let a ∈ Ai∩Bj and b ∈ Bi∩Aj (such elements

exist by the third assumption of the theorem). Then a precedes b in σ because the elements of Ai

precede those of Bi. But this shows that there is an element in Bj that precedes an element in Aj ,

showing that Ej does not occur.

It follows that

1 ≥ P


 ⋃

i∈[m]

Ei


 =

∑

i∈[m]

P(Ei) =
m(
a+b
a

) .

We used the disjointness of the events Ei in the first equality, and the value of P(Ei) in the second

equality. This immediately gives m ≤
(
a+b
a

)
.

Remark 1.21. In previous applications of the probabilistic method, we showed that a certain

desirable outcome holds by showing that it occurs with positive probability. In this proof the

probabilistic method is used indirectly, by leveraging the fact that the probability of the union of

pairwise disjoint events is the sum of probabilities of the events.

Remark 1.22. The bound we obtained is tight: let S be a set of size a + b, let the Ai’s be all

subsets of S of size a, and let Bi = S −Ai.

Remark 1.23. There are various variants and extensions of the above theorem. For example, one

can weaken the third condition to require that Ai ∩Bj whenever 1 ≤ i < j ≤ m, without changing

the conclusion. The proof of this version is algebraic, and no probabilistic or combinatorial proof is

known.

Next, we present another indirect application of the probabilistic method, providing an alternative

proof to the following result of Sperner.

Theorem 1.24 (Sperner, 1928). Let F be a family of subsets of [n], such that no two distinct sets

A,B in F satisfy A ⊆ B or B ⊆ A. Then |F| ≤
(

n
⌊n/2⌋

)
.

Proof. Let σ = (σ(1), . . . , σ(n)) be a random permutation of [n]. For a set A ∈ F , let EA be the

event that A is a prefix of σ, namely that {σ(1), . . . , σ(|A|)} = A. Then

P(EA) =
|A|!(n− |A|)!

n!
=

1(
n
|A|
) ≥ 1(

n
⌊n/2⌋

) . (1)

Indeed, for the first equality note that the number of permutations in which A is a prefix of σ is

|A|!(n− |A|)!, and the total number of permutations in n!. For the inequality, we use the following

claim.
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Claim 1.25.
(
n
k

)
≤
(

n
⌊n/2⌋

)
for k ∈ {0, 1, . . . , n}.

Proof. First note the following for k ≤ (n− 1)/2.

(
n

k+1

)
(
n
k

) =

n!
(k+1)!(n−k−1)!

n!
k!(n−k)!

=
n− k

k + 1
≥ 1,

where the inequality follows directly from k ≤ (n − 1)/2. This shows
(
n
0

)
≤
(
n
1

)
≤ . . . ≤

(
n

⌊n/2⌋
)
,

showing
(
n
k

)
≤
(

n
⌊n/2⌋

)
for k ≤ ⌊n/2⌋. Using

(
n
k

)
=
(

n
n−k

)
, we get also

(
n
k

)
≤
(

n
⌈n/2⌉

)
=
(

n
⌊n/2⌋

)
for

⌈n/2⌉ ≤ k ≤ n. Altogether,
(
n
k

)
≤
(

n
⌊n/2⌋

)
for all k ∈ [n], as claimed.

We now note that the events EA, with A ∈ F , are pairwise disjoint. Indeed, if A,B ∈ F are

distinct, then EA and EB cannot simultaneously hold, as that would imply A = {σ(1), . . . , σ(|A|)}
and B = {σ(1), . . . , σ(|B|)}, showing that A ⊆ B or B ⊆ A, a contradiction.

Using (1) and the disjointness of the events EA, we get

1 ≥ P

( ⋃

A∈F
EA

)
=
∑

A∈F
P(EA) ≥ |F|(

n
⌊n/2⌋

) .

This gives |F| ≤
(

n
⌊n/2⌋

)
, as required.

Remark 1.26. A family F of sets containing no distinct elements A,B with A ⊆ B is called an

antichain. So the above theorem can be phrased as: every antichain of subsets of [n] has size at

most
(

n
⌊n/2⌋

)
. This bound is tight: take F to be the family of all subsets of [n] of size ⌊n/2⌋.

2 Linearity of expectation

In this section we will see several application of the probabilistic method, where the main tool will

be the linearity of expectation. Recall that this means that for random variables X1, . . . , Xn and

reals α1, . . . , αn, we have E
(∑

i∈[n] αiXi

)
=
∑

i∈[n] αiE(Xi).

2.1 Hamilton cycles in tournaments

This first example is about the number of Hamilton cycles in a tournament.

Definition 2.1 (Hamilton paths and cycles). A Hamilton path in a (directed) graphG is a (directed)

path through all the vertices in G (see Figure 5). Similarly, a Hamilton cycle in a (directed) graph

G is a (directed) cycle through all the vertices in G.

It is a well known fact that every tournament has a Hamilton path. The following proposition gives

a lower bound on the maximum possible number of Hamilton paths a tournament can have. It is

considered to be the first application of the probabilistic method.

11



Figure 5: A Hamilton cycle in a tournament

Proposition 2.2 (Szele, 1943). There is a tournament on n vertices with at least (n − 1)! · 2−n

Hamilton cycles.

Proof. Let T be a random tournament on vertex set [n], meaning that for any two vertices u, v the

edge between them is directed randomly and independently. For a permutation σ of [n− 1], let Xσ

be the indicator random variable of the event

{(σ(1) . . . σ(n− 1)n) is a directed cycle} .

Write X for the random variable counting the number of Hamilton cycles in G. Then X =
∑

σXσ.

Indeed, we can insist that the last vertex of the cycle is n, and then the each cycle corresponds

to an ordering of [n − 1]. Notice that E(Xσ) = P(Xσ) = 2−n, because we need the n edges in

(σ(1) . . . σ(n− 1)n) to be directed the right way. Thus, by linearity of expectation,

E(X) = E

(∑

σ

Xσ

)
=
∑

σ

E(Xσ) = (n− 1)! · 2−n.

It follows that there exists a tournament with at least (n− 1)! · 2−n Hamilton cycles.

Remark 2.3. The bound given in the above proposition is almost tight; indeed, we will see that

every tournament on n vertices has at most O(
√
n · n! · 2−n) Hamilton cycles.

2.2 Max cut

Here is a quick application of the linearity of expectation, which you may have already encountered.

Proposition 2.4. Let G be a graph with m edges. Then G contains a bipartite graph with at least

m/2 edges.

Proof. Let A be a random set of vertices, obtained by including each vertex of G with probability

1/2, independently. Let H = G[A, V (G) −A] (so H is the bipartite subgraph of G consisting of all

edges in G with exactly one end in A).

Let X be the number of edges in H. Then X =
∑

e∈E(G)Xe, where Xe is the indicator function of

the event {e is in H}. Now, for an edge e = uv, we have E(Xe) = P({e is in H}) = 1/2, because

12



for e to be in H we need either u to be in A and v to not be in A, or vice versa, and each of these

outcomes occurs with probability 1/4.

Thus,

E(X) = E


 ∑

e∈E(G)

Xe


 =

∑

e

E(Xe) = m/2.

Here we used the linearity of expectation for for the second equality. In particular, X ≥ m/2 with

positive probability, showing that there is a choice of A for which H has at least m/2 edges.

Remark 2.5. This proposition has an easy deterministic proof.

2.3 Number theory

The next example in this chapter is a more sophisticated example, about sum free sets of integers.

Definition 2.6 (Sum free sets). A subset A ⊆ Z− {0} is sum free if there are no (not necessarily

distinct) elements a, b, c ∈ A such that a+ b = c.

Example 2.7. The set {1, 3, 7} is sum free, the set {2, 4} is not.

Definition 2.8 (Sum free sets modulo p). Recall that Zp is the set {0, . . . , p−1} with addition and

multiplication modulo p. As above, a subset A ⊆ Zp is sum free if there are no elements a, b, c ∈ A

such that a+ b ≡ c (mod p).

The next result shows that every set of positive integers has a large sum free subset.

Theorem 2.9 (Erdős, 1965). Let A be a finite set of positive integers. Then there is a sum free

subset B ⊆ A of size larger than |A|/3.

Proof. Let p be a prime which satisfies p > 2 maxa∈A |a| and p = 3k+ 2, where k is an integer.2 Set

I to be the interval {k + 1, . . . , 2k + 1}, and let w be an integer chosen uniformly at random from

[p− 1]. Let B be the random subset of A, consisting of elements a ∈ A such that wa (mod p) ∈ I.

Note that I is sum free when considered as a subset of Zp. Indeed, if a, b ∈ I then, in Z, they satisfy

2k + 2 ≤ a + b ≤ 4k + 2. Thus, in Zp, either a + b ∈ {2k + 2, . . . , 3k + 1} or a + b ∈ {0, . . . , k}.

Either way, a+ b /∈ I.

We conclude that B is always sum free. Indeed, otherwise there are a, b, c ∈ A and w ∈ [p − 1]

such that wa,wb, wc (mod p) ∈ I and thus a + b = c. But this implies a + b ≡ c (mod p), and

wa+ wb ≡ wc (mod p), a contradiction to I being sum free in Zp.

2It is not hard to see that such a number exists. Indeed, if not then the number of primes which are −1 (mod 3)
is finite; denote them by p1, . . . , pt. Write w = (p1 · . . . · pt)2 + 1. Then w is not divisible by any of p1, . . . , pt. Also,
w ≡ −1 (mod 3), so w has a prime divisor q which satisfies q ≡ −1 (mod 3) but is not in {p1, . . . , pt}, a contradiction.

13



We now estimate the size of B. Let Xa be the indicator random variable of the event {a ∈ B}, for

a ∈ A. Then

E(Xa) = P(a ∈ B) = P

(⋃

b∈I
{wa ≡ b (mod p)}

)

=
∑

b∈I
P(wa ≡ b (mod p))

=
∑

b∈I
P
(
w = ba−1 (mod p)

)
=

|I|
p− 1

=
k + 1

3k + 1
>

1

3
.

For the third equality we used the disjointness of the events {wa ≡ b (mod p)}, with b ∈ I. For the

fourth equality we used that a ̸≡ 0 (mod p), which follows from p > 2 maxa∈A |a|.

Finally, by linearity of expectation, we have

E
(
|B|
)

= E

(∑

a∈A
Xa

)
=
∑

a∈A
E(Xa) >

|A|
3
.

So, with positive probability, |B| > |A|/3. Since B is always sum free, this shows that A has a sum

free subset of size larger than |A|/3.

Remark 2.10. The fraction 1/3 in the above theorem was shown to be tight by Eberhard, Green

and Manners (2013).

2.4 Permanents

We now spend quite some time on an inequality on the permanent (defined below) of a {0, 1}-

matrix; see Theorem 2.14 below. The proof of the inequality is a clever and complicated application

of linearity of expectation. We will later see an application to Hamilton cycles in tournaments.

Recall that for an n× n matrix A, its determinant, denoted det(A), is defined as

det(A) =
∑

σ∈Sn

∏

i∈[n]

(−1)sign(σ)Ai,σ(i),

where Sn is the set of all permutations of [n], and sign(σ) is 0 if σ can be written as the product of

an even number of transpositions (namely, swaps of two elements), and 1 otherwise. The permanent

is defined similarly.

Definition 2.11 (Permanent). The permanent of an n×n matrix A, denoted per(A), is defined as

per(A) =
∑

σ∈Sn

∏

i∈[n]

Ai,σ(i). (2)

We will focus on the permanent of {0, 1}-matrices (i.e. matrices whose elements are 0’s and 1’s).
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Example 2.12. Let A =




0 0 1

1 1 0

1 1 1


. Then per(A) = 2. Indeed, the permutations (312) (illus-

trated in the left of (3)) and (321) (illustrated on the right of (3)) contribute 1 to the sum in (2),

the others contribute 0.




0 0 1

1 1 0

1 1 1







0 0 1

1 1 0

1 1 1


 . (3)

Remark 2.13. Suppose that A is an n×n, {0, 1}-matrix. Then per(A) is the number of permuta-

tions σ ∈ Sn such that Ai,σ(i) = 1 for every i ∈ [n]. Indeed, each permutation contributes 1 to the

sum in (2) if all the elements Ai,σ(i) are 1, and otherwise it contributes 0. In other words, per(A) is

the number of ways to select exactly one 1 from each row and column.

We will spend some time proving the following inequality.

Theorem 2.14 (Brégman, 1973). Let A be an n×n {0, 1}-matrix, and denote by ri the number of

1’s in the ith row. Then

per(A) ≤
∏

i∈[n]

(ri!)
1/ri .

Remark 2.15. This inequality is tight in some cases. For example, this is true when A is the all-1

matrix of any dimension. Similarly, we can take A to consist of blocks of all-1 matrices, with 0’s

outside of the blocks; here is an example (the 1’s are in squares for emphasis).




1 1 0 0 0 0 0

1 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 1 1 1

0 0 0 1 1 1 1

0 0 0 1 1 1 1

0 0 0 1 1 1 1




.

2.5 Hamilton cycles – continued

We now use Theorem 2.14 about permanents of {0, 1}-matrices to prove the following upper bound

on the number of Hamilton cycles in a tournament.

Theorem 2.16 (Alon, 1990). There is a constant c > 0 such that every tournament on n vertices

has at most c
√
n · n!

2n Hamilton cycles.

Remark 2.17. This is close to best possible. Indeed, recall that there are tournaments with at

least (n− 1)!2−n tournaments; this is just a factor of O(n3/2) off from the bound in Theorem 2.16.
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Proof. Fix a tournament T on n vertices; for convenience, we assume that the vertex set of T is [n].

Define an n× n matrix A as follows (see Figure 6),

Ai,j =

{
1 if ij is a directed edge

0 otherwise (i.e. if i = j or ji is an edge).

Given a Hamilton cycle (v1 . . . vn), let σ be the permutation satisfying σ(vi) = vi+1 for i ∈ [n] (in

particular, σ(vn) = v1). Notice that such a permutation indeed exists, it defines the cycle uniquely,

and it contributes 1 to the permanent of A (see Figure 6). Thus, the number of Hamilton cycles in

1

4 3

2 


0 0 1 1

1 0 0 0

0 1 0 1

0 1 0 0




Figure 6: An illustration of the correspondence between a tournament and a
matrix and between a Hamilton cycle and a permutation

T is at most per(A). Let ri be the number of 1’s in row i (this is the number of out-neighbours of

vertex i). Then
∑

i∈[n] ri =
(
n
2

)
. By Brégman’s theorem (Theorem 2.14),

per(A) ≤
∏

i∈[n]

(ri!)
1/ri . (4)

We use the following claim to estimate the above expression.

Claim 2.18. Let a, b be integers satisfying 1 ≤ a ≤ b− 2. Then

(a!)
1
a · (b!)

1
b < ((a+ 1)!)

1
a+1 · ((b− 1)!)

1
b−1 .

Proof. Define

f(a) =
(a!)

1
a

((a+ 1)!)
1

a+1

.

We will show that f is an increasing function on N. This would imply f(a) ≤ f(b−1), which would
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prove the claim. To see this, consider the following inequality with a ≥ 2.

(
f(a− 1)

f(a)

)a(a+1)(a−1)

=
((a− 1)!)a(a+1)((a+ 1)!)a(a−1)

(a!)2(a−1)(a+1)

= ((a− 1)!)a(a+1)+a(a−1)−2(a−1)(a+1) · aa(a−1)−2(a−1)(a+1) · (a+ 1)a(a−1)

= ((a− 1)!)2 · a−a2−a+2 · (a+ 1)a
2−a

= (a!)2
(
a+ 1

a

)a2−a

a−2a

≤ 7a1/2
(a
e

)2a
ea−1a−2a

=
7a1/2

ea+1
≤ 1.

For the penultimate inequality we used n! ≤ 7
√
n
(
n
e

)n
(which holds for all n ≥ 1) and 1 + x ≤ ex

which holds for all x. The last inequality can be seen to hold for a ≥ 2. This shows that f(a− 1) ≤
f(a) for a ≥ 2, as required.

The claim implies that
∏

i∈[n](ri!)
1/ri , with

∑
i∈[n] ri =

(
n
2

)
, is maximised when every two ri’s differ

by at most 1 (if say ri ≤ rj−2 then we can increase the value by increasing ri by 1 and decreasing rj

by 1). Assuming n is odd (n even is similar but a bit more technical), the expression is maximised

when ri = (n− 1)/2 for all i. Write n = 2m+ 1 and suppose that m is large. Then

per(A) ≤ (m!)
2m+1

m ≤
(

7
√
m
(m
e

)m)2+ 1
m

≤ 49 ·m · 2−2m ·
(

2m

e

)2m

· (7
√
m)

1
m · m

e

≤ 50 ·m3/2 · 2−2m(2m)!

≤ 50 · n3/2 · 2−(n−1)(n− 1)! = 100
√
n · n!

2n
.

Here we used (for the second and fourth inequalities) the inequalities
√
n
(
n
e

)n ≤ n! ≤ 7
√
n
(
n
e

)n
,

which hold for all n. We also used that limn→∞(7
√
n)1/n = 0, so for large n we have (7

√
n)1/n ≤ 1,

say. It follows that per(A) ≤ 100
√
n · n!

2n , showing that T has at most 100
√
n · n!

2n Hamilton cycles,

as claimed.

2.6 Permanents – continued

Before proving Brégman’s theorem, we make a definition.

Definition 2.19 (Geometric mean). The geometric mean of a random variable X, denoted G(X),

is defined as

G(X) = eE(logX).

We will need two useful facts about the geometric mean.
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Claim 2.20 (‘Linearity of expectation’). Let X1, . . . , Xn be random variables. Then

G


∏

i∈[n]

Xi


 =

∏

i∈[n]

G(Xi). (5)

Proof.

G


∏

i∈[n]

Xi


 = exp


E


log

( ∏

i∈[n]

Xi

)


 = exp


E


∑

i∈[n]

logXi






= exp


∑

i∈[n]

E(logXi)


 =

∏

i∈[n]

eE(logXi)

=
∏

i∈[n]

G(Xi),

using (the usual notion of) linearity of expectation for the third equality.

Recall that if X is a random variable and A is an event then the conditional expectation E(X |A)

is defined as

E(X |A) =
∑

x

x · P(X = x |A).

Moreover, the law of total expectation asserts that, for random variables X and Y ,

E(X) =
∑

y

E(X |Y = y) · P(Y = y).

(This is easy to verify.) Next, we prove a version of this for the geometric mean.

Claim 2.21 (‘Law of total expectation’). Let X and Y be random variables. Then

∏

y

G(X |Y = y)P(Y=y) = G(X). (6)

Proof. We get

∏

y

G(X |Y = y)P(Y=y) =
∏

y

exp
(
E
(

logX |Y = y
)
· P(Y = y)

)

= exp

(∑

y

E
(

logX |Y = y
)
· P(Y = y)

)

= exp(E(logX)) = G(X),

using linearity of expectation for the second equality and the law of total expectation for the

third.
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We now prove Brégman’s theorem.

Proof of Theorem 2.14. Let S be the family of permutations that contribute 1 in the sum defining

the permanent, namely the permutations corresponding to a choice of exactly one 1 from each row

and column. Recall that Sn is the collection of all permutations of [n]. Let σ be chosen uniformly

from S, and let τ be chosen uniformly from Sn, and independently from σ.

We define matrices A1, . . . , An and numbers R1, . . . , Rn as follows. Define A1 = A. Let Rτ(1) be

the number of 1’s in row τ(1) of A1, and let A2 be the matrix obtained by removing row τ(1) and

column σ(τ(1)) from A1. We continue similarly: Rτ(2) is the number of 1’s in row τ(2) in A2 (we

keep the same numbering of rows as in A, so that if row 2 was removed in the first step, then

now we have rows 1, 3, 4, . . . , n), and A3 is obtained from A2 by removing row τ(2) and column

σ(τ(2)). In general, Ai is the matrix obtained by removing rows τ(1), . . . , τ(i − 1) and columns

σ(τ(1)), . . . , σ(τ(i− 1)) from A, and Rτ(i) is the number of 1’s in row τ(i) of Ai. Finally, set

L =
∏

i∈[n]

Rτ(i).

Example 2.22. Consider the case where A, σ and τ are as follows (the 1’s corresponding to σ are

marked in A).3

A =




1 0 1 1

1 1 0 1

0 1 1 1

1 1 1 0




τ = (3124) σ = (3241).

Then A1 = A, and Rτ(1) = R3 is the number of 1’s in row 3 of A1, so R3 = 3. Next, notice that

σ(τ(1)) = σ(3) = 4, i.e. the marked 1 in row 3 is in column 4. Thus A2 is obtained by removing

row τ(1) = 3 and column σ(τ(1)) = 4, namely,

A2 =




1 0 1

1 1 0

1 1 1



.

Now Rτ(2) = R1 is the number of 1’s in row 1 of A2, so R1 = 2. Next, since σ(τ(2)) = σ(1) = 3,

3Recall that the notation (σ1, . . . , σn), where {σ1, . . . , σn} = [n], refers to the permutation σ of [n] that sends i to
σi (equivalently, σ(i) = σi) for i ∈ [n].
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we remove row 1 and column 3 to get

A3 =




1 1

1 1



.

Thus Rτ(3) = R2 = 2. Finally,

A4 =




1



,

and Rτ(4) = R4 = 1. Collecting all the terms, we have L = R1 · . . . ·R4 = 2 · 2 · 3 · 1 = 12.

One can think of L as a lazy estimate for per(A). Indeed, a correct way to calculate per(A) would

be to, at step 1, sum the permanents of all matrices obtained by removing row τ(1) and a column

with a 1 in row τ(1). Instead, we consider just one such matrix, obtained by removing row τ(1)

and column σ(τ(1)), and pretend that the permanents of the other matrices are all the same, so we

multiply the result by the number of 1’s in row τ(1). Because of how σ is chosen, the more ways the

matrix obtained by removing column i and row τ(1) has of choosing exactly one 1 from each row

and column, the more likely it is to choose to remove column i, for all i such that Aτ(1),i = 1. Thus,

intuitively, L is likely to be at least as large as per(A). We formalise this intuition in Claim 2.23

below.

Claim 2.23. per(A) ≤ G(L).

We can calculated G(Ri) precisely for all i, as follows.

Claim 2.24. G(Ri) = (ri!)
1/ri for every i ∈ [n].

End of lecture 5

Proof of Claim 2.23. We prove that per(A) ≤ G(L | τ), for every fixed permutation τ . This would

suffice, as by (6), we would get

G(L) =
∏

τ

G(L | τ)P(τ) ≥
∏

τ

per(A)P(τ) = per(A).

Fix τ . We assume that τ(1) = 1, write r = r1, and assume that the first r elements in row 1 are

1’s. (This can be justified by noticing that the permanent does not change by swapping rows or

columns.) The proof will be by induction on the dimension of A; it is easy to see that this holds

for 1 × 1 matrices.
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We set some notation: let ρ = per(A) and let ρj be the permanent of the matrix obtained from A

by removing row 1 and column j, for j ∈ [r]. Then, by induction,

G(L | τ and σ(1) = j) = r ·G(R2 · . . . ·Rn | τ and σ(1) = j) ≥ rρj . (7)

Indeed, we always have R1 = r because row 1 is always first to be removed, hence the factor r

(using ‘linearity of expectation’ (5)), and the rest follows by induction.

Next, notice that ρj is the number of permutations σ ∈ S for which σ(1) = j. Hence, ρ =
∑

j ρj ,

and the probability that σ(1) = j is ρj over the total number of permutations, i.e. P(σ(1) = j) =
ρj
ρ .

Using this, (7) and the law of total expectation (6),

G(L | τ) =
∏

j∈[r]

G
(
L | τ and σ(1) = j

)P(σ(1)=j)

≥
∏

j∈[r]

(rρj)
ρj/ρ

= r ·
( ∏

j∈[r]

ρ
ρj
j

)1/ρ
≥ ρ = per(A).

(8)

Indeed, for the equality on the first line we used
∑

j∈[r] ρj = ρ. For the inequality in the last line

we used that the function f(x) = x log x is convex for x ≥ 1, and thus

∑

j∈[r]

f(ρj) ≥ r · f
(∑

j ρj

r

)
= rf(ρ/r) = ρ log(ρ/r).

Taking e to the power of the left- and right-hand sides, we get

∏

j∈[r]

ρ
ρj
j ≥ (ρ/r)ρ,

as needed for (8). Notice that (8) completes the proof.

Proof of Claim 2.24. By symmetry, it suffices to prove this for i = 1. We prove that G(R1 |σ) =

(r1!)
1/r1 for every σ ∈ S. By (6), this would prove G(R1) = (r1!)

1/r1 , as required.

We assume that σ(1) = 1 and that the first r = r1 elements in row 1 are 1’s (as before, this is fine

because we can change the order of columns and rows).

Notice that column j is removed at time i exactly when τ(i) = σ−1(j). Thus, the order upon

which columns 1, . . . , r are removed is the order of σ−1(1), . . . , σ−1(r) within τ . Since this order is

uniformly random, it follows that columns 1, . . . , r are removed in a uniformly random order. In

particular, the probability that column 1 is the jth to be removed among columns 1, . . . , r is 1/r.

Observe that R1 is the number of columns from 1, . . . , r that remain right before row 1 is removed;

since σ(1) = 1, this is the number of columns from 1, . . . , r that remain right before column 1 is
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removed. By the previous paragraph, this implies P(R1 = j |σ) = 1/r. Thus,

G(R1 |σ) = exp


∑

j∈[r]

log j · P(R1 = j |σ)


 = exp


1

r
·
∑

j∈[r]

log j


 =


∏

j∈[r]

j




1/r

= (r!)1/r.

This proves the claim, as r = r1.

By the two claims and ‘linearity of expectation’ (5),

per(A) ≤ G(L) = G


∏

i∈[n]

Ri


 =

∏

i∈[n]

G(Ri) =
∏

i∈[n]

(ri!)
1/ri ,

thus proving the theorem.

3 Alterations

In this section we continue to apply linearity of expectation, but with a twist: the structure resulting

from an initial experiment will need to be altered to fix a small amount of badness.

3.1 Ramsey numbers

Recall that in Theorem 1.11 we showed that the Ramsey number r(t, t) satisfies r(t, t) ≥ 2t/2 (a

more careful analysis of the inequalities there would give r(t, t) ≳ t 2t/2√
2e

). Here we improve this a

bit, using the method of alterations.

We write g(n) = o(f(n)) if limn→∞
g(n)
f(n) = 0. In particular, o(1) denotes any function f(n) that

goes to 0 as n→ ∞.

Theorem 3.1. r(t, t) ≥ (1 + o(1)) t 2
t/2

e .

Proof. Let n be an integer, to be determined later. Colour each edge of a complete graph Kn red or

blue, randomly and independently. For a set T of t vertices, let XT be the indicator random variable

for the event {T is monochromatic}, and let X be the random variable counting the number of sets

of t vertices that are monochromatic. Then E(XT ) = 2 · 2−(t
2), and, by linearity of expectation,

E(X) = E

(∑

T

XT

)
=
∑

T

E(XT ) =

(
n

t

)
· 2 · 2−(t

2).

Fix a colouring with X ≤ E(X), and remove one vertex from each monochromatic clique of size t.

The resulting graph has at least n− E(X) = n−
(
n
t

)
· 2 · 2−(t

2) vertices and has no monochromatic

cliques of size t, showing that

r(t, t) ≥ n−
(
n

t

)
· 2 · 2−(t

2), (9)

22



for every n.

Take n = e−1 · t · 2t/2. Then
(
n

t

)
· 2 · 2−(t

2) ≤ 2
(en
t

)t
2−(t

2) ≤ 2 · 2t
2/2 · 2−(t

2) = 2 · 2t/2.

Plugging in this value of n into (9), we get

r(t, t) ≥ t · 2t/2

e

(
1 − 2e

t

)
= (1 + o(1)) · t · 2t/2

e
.

3.2 Turán theorem

We will now see an easy proof of a weaker version of Turán’s theorem, a well known result in

extremal graph theory.

Definition 3.2 (Independent sets and cliques). A set of vertices U in a graphG is called independent

if no two vertices of U are joined by an edge in G (see Figure 7). Similarly, U is called a clique if

every two of its edges are joined by an edge in G.

Figure 7: An independent set of size 3 (on the left) and a clique of size 4 (on
the right).

Theorem 3.3. Let G be a graph on n vertices with nd
2 edges, where d ≥ 1. Then G has an

independent set of size at least n
2d .

Proof. Let S be a random set of vertices of G, obtained by including each vertex with probability

p, independently, where p will be determined later. Let X be the number of vertices in S, and

let Y be the number of edges with both ends in S. Write Xv for the indicator random variable

for the event {v ∈ S} and Yuv for the indicator random variable for the event {u, v ∈ S}. Then

E(Xv) = P(v ∈ S) = p and E(Yuv) = P(u, v ∈ S) = p2. Thus

E(X − Y ) = E(X) − E(Y ) = E


 ∑

v∈V (G)

Xv


− E


 ∑

uv∈E(G)

Yuv




=
∑

v∈V (G)

E(Xv) −
∑

uv∈E(G)

E(Yuv) = np− nd

2
· p2 = np

(
1 − pd

2

)
.
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Pick p = 1/d, which maximises the expression above (note that p ≤ 1). Let S be an outcome for

which X − Y ≥ E(X − Y ) = nd/2. Let S′ be a subset of S obtained by removing one vertex from

each edge with both ends in S. Then S′ is an independent set satisfying |S′| ≥ X − Y ≥ nd/2.

Remark 3.4. The bound given by Theorem 3.3 is tight up to a factor of about 2. Indeed, if d is

an integer and d+ 1 divides n, then the graph that consists of n
d+1 pairwise disjoint copies of Kd+1

has average degree d and its largest independent set has size n
d+1 .

d+1

n
d+1

Figure 8: A graph on n vertices with average degree d whose largest indepen-
dent set (see example) has size n

d+1

Turán theorem, asserts that this bound is best possible (Turán’s theorem is usually phrased for

complete graphs rather than independent sets, but the two version can be seen to be equivalent, by

taking the complement graph.)

3.3 Domination

Our next application will give an upper bound on the size of the smallest dominating set in a graph

with given minimum degree.

Definition 3.5 (Dominating set). A set of vertices U in a graph G is dominating if every vertex

in V (G) − U has a neighbour in U (see Figure 9).

Figure 9: A dominating set in a graph

Recall that log refers to the logarithm with base e.

Theorem 3.6. Let G be a graph on n vertices with minimum degree δ. Then G has a dominating

set of size at most (1+log(δ+1))n
δ+1 .
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Proof. Write V := V (G), and let p ∈ [0, 1] to be determined later. Let X be a random set of

vertices, obtained by including each vertex of G with probability p, independently. Let Y be the

set of vertices in V −X that do not have a neighbour in X. Notice that X ∪Y is a dominating set.

Indeed, every vertex in V − (X ∪ Y ) has a neighbour in X, by choice of Y .

To complete the proof, we evaluate the expectation of |X ∪ Y |, and find a p that minimises the

expectation. First, note that E(|X|) = np, which can be seen using linearity of expectation.

Now let us evaluate E(|Y |). Denote by ψv the indicator random variable of the event {v ∈ Y }.

Observe that v is in Y if and only if both it and all its neighbours are not in X. Thus P(ψv) =

(1− p)d(v) ≤ (1− p)δ+1, where d(v) is the degree of v in G, and we used the assumption that G has

minimum degree at least δ. Using linearity of expectation, we get

E(|Y |) = E

(∑

v∈V
ψv

)
=
∑

v∈V
P(ψv) ≤ n(1 − p)δ+1.

Thus, using linearity of expectation one more time,

E(|X ∪ Y |) = E(|X| + |Y |) = E(|X|) + E(|Y |) ≤ n
(
p+ (1 − p)δ+1

)
≤ n

(
p+ e−p(δ+1)

)
, (10)

where for the last step we used the inequality 1 − p ≤ e−p.

Write f(p) = p + e−p(δ+1). The derivative of f is given by f ′(p) = 1 − (δ + 1)e−p(δ+1). Solving

f ′(p) = 0, we get

e−p(δ+1) =
1

δ + 1

− p(δ + 1) = log

(
1

δ + 1

)

p = − log

(
1

δ + 1

)
· 1

δ + 1
=

log(δ + 1)

δ + 1
.

Since f ′(p) is increasing, the function f(p) is minimised at p = log(δ+1)
δ+1 , so we pick this value for

the parameter p. Plugging in this value in (10), we find that

E(|X ∪ Y |) ≤ n

(
log(δ + 1)

δ + 1
+ e− log(δ+1)

)
≤ n

(
log(δ + 1)

δ + 1
+

1

δ + 1

)
=

(1 + log(δ + 1))n

δ + 1
.

In particular, there is a dominating set of size at most (1+log(δ+1))n
δ+1 , as claimed.

Remark 3.7. We could have also guessed a value of p that works (like we did in class) instead

of explicitly doing the optimisation. In real life we might not know the target value and then

optimising might be the only way to go.
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3.4 Dependent Random Choice

For the purpose of this section, given a set of vertices U let Γ(U) denote the common neighbourhood

of the set U , which is the set of vertices joined to all vertices in U (see Figure 10).

U

N(U)

Figure 10: A set U and its common neighbourhood N(U)

The following lemma is from a paper called Dependent random choice. It and its variants have

many applications, two of which we will see here.

Lemma 3.8 (Fox–Sudakov, 2010). Let a,m, n, r be positive integers, let d > 0, and suppose that t

is a positive integer satisfying
dt

nt−1
−
(
n

r

)(m
n

)t
≥ a.

Then for every graph G on n vertices and with average degree d, there is a set of vertices U ⊆ V (G)

such that |U | ≥ a and every r vertices in U have at least m common neighbours.

Proof. Let v1, . . . , vt be vertices in G, chosen randomly and independently (i.e. they are chosen with

repetition, meaning that it could happen that say v1 = v3). Let A be the common neighbourhood

Γ({v1, . . . , vt}). Then, writing V := V (G) and d(v) for the degree of a vertex v,

E(X) =
∑

u∈V
P(u ∈ A) =

∑

u∈V
P(v1, . . . , vt ∈ N(u)) =

∑

u∈V

(
d(u)

n

)t

≥ n ·
(
d

n

)t

=
dt

nt−1
.

Here we used linearity of expectation for the first equality, and convexity for the inequality. (Recall

that a function f(x) is convex if the segment between any two points on the graph (x, f(x)) lies

above the graph. If a function f satisfies f ′′(x) > 0 then it is convex. Finally, if f is convex then

f( 1
n

∑
i∈[n] xi) ≤

1
n

∑
i∈[n] f(xi) for all x1, . . . , xn.)

Now let Y be the number of subsets of A of size r that have fewer than m common neighbours.

Then

E(Y ) =
∑

S

P(S ⊆ A) =
∑

S

P
(
v1, . . . , vt ∈ N(S)

)
=
∑

S

(
|N(S)|
n

)t

<

(
n

r

)(m
n

)t
,
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where the sum is over all sets S of size r with |N(S)| < m, and the inequality follows from there

being a total of
(
n
r

)
sets of r vertices.

Finally, by linearity of expectation,

E(X − Y ) = E(X) − E(Y ) ≥ dt

nt−1
−
(
n

r

)(m
n

)t
≥ a.

Thus there exists a choice of v1, . . . , vt such that X − Y ≥ a. For each subset of A of size r with

fewer than m common neighbours, remove one of its vertices from A, to obtain a set U which

satisfies: |U | ≥ |A| − Y = X − Y ≥ a, and all sets of r vertices from U have at least m common

neighbours.

3.4.1 Turán number of bipartite graphs

The first application of Lemma 3.8 is related to Turán numbers of bipartite graphs.

Definition 3.9 (Turán numbers). The Turán number of a graph H, denoted ex(n,H), is the

maximum number of edges in a graph on n vertices which does not contain a copy of H.

Example 3.10.

� ex(n,K2) = 0 (every graph with at least one edge has a copy of K2),

� Denote by Pn the path on n vertices. Then ex(n, P3) =
⌊
n
2

⌋
(a P3-free graph is a matching,

with possibly some isolated vertices).

� ex(n,K3) =
⌊
n2

4

⌋
(this was first proved by Mantel in 1907; the extremal example is the balanced

complete bipartite graph K⌊n/2⌋,⌈n/2⌉.

Turán numbers are important parameters in extremal graphs theory. They are known, at least up

to a small error term, for all non-bipartite graphs. For bipartite graph, much less is known. Here is

a classical example.

Theorem 3.11 (Kövari–Sós–Turán, 1954). Let r ≤ s be positive integers. Then there exists a

constant c = c(r, s) such that ex(n,Kr,s) ≤ cn2−1/r.

The following theorem generalises Kövari–Sós–Turán’s theorem.

Theorem 3.12 (Alon–Krivelevich–Sudakov, 2003). Let H be a bipartite graph with bipartition

{A,B}, such that vertices in B have degree at most r. Then there is a constant c = c(H) such that

ex(n,H) ≤ cn2−1/r.

Before proving the theorem, we state and prove the following lemma, about embedding bipartite

graphs as above.
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Lemma 3.13. Let H be a bipartite graph with bipartition {A,B}, where a = |A| and b = |B|, and
the vertices in B have degree at most r. Suppose that G is a graph containing a set of vertices U of

size a whose every subset of size r has at least a+ b common neighbours. Then G contains a copy

of H.

Proof. We define an injective function f : V (H) → V (G) as follows. First, map each vertex of

A to a different vertex in U (where U is as in the statement). Enumerate B as {v1, . . . , vb}. For

i ∈ [b], suppose that f(v1), . . . , f(vi−1) have been defined; we will show how to define f(vi). Write

S = {f(u) : u ∈ NH(vi)} (so S is the set of vertices in U corresponding to neighbours of vi). Then

|S| ≤ r, because vertices in B have degree at most r in H. Thus, by assumption, S has at least

a + b common neighbours in G, and so there is a vertex u which is a common neighbour of S and

is not the image of a vertex in A ∪ {v1, . . . , vi−1}. Define f(vi) = u. It is easy to check that the

resulting f , obtained by running the above procedure for i = 1, . . . , b, is an injective function that

sends edges of H to edges of G (meaning that f(u)f(v) is an edge in G if uv is an edge in H),

showing that G contains a copy of H.

We now prove the theorem.

Proof of Theorem 3.12. Write a = |A|, b = |B|, m = a + b. Let c satisfy c ≥ max{a1/r, e(a+b)
r }.

Suppose that G is a graph on n vertices with at least cn2−1/r edges. Then G has average degree at

least 2cn1−1/r; write d = 2cn1−1/r. Then

dr

nr−1
−
(
n

r

)(m
n

)r
≥ (2c)rnr−1

nr−1
−
(en
r

)r (a+ b

n

)r

= (2c)r −
(
e(a+ b)

r

)r

≥ cr ≥ a.

Here we used
(
n
r

)
≤
(
en
r

)r
and the choice of c. It follows from Lemma 3.8 that G contains a set U

of size at least a whose every subset of size r has at least m = a + b common neighbours. Thus,

by Lemma 3.13, G contains a copy of H. This proves that every graph on n vertices with at least

cn2−1/r edges contains a copy of H, as required.

3.4.2 Ramsey number of the hypercube

Next, we consider the Ramsey number of the hypercube. Similarly to Definition 1.7, the Ramsey

number of a graph H, denoted r(H), is the minimum n such that every red-blue edge-colouring of

Kn contains a monochromatic copy of H.

Definition 3.14 (Hypercube). The hypercube of dimension r is the graph whose vertices are {0, 1}-

sequences of length r, whose edges join two sequences that differ in exactly one coordinate (see

Figure 11).

The next theorem proves an upper bound on the Ramsey number of the hypercube (recall that our

previous Ramsey theory results were upper bounds on the Ramsey number of the complete graph).
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Figure 11: The hypercube Q3

Theorem 3.15. The Ramsey number of the hypercube Qr satisfies r(Qr) ≤ 23r.

Proof. Write n = 2r and N = n3. Consider a red-blue colouring of the complete graph on N

vertices; we need to show that it contains a monochromatic copy of Qr. Without loss of generality,

there are at least as many red edges as there are blue ones; denote the subgraph of red edges by G.

Then e(G) ≥ 1
2

(
N
2

)
. Let d be the average degree of G, then d ≥ 2e(G)

N = N−1
2 . Let t = 3r

2 , m = n,

and a = 2r−1. Then (
N

r

)(m
N

)t
≤
(
en3

r

)r ( n
n3

)3r/2
=
(e
r

)r
< 1,

if r ≥ 3. Also,

dt

N t−1
=

(
d

N

)t

N ≥
(
N − 1

2N

)t

N = 2−tN

((
1 − 1

N

)N
)t/N

≥ 1

2
· n3/2 ≥ n.

Where we used the fact that the sequence
(
1 − 1

N

)N
tends to 1/e as N tends to infinity, and t/N

tends to 0. Altogether,
dt

N t−1
−
(
N

r

)(m
N

)t
≥ n− 1 ≥ a.

It follows from Lemma 3.8 that there is a set U of a vertices in G whose every subset of size r has

at least m common neighbours. By Lemma 3.13, G contains a copy of Qr.

Remark 3.16. Notice that what we showed is that any graph on N vertices with at least 1
2

(
N
2

)

edges contains a hypercube Qr. Such a result is known as a density result.

Remark 3.17. A famous conjecture asserts that r(Qr) ≤ c · 2r, for some constant c > 0. The best

known upper bound is c · 2(2−ε)r, for a (small) constant ε > 0 and a constant c > 0.

4 The second moment

So far, we have often used that, given a random variable X, it satisfies X ≥ E(X), with positive

probability. As the expectation is sometimes referred to as the first moment, this method is called

the first moment method. In this section we will consider the second moment, namely E(X2), to be
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able to argue that X is close to its expectation with high probability (namely, with probability close

to 1).

4.1 Chebyshev’s inequality

We first recall the definition of variance and two important inequalities.

Definition 4.1 (Variance). The variance of a random variable X, denoted Var(X), is defined as

Var(X) = E
(
X − E(X)

)2
.

Equivalently, Var(X) = E(X2) − (E(X))2. Notice that Var(X) ≥ 0 always. We sometimes denote

a variance as σ2 (where σ ≥ 0).

Proposition 4.2 (Markov’s inequality). Suppose that X is a non-negative random variable, and

let λ > 0. Then

P(X ≥ λ) ≤ E(X)

λ
.

Proof.

E(X) =
∑

x

x · P(X = x) ≥
∑

x≥λ

λ · P(X = x) = λ · P(X ≥ λ),

where we used the non-negativity of X for the second inequality. The desired inequality follows.

Proposition 4.3 (Chebyshev’s inequality). Let X be a random variable, and let λ > 0. Then

P
(
|X − E(X)| ≥ λ

)
≤ Var(X)

λ2
.

Proof. Write µ = E(X).

P
(
|X − µ| ≥ λ

)
= P

(
(X − µ)2 ≥ λ2

)
≤

E
(
(X − µ)2

)

λ2
=

Var(X)

λ2
,

where we used Markov’s inequality for the inequality.

It is often convenient to use the following corollary of Chebyshev’s inequality.

Corollary 4.4. Let X be a random variable. Then

P(X = 0) ≤ Var(X)

(E(X))2
.

Proof.

P(X = 0) ≤ P
(
|X − E(X)| ≥ E(X)

)
≤ Var(X)

(E(X))2
,

where for the last inequality we used Chebyshev’s inequality (with λ = E(X)).
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Remark 4.5. A typical way of using the above inequalities is as follows. Suppose that X is

a random variable counting certain objects. Then if E(X) is small, by Markov’s inequality, the

probability that X ≥ 1 is also small, and so the probability that X = 0 is large. In the other

direction, if Var(X)
(E(X))2

is small, then the probability that X = 0 is also small, by the above corollary

of Chebyshev’s inequality.

Recall the definition of covariance.

Definition 4.6 (Covariance). The covariance of random variables X and Y , denoted Cov(X,Y ),

is defined by

Cov(X,Y ) = E(XY ) − E(X) · E(Y ).

We recall a few useful facts about variance and covariance (without proof).

Proposition 4.7. Let X,Y,X1, . . . , Xn be random variables.

(a) If X =
∑

i∈[n]Xi, then

Var(X) =
∑

i,j∈[n]

Cov(Xi, Xj).

(b) If X,Y are independent, then Cov(X,Y ) = 0.

(c) If X1, . . . , Xn are pairwise independent and X =
∑

i∈[n]Xi, then

Var(X) =
∑

i∈[n]

Var(Xi).

4.2 Threshold for containing K4

Our first example in this chapter will be about random graphs, defined as follows.

Definition 4.8 (Random graph). The Erdős–Rényi random graph (or random graph in short)

G(n, p), is the graph on vertex set [n], where each pair of edges is joined with probability p,

independent.

Recall that we have seen applications of random graphs when thinking about Ramsey numbers.

We will say that a sequence of events (An) holds with high probability (or w.h.p. in short), if

P(An) → 1 as n → ∞. A typical question in the study of random graphs is: for which p = p(n)

does a given property holds with high probability? For example: for which p is it true that G(n, p)

is connected, with high probability? For which p does G(n, p) contain a copy of a specific graph H,

with high probability? In the next proposition we investigate the case H = K4.

Proposition 4.9.

(a) If n2p3 → 0 as n→ ∞ then, with high probability, G(n, p) has no copy of K4.
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(b) If n2p3 → ∞ as n→ ∞ then, with high probability, G(n, p) has a copy of K4.

Proof. For a set S of four vertices, denote by XS the indicator random variable of the event

{S is a clique}. Write X =
∑

S XS , where the sum is over all sets of four vertices. For (a), we

need to show that if n2p3 → 0 then, with high probability, X = 0; and, for (b), we need to show

that if n2p3 → ∞, then, with high probability, X ≥ 1.

First, we calculate the expectation. Notice that E(XS) = P({S is a clique}) = p6. Thus,

E(X) =
∑

S

E(XS) =

(
n

4

)
p6.

This allows us to complete the first task. Indeed, suppose that n2p3 → 0. Then, by Markov’s

inequality (Proposition 4.2) (observing that X ≥ 0),

P(X ≥ 1) ≤ E(X) =

(
n

4

)
p6 ≤ n4p6 = (n2/3p)6 → 0.

Equivalently, with high probability, X = 0, as required.

Next, we wish to calculate the variance of X. With this in mind, notice that for two sets S and T

of four vertices,

Cov(XS , XT ) = E(XSXT ) − E(XS)E(XT ) =





0 |S ∩ T | ≤ 1

p11 − p12 |S ∩ T | = 2

p9 − p12 |S ∩ T | = 3

p6 − p12 S = T.

Thus,

Var(X) =
∑

S,T

Cov(XS , XT )

=
∑

S

∑

T :|S∩T |=2

Cov(XS , XT ) +
∑

S

∑

T :|S∩T |=3

Cov(XS , XT ) +
∑

S

∑

T :|S∩T |=4

Cov(XS , XT )

≤ n6(p11 − p12) + n5(p9 − p12) + n4(p6 − p12) ≤ n6p11 + n5p9 + n4p6.

Indeed, the number of ways to choose S, T of size 4 that intersect on i vertices is at most n8−i, as

we have at most ni ways to choose the vertices in the intersection, and at most n4−i to choose the

remaining vertices in S, and similarly for the remaining vertices in T .

Now we prove (b), so let us assume that n2p3 → ∞. By Corollary 4.4,

P(X = 0) ≤ Var(X)

(E(X))2
≤ 1

2500
· n

6p11 + n5p9 + n4p6

n8p12

=
1

2500
· (n−2p−1 + n−3p−3 + n−4p−6) → 0.
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For the limit, we have n2p3 → ∞, implying that (np)2 → ∞, and thus also (np)3 → ∞. Moreover,

again by assumption we also have n2p → ∞. Altogether, all three terms tend to 0 as n tends to

infinity. This shows that, in this range, X ≥ 1 with high probability, as required.

A graph property P is a collection of graphs. For example: being connected, not having a copy of

a certain graph H as a subgraph.

A graph property P is monotone if the property is maintained by adding an edge between existing

vertices. For example, the property of being connected is monotone, the property of having an even

number of edges is not.

Definition 4.10 (Threshold functions). For a graph property P, a function p0 : N → [0, 1] is a

threshold function for P if the following two properties hold.

� If p
p0

→ 0 as n→ ∞ then G(n, p) does not satisfy P, with high probability.

� If p
p0

→ 1 as n→ ∞ then G(n, p) satisfies P, with high probability.

So, what we have shown above is that p = n−2/3 is a threshold function for the property of containing

a copy of K4.

4.3 Distinct sums

Definition 4.11 (Distinct sums). A set S of positive integers is said to have distinct sums if the

sums
∑

t∈T t, with T ⊆ S, are distinct (we think of the sum of the empty set as 0).

Let f(n) be the largest k such that [n] contains a subset of size k with distinct sums.

Proposition 4.12. ⌊log2 n⌋ ≤ f(n) ≤ log2 n+ log2 log2 n+ 2.

Proof. For the lower bound, consider the set of powers of 2 in [n].

For the upper bound, notice that if S ⊆ [n] is a set with distinct sums such that |S| = k, then

its subsets define 2k distinct sums, each of which is at most kn, showing: 2k ≤ kn. If k ≥
log2 n+ log2 log2 n+ 2, then

2k

k
≥ 2log2 n+log2 log2 n+2

log2 n+ log2 log2 n+ 2
=

4n log2 n

log2 n+ log2 log2 n+ 2
> n,

using that the function 2k

k is increasing, and that log2 log2 n+ 2 ≤ 2 log2 n (which holds for n ≥ 2;

for n = 1 the statement of the proposition clearly holds).

In the next theorem we improve the error term in the upper bound, using the second moment

method.
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Theorem 4.13. f(n) ≤ log2 n+ 1
2 log2 log2 n+ 4.

Proof. Let x1, . . . , xk ∈ [n] be distinct elements such that {x1, . . . , xk} has distinct sums. Let

ε1, . . . , εk be independent random variables, with P(εi = 0) = P(εi = 1) = 1
2 . Define X =∑

i∈[k] εixi. Write µ = E(X) and σ2 = Var(X) (with σ ≥ 0). Then

σ2 =
∑

i∈[k]

Var(εixi) =
∑

i∈[k]

x2i Var(εi) =
∑

i∈[k]

x2i (E(ε2i ) − (E(εi))
2) =

∑

i∈[k]

x2i (E(εi) − (E(εi))
2)

=
1

4

∑

i∈[k]

x2i ≤
n2k

4
.

Let λ > 0 to be determined later. By Chebyshev’s inequality (Proposition 4.3),

P
(
|X − µ| ≥ λσ

)
≤ 1

λ2
.

Equivalently,

P
(
|X − µ| < λσ

)
≥ 1 − 1

λ2
. (11)

Crucially, for every positive integer a, we have P(X = a) ≤ 2−k, by the distinct sums property.

Thus,

P
(
|X − µ| < λσ

)
≤ 2−k · (2λσ + 1) ≤ 2−k ·

(
λn

√
k + 1

)
. (12)

Combining (11) and (12),

1 − 1

λ2
≤ 2−k ·

(
λn

√
k + 1

)
≤ 2−k · (λ+ 1) · n

√
k.

Rearranging,

n ≥
2k · (1 − 1

λ2 )

(λ+ 1)
√
k
.

Assuming that k ≥ log2 n+ 1
2 log2 log2 n+ 4, and plugging in λ = 2 (the precise value of λ does not

change much, as long as it is larger than 1), we get

n ≥
3
4 · 2k

3
√
k

≥ 2k

4
√
k
≥

16n
√

log2 n

4
√

log2 n+ 1
2 log2 log2 n+ 4

> n,

using 1
2 log2 log2 n+ 4 ≤ 8 log2 n.

4.4 Prime divisors

For a positive integer n, let ν(n) be the number of prime divisors of n. Clearly, ν(n) can vary

substantially: we have ν(n) = 1 if n is prime, and for certain values of n we have ν(n) ≈ logn
log logn .

Nevertheless, it turns out that ‘almost all’ value of n satisfy ν(n) ≈ log log n. This is what we
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show in the following theorem. Recall that log x refers to the natural logarithm (namely, the base

e logarithm).

Theorem 4.14 (Hardy–Ramanujan, 1920 (this proof is due to Turán, 1934)). For every ε > 0

there is a constant c > 0 such that

∣∣∣
{
x ∈ [n] : |ν(x) − log log n| > c

√
log log n

}∣∣∣ ≤ εn.

Proof. Let x be chosen randomly from [n]. For a prime p, let Yp be the indicator random variable

for the event {p divides x}, M = n1/2 and Y =
∑

p≤M Yp. Notice that every x ∈ [n] has at most

one prime factor that is larger than M , and so |Y − ν(x)| ≤ 1. It thus suffices to show that

|Y − log logn| ≤ c
√

log logn, with high probability.

Now,

E(Yp) =
⌊n/p⌋
n

=
1

p
+O(n−1),

using a− 1 < ⌊a⌋ ≤ a. By linearity of expectation,

E(Y ) =
∑

p ≤ M prime

E(Yp) =
∑

p ≤ M prime

1

p
+O(1) = log log n+O(1).

For the last equality, we used a result from number theory which we will not prove here.

Next, we estimate the variance of Y , using the following formula

VarY =
∑

p

Var(Yp) +
∑

p ̸=q

Cov(Yp, Yq). (13)

(Here the sum is over p and q which are primes in [M ].)

First, note that Var(Yp) = E(Y 2
p ) − (E(Yp)) ≤ E(Yp)(1 − E(Yp)) ≤ E(Yp) ≤ 1

p . Thus,

∑

p

Var(Yp) ≤
∑

p

1

p
= log log n+O(1), (14)

using the number theory result mentioned above.

Second, note that if p, q are distinct primes in [M ] then

Cov(Yp, Yq) = E(YpYq) − E(Yp)E(Yq)

≤ n/pq

n
− n/p− 1

n
· n/q − 1

n

=
1

pq
−
(

1

p
− 1

n

)(
1

q
− 1

n

)
≤ 1

n

(
1

p
+

1

q

)
.

Thus,
∑

p̸=q

Cov(Yp, Yq) ≤
1

n

∑

p ̸=q

(
1

p
+

1

q

)
≤ M

n

∑

p

1

p
= O(n−1/2 log logn) = O(1), (15)
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using that, trivially, there are at most M primes in [M ] for the second inequality.

Altogether, combining (13), (14) and (15), we get

Var(Y ) =
∑

p

Var(Yp) +
∑

p ̸=q

Cov(Yp, Yq) = log log n+O(1).

By Chebyshev’s inequality (Proposition 4.3),

P
(
|Y − E(Y )| ≥ λ

√
Var(Y )

)
≤ 1

λ2
.

That is, the number of elements x ∈ [n] that satisfy |Y (x)−E(Y )| ≥ λ
√

Var(Y ) is at most n
λ2 . For

every x ∈ [n] not satisfying this we have

|ν(x) − log logn| ≤ |ν(x) − Y (x)| + |Y (x) − E(Y )| + |E(Y ) − log log n|

≤ λ
√

Var(Y ) +O(1) = λ
√

log logn+O(1) ≤ 2λ
√

log logn.

using ν(x) ≤ Y (x) ≤ ν(x) + 1, the assumption on x, and E(Y ) = log log n + O(1) and E(Y ) =

log logn+O(1) for the equality. In other words

∣∣∣
{
x ∈ [n] : |ν(x) − log logn| > 2λ

√
log logn

}∣∣∣ ≤ n

λ2
.

This proves the theorem (for ε > 0, can take c = 2√
ε
).

4.5 Clique number of random graphs

Definition 4.15. A clique in a graph G is a set of vertices in G whose every two vertices are

joined by an edge. The clique number of G, denoted ω(G), is the size of a largest clique in G (see

Figure 12).

Figure 12: A graph with clique number 4

In this section we calculate (with high probability) the clique number of G(n, 1/2). Surprisingly,

this number is concentrated on one or two values, depending on n. Define f : N → N as follows.

f(k) =

(
n

k

)
2−(k2).
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Notice that f(k) is the expected number of cliques of size k in G(n, 1/2). Denote by k0 = k0(n) the

largest k such that f(k) ≥ n1/4; such a k0 exists because f(1) = n ≥ n1/4 and f(n) < n1/4.

Theorem 4.16. With high probability, the clique number of G(n, 1/2) is either k0 or k0 + 1.

Before the proof of the theorem, we prove two numerical claims. The first estimates k0.

Claim 4.17. 2 log2 n− 4 log2 log2 n ≤ k0 ≤ 2 log2 n for large enough n.

Proof. If k ≥ 2 log2 n then

f(k) ≤
(en
k

)k
2−k(k−1)/2 =

(√
2en

k2k/2

)k

≤
(

4n

kn

)k

≤ 1,

where the last inequality holds when k ≥ 4, say, which is the case when n ≥ 2. This shows

k0 ≤ 2 log2 n.

Now, if log2 n ≤ k ≤ 2 log2 n− 4 log2 log2 n, then

f(k) ≥
(n
k

)k
2−k2/2 =

( n

k2k/2

)k
≥

(
n

2 log2 n · n
(log2 n)

2

)k

=

(
log2 n

2

)k

≥ 2log2 n = n ≥ n1/4,

where the penultimate inequality holds for n ≥ 16. It follows that k0 ≥ 2 log2 n − 4 log2 log2 n for

large enough n.

Notice that this claim, along with Theorem 4.16 which we will prove shortly, implies the following

corollary.

Corollary 4.18. With high probability, ω(G(n, 1/2)) = 2 log2 n+O(log log n).

The next claim lower bounds the ration f(k)
f(k+1) (for large enough k).

Claim 4.19. Let k ≥ 1.99 log2 n. Then f(k)
f(k+1) ≥

√
n.

Proof.

f(k)

f(k + 1)
=

(
n
k

)
2−(k2)

(
n

k+1

)
2−(k+1

2 )
=

(k + 1)2k

n− k

≥ 1

n
· 21.99 log2 n = n0.99n ≥ n1/2.

(16)

Here we used that k+1
n−k ≥ 1

n for k ≥ 0 (as the fraction increases with k) and the lower bound on k

for evaluating 2k.

Finally, we prove the theorem.
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Proof of Theorem 4.16. In order to prove the theorem, we need to prove that the following two

things holds with high probability: the clique number of G = G(n, 1/2) is at most k0 + 1; and that

it is at least k0. The first task is easier, so we do it first.

Let k satisfy k ≥ k0. Then, for large enough n, by Claims 4.17 and 4.19, we have f(k0 + 2) ≤
n−1/2 · f(k0 + 1) ≤ n−1/4. By Markov’s inequality, recalling that f(k0 + 2) is the expected number

of cliques of size k0 + 2, we get

P(there is at least one cliques of size k0 + 2) ≤ f(k0 + 2) ≤ n−1/4.

So, with high probability, there are no cliques of size k0 + 2, i.e. the clique number is at most k0 + 1.

Now, we turn to the second task, of showing that, with high probability, there is a clique of size k0.

From now on, we set k := k0 to avoid notational clutter. For a set of k vertices S, denote by XS

the indicator random variable for the event {S is a clique}, and let X =
∑

S XS . For two sets S, T

of k vertices, writing i := |S ∩ T |, we have

Cov(XS , XT )

{
= 0 i ∈ {0, 1}
≤ E(XSXT ) = 2−2(k2)+(i

2) i ≥ 2.

Thus,

Var(X) =
∑

S,T

Cov(XS , XT ) ≤
∑

2≤i≤k

∑

S,T :|S∩T |=i

2−2(k2)+(i
2)

=
∑

2≤i≤k

(
n

k

)(
k

i

)(
n− k

k − i

)
2−2(k2)+(i

2),

and, writing g(i) :=
(ki)(

n−k
k−i)2

(i
2)

(nk)
,

Var(X)

(E(X))2
=

Var(X)
((

n
k

)
2−(k2)

)2 ≤
∑

2≤i≤k

(
k
i

)(
n−k
k−i

)
2(i

2)
(
n
k

) =
∑

2≤i≤k

g(i).

To complete the proof, it suffices to show that g(i) ≤ n−1/4 for every i ∈ [2, k]. Indeed, if that is

the case we get

Var(X)

(E(X))2
≤ kn−1/4 ≤ 2 log2 n · n−1/4 → 0.

By Corollary 4.4, this would show that X ≥ 1, with high probability. Equivalently, with high

probability, there is a clique of size k.
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It is quite easy to show that g(i) ≤ n−1/4 for i ∈ {2, k}. Indeed,

g(2) =

(
k
2

)(
n−k
k−2

)
2(22)

(
n
k

) ≤
k2 (n−k)k−2

(k−2)!

(n−k)k

k!

≤ k4

(n− k)2
≤ n−1/4.

g(k) =
2(k2)(
n
k

) =
1

f(k)
≤ n−1/4,

where we used that n is large for the first line, and the choice of k for the second.

Claim 4.20. g(i) ≤ max{g(2), g(k)} for i ∈ [2, k].

The proof of Theorem 4.16 follows from the claim, as explained above.

End of lecture 11

Proof of Claim 4.20. We will show that there is an i0 such that g(2) ≥ g(3) ≥ . . . ≥ g(i0) and

g(i0) ≤ g(i0 + 1) ≤ . . . ≤ g(k). This would show g(i) ≤ g(2) if i ∈ [2, i0], and g(i) ≤ g(k) for

i ∈ [i0, k], which implies the claim. Write h(i) := g(i+1)
g(i) . Then

h(i) =
g(i+ 1)

g(i)
=

(
k

i+1

)(
n−k

k−i−1

)
2(i+1

2 )

(
k
i

)(
n−k
k−i

)
2(i

2)
=

(k − i)2 · 2i

(i+ 1)(n− 2k + i+ 1)
.

So our task is to show that there is i0 such that h(i) ≤ 1 for i ∈ [2, i0 − 1] and h(i) ≥ 1 for

i ∈ [i0, k − 1]. It is easy to check that h(1) < 1 and h(k − 1), h(k − 2), h(k − 3) > 1. Now, for

i ∈ [1, k − 4],

h(i+ 1)

h(i)
=

(k − i− 1)2 · 2i+1

(i+ 2)(n− 2k + i+ 2)
· (i+ 1)(n− 2k + i+ 1)

(k − i)2 · 2i

= 2

(
1 − 1

k − i

)2(
1 − 1

i+ 2

)(
1 − 1

n− 2k + i+ 2

)
> 1.

It follows that h(1) < . . . < h(k − 3). Since h(1) < 1 and h(k − 1), h(k − 2), h(k − 3) > 1, the

existence of a suitable i0 follows.

5 Concentration inequalities: Chernoff’s bound

5.1 Chernoff bounds

The second moment method allowed us to show that a random variable X is, with high probability,

close to its mean. In this section we show that for X which is the sum of independent identically-

distributed random variables, X is close to its mean, with very high probability.

Here is the simplest version of this statement.
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Theorem 5.1 (Chernoff). Let X1, . . . , Xn be independent random variables satisfying P(Xi =

−1) = P(Xi = 1) = 1/2, and write X = X1 + . . .+Xn. Then, for every a ≥ 0,

P(X > a) ≤ e−a2/2n, P(X < −a) ≤ e−a2/2n.

Proof. Notice that P(X ≥ a) = P(−X ≥ a) = P(X ≤ −a), by symmetry. It thus suffices to prove

the first inequality. Let λ ≥ 0 be a parameter to be determined later.

P(X ≥ a) = P
(
eλX ≥ eλa

)
≤

E
(
eλX

)

eλa
. (17)

We now estimate E
(
eλX

)
.

E
(
eλX

)
= E

(
e
∑

i λXi

)
=
∏

i

E
(
eλXi

)
=
∏

i

e−λ + eλ

2
≤
∏

i

eλ
2/2 = enλ

2/2. (18)

Here the second equality follows from the independence of the Xi’s and the inequality can be easily

verified using the Taylor expansions of ex. Indeed, recall that ex =
∑

i≥0
xi

i! . Thus

e−λ + eλ

2
− eλ

2/2 =
∑

i≥0

1

2

(
(−λ)i

i!
+
λi

i!

)
−
∑

i≥0

(λ2/2)i

i!
=
∑

i≥0

(
λ2i

(2i)!
− λ2i

2ii!

)
≥ 0,

using (2i)! ≥ 2ii! which holds for all i ≥ 0.

Combining (17) and (18), we get

P(X ≥ a) ≤ exp

(
nλ2

2
− λa

)
.

Plugging in λ = a/n (obtained from optimising), we get P(X ≥ a) ≤ e−a2/2n, as required.

Remark 5.2. Let us compare the performance of the Chebyshev and Chernoff bounds, for X as

in Theorem 5.1. Taking a = λ
√
n, Chebyshev’s inequality give

P
(
|X| ≥ λ

√
n
)
≤ Var(X)

λ2n
=

1

λ2
,

using that E(X) = 0 and Var(X) = n. Chernoff gives

P
(
|X| ≥ λ

√
n
)
≤ 2e−λ2

.

This is much better than what Chebyshev gives (at least for somewhat large λ).

Corollary 5.3. Let X1, . . . , Xn be independent random variables satisfying P(Xi = 0) = P(Xi =

1) = 1/2, and write X = X1 + . . .+Xn. Then, for every a ≥ 0,

P(X > E(X) + a) ≤ e−2a2/n, P(X < E(X) − a) ≤ e−2a2/n.
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Proof. Write Yi = 2Xi − 1 for i ∈ [n] and Y = Y1 + . . . + Yn. Then Xi = (Yi + 1)/2 and

X = Y/2 + n/2 = Y/2 + E(X). So P(Yi = −1) = P(Yi = 1) = 1/2, and the random variables

Y1, . . . , Yn are independent. Then, by Theorem 5.1,

P(X ≥ E(X) + a) = P
(
Y/2 + E(X) ≥ E(X) + a

)
= P(Y ≥ 2a) ≤ e−2a2/n.

This proves the first inequality; the second can be proved similarly.

Theorem 5.1 has many extensions, allowing for more flexibility in the distributions of the Xi’s. Here

is a pretty general version (which we will not prove, but which can be proved similarly).

Theorem 5.4. Let X1, . . . , Xn be independent random variables with values in {0, 1}, and write

X = X1 + . . .+Xn. Then, for every a ≥ 0,

P (X − E(X) > a) ≤ e−2a2/n, P (X − E(X) < −a) ≤ e−2a2/n.

Here is another useful version (which we will not prove).

Theorem 5.5. Let X1, . . . , Xn be independent random variables taking values in {0, 1}. Then, for

δ > 0,

P(X < (1 − δ)E(X)) ≤ e−δ2E(X)/2, P(X > (1 + δ)E(X)) ≤ e(−δ2+δ3)E(X)/2.

In particular, if 0 ≤ δ ≤ 1/3,

P(X > (1 + δ)E(X)) ≤ e−δ2E(X)/3.

Remark 5.6. Let us compare the last two theorems. Suppose that E(X) = pn (for some p ∈ [0, 1]).

The Theorem 5.4 gives

P (X ≤ (1 − δ)E(X)) ≤ e−
2(δE(X))2

n = e−2δ2p2n,

and Theorem 5.5 gives

P (X ≤ (1 − δ)E(X)) ≤ e−δ2pn.

If p is small, then the latter estimate is stronger.

5.2 Hajós’s conjecture

Definition 5.7 (Subdivision). A subdivision of a graph H, is a graph obtained from H by replacing

each edge e in H by a path Pe, whose interior vertices are new, and the interiors of Pe for e ∈ E(H)

are pairwise disjoint. Visually, a subdivision of H is obtained by adding some new vertices on edges

of H (see Section 5.2).
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Figure 13: A subdivision of K4

Definition 5.8. A proper colouring of G is a colouring of its vertices so that no two adjacent

vertices share a colour (see Figure 14). The chromatic number of a graph G, denoted χ(G), is the

minimum number of colours in a proper colouring of G.

Figure 14: A proper colouring

A conjecture of Hajós (1961) asserts that if G has chromatic number k, then it has a subdivision

of Kk. We will show that G(n, 1/2) provides a counter example to this conjecture, with high

probability.

Theorem 5.9. With high probability G(n, 1/2) has chromatic number at least n
3 log2 n

and has no

subdivision of Kk for k ≥ 10
√
n.

Proof. Write G = G(n, 1/2). First, recall that we showed that, with high probability, the clique

number of G is 2 log2 n+O(log log n) (see Corollary 4.18). By symmetry, this show that, with high

probability, the independence number of G, denoted α(G), is 2 log2 n+O(log log n). In particular,

it is at most 3 log2 n for large enough n.

Note that χ(H) ≥ |V (H)|
α(H) for every graph H. Indeed, otherwise there is a proper colouring with

fewer than |V (H)|
α(H) colours, showing that there is a colour class with more than α(H) edges. But

each colour class is an independent set, so we found an independent set of size larger than α(H), a

contradiction. It follows that, with high probability, χ(G) ≥ n
3 log2 n

.

Claim 5.10. With high probability, for every m ≥ 1000 log n, every set of m vertices in G has at

least 1
3

(
m
2

)
non-edges.

Proof. Consider a set S of m vertices, with m ≥ 1000 log n, and let X be the number of non-edges in

S. Notice that X is a sum of
(
m
2

)
independent random variable, each being 0 or 1 with probability
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1/2. It follows that E(X) = 1
2

(
m
2

)
. Thus, by Theorem 5.5,

P
(
X ≤ 1

3

(
m

2

))
= P

(
X ≤

(
1 − 1

6

)
· E(X)

)

≤ exp

(
− 1

72
· E(X)

)
= exp

(
− 1

144
·
(
m

2

))
≤ exp (−2m log n) = n−2m.

using m ≥ 1000 log n.

Taking a union bound over all sets of size at least 1000 log n, we get that the probability that there

is a set of m vertices, with m ≥ 1000 log n, that has fewer than 1
3

(
m
2

)
non-edges, is at most

∑

1000 logn≤m≤n

(
n

m

)
n−2m ≤

∑

m

n−m ≤ n · n−1000 logn → 0.

Here we used the inequality
(
n
m

)
≤ nm for the first inequality. This proves the claim.

Suppose that the conclusion of the above claim holds for G, namely that every set of m vertices,

with m ≥ 1000 log n, has at least 1
3

(
m
2

)
non-edges. We will show that there is no subdivision of Kk

for k = 10
√
n. Then there is a set S of k vertices in G, and paths Pxy for every (unordered) pair xy

of vertices of S, such that Pxy has ends x and y, and the interiors of these paths are in V (G) − S

and are pairwise vertex disjoint. In particular, at most n− k ≤ n of these paths have length more

than 1 (otherwise, two such paths would share an interior vertex, a contradiction). So, at least(
k
2

)
− n of the paths Pxy are, in fact, the edge xy. In particular, there are at least

(
k
2

)
− n edges in

S, i.e. there are at most n non-edges in S. But

1

3

(
k

2

)
≥ k2

12
> n,

a contradiction to the assumption that S has at least 1
3

(
k
2

)
non-edges. So, indeed, with high

probability, G has no subdivision of Kk for k ≥ 10
√
n.

Altogether, we showed that each of the following holds with high probability: χ(G) ≥ n
3 log2 n

; and G

has no subdivision of Kk for k ≥ 10
√
n. By the union bound, both assertions hold simultaneously,

as required for the theorem.

5.3 Consistent edges in tournaments

Recall that a tournament is an oriented graph where for every two vertices x and y, exactly one of

the pairs xy and yx is an edge. Given a tournament T and a permutation π of its vertices, an edge

xy is consistent with π if x appears before y in π.

A random tournament on n vertices is the tournament on vertex set [n], where for any two vertices

x, y, one of xy and yx is chosen to be a directed edge, randomly and independently.
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Lemma 5.11. Let T be a random tournament on n vertices. Then, with high probability, for every

permutation π of V (T ), at most 1
2

(
n
2

)
+O(n3/2

√
log n) edges of T are consistent with π.

Proof. For a permutation π of V (T ), let Aπ be the event

{
there are more than

1

2

(
n

2

)
+ n3/2

√
log n edges consistent with π

}
.

We show that P(Aπ) is small for every permutation π.

Fix π, define Xxy to be the indicator random variable for the event

{the edge with ends x and y is consistent with π},

and write X =
∑

x,yXxy, where x, y run over all (unordered) pairs of vertices. Then X counts

the number of edges consistent with π. Notice that Aπ = {X > 1
2

(
n
2

)
+ n3/2

√
log n}. Thus, by

independence of the Xxy’s, and by Corollary 5.3,

P(Aπ) = P
(
X >

1

2

(
n

2

)
+ n3/2

√
log n

)
≤ exp

(
−2n3 log n(

n
2

)
)

≤ exp (−n log n) = n−n.

(Here we used
(
n
2

)
≤ n2 for the second inequality.) Taking a union bound, we get

P
(

there is a permutation with more than
1

2

(
n

2

)
+ n3/2

√
log n consistent edges

)

= P

(⋃

π

Aπ

)
≤
∑

π

P(Aπ) ≤ n! · n−n ≤ nn−1 · n−n =
1

n
→ 0.

Here for the penultimate inequality we used the crude bound n! ≤ nn−1. This shows that, with

high probability, there is no permutation which is consistent with more than 1
2

(
n
2

)
+ n3/2

√
log n

edges.

In fact, Lemma 5.11 can be improved a bit.

Theorem 5.12 (de la Vega, 1983). Let T be a random tournament on n vertices. Then, with high

probability, for every permutation π of V (T ), at most 1
2

(
n
2

)
+O(n3/2) edges are consistent with π.

Proof. For simplicity, we assume that n = 2k. Write V = V (T ). For i ∈ [k], define

si = 22(k−i)+i−1 ti = n3/22−i/2
√
i. (19)

For i ∈ [k], let Ai be the event that there is an equipartition {V1, . . . , V2i} of V such that there are

more than 1
2si+ti edges xy with x ∈ V2j−1 and y ∈ V2j for some j ∈ [2i−1], where an equipartition is

a partition into equal parts. Notice that si is the number of unordered pairs xy such that x ∈ V2j−1

and y ∈ V2j for some j.
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For example, A1 is the event that there is an equipartition {V1, V2} of V , with more than 1
2

(
n
2

)2
+

1
2n

3/2 edges directed from V1 to V2.

Claim 5.13. With high probability, none of the events A1, . . . , Ak hold.

Proof of Claim 5.13. For i ∈ [k], let Pi be the collection of all equi-partitions {V1, . . . , V2i} of V

into 2i parts. Then |Pi| ≤ 2in, because each of n vertices has at most 2i choices of a part. Fix

P = (V1, . . . , V2i) ∈ Pi, and let AP be the event: there are more than 1
2si + ti edges xy with x ∈ Vj

and y ∈ Vj+1, for some j. For a pair (x, y) with x ∈ Vi,j and y ∈ Vi,j+1, for some j, let Xxy be the

indicator random variable for the event {xy is an edge}, and set X =
∑

xyXxy for all such pairs

(x, y). Then, as X is a sum of si independent random variables,

P(AP) = P
(
X ≥ si

2
+ ti

)
≤ exp

(
−2t2i
si

)

= exp

(
− 2n32−ii

22(k−i)+i−1

)
≤ exp

(
−2n32−ii

n22−i

)
= e−2in.

It follows from a union bound that

P(Ai) = P


 ⋃

P∈Pi

AP


 ≤

∑

P∈P
P(AP) ≤ 2ine−2in ≤ e−in.

Another union bound gives

P


⋃

i∈[k]

Ai


 ≤

∑

i∈[k]

P(Ai) ≤
∑

i∈[k]

e−in ≤
∑

i≥1

e−in =
e−n

1 − e−n
≤ 1

2
e−n.

So, with high probability, all of A1, . . . , Ak hold.

Fix an outcome of T where none of the events A1, . . . , Ak hold, and fix a permutation π. We will

show that the number of edges consistent with π is 1
2

(
n
2

)
+O

(
n3/2

)
.

For i ∈ [0, k] we define an equipartition Pi = {Vi,1, . . . , Vi,2i} of V as follows: write π = (v1, . . . , vn),

and take Vi,j = {v(j−1)2k−i+1, . . . , vj2k−i} for j ∈ [2i]. For example, P0 partitions V into just one

set, and Pk partitions V into singletons.

For i ∈ [k], let Ei be the set of ordered pairs xy such that there exists j ∈ [2i−1] such that x ∈ Vi,2j−1

and y ∈ Vi,2j .

Claim 5.14. For every ordered pair xy where x appears before y in π, there is a unique index i

such that xy ∈ Ei.

Proof. Write x = va and y = vb, so a < b. Let i be maximal such that x and y are in the same

set in Pi (notice that such i exists, because x and y are in same set in P0), and let j be such that

x, y ∈ Vi,j . Notice that Vi+1,2j−1, Vi+1,2j partition Vi,j , with the elements in Vi+1,2j−1 preceding
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those of Vi+1,2j in π. Thus, by choice of i and because a < b, we have x ∈ Vi+1,2j−1 and y ∈ Vi+1,2j ,

showing that xy ∈ Ei+1, as claimed.

For uniqueness, notice that

∑

i∈[k]

|Ei| =
∑

i∈[k]

si =
∑

i∈[k]

22(k−i)+i−1 = 22k−2
∑

i∈[k]

2−(i−1) =
n2

4

1 − 2−k

1 − 1/2
=
n2

4
· 1 − 1/n

1/2
=

(
n

2

)
,

So, by the first paragraph, the union of the Ei’s is the set {vavb : a < b}, a set of size
(
n
2

)
. By the

equality
∑

i |Ei| =
(
n
2

)
, this is a disjoint union, proving uniqueness.

Let E′
i be the set of ordered pairs xy ∈ Ei which are edges in T . By Claim 5.14, {E′

1, . . . , E
′
k}

is a partition of the edges in T that are consistent with π. By the assumption on T , we have

|E′
i| ≤ 1

2 |Ei| + ti. Thus, the number of edges consistent with π is at most

∑

i∈[k]

|E′
i| ≤

∑

i∈[k]

(
1

2
|Ei| + ti

)
=

1

2

(
n

2

)
+
∑

i∈[k]

n3/22−i/2
√
i

≤ 1

2

(
n

2

)
+ n3/2

∑

i≥1

2−i/2
√
i ≤ 1

2

(
n

2

)
+ cn3/2,

where c =
∑

i≥1 2−i/2
√
i (notice that the series converges). we showed that at most 1

2

(
n
2

)
+ cn3/2

edges are consistent with π, for every permutation π, under the assumption that the conclusion

of Claim 5.13 holds. This proves the theorem, since the conclusion of the claim holds with high

probability.

6 The local lemma

In the last few sections we used concentrations inequalities (Chebyshev and Chernoff) to prove that

an outcome holds with positive probability. In fact, it was often the case that the same methods

actually allowed us to prove that it holds with high probability.

In contrast, here is another way of showing that a certain outcome holds with positive probability:

suppose that A1, . . . , An are independent events, each holding with positive probability. Then, by

independence, P (A1 ∩ . . . ∩An) =
∏

i∈[n] P(Ai) > 0. In particular, the event A1 ∩ . . . ∩ An holds

with positive, but possibly small, probability.

This is, however, a very specific situation. In this section we will see a useful generalisation of this

situation, namely when we have many events, with ‘few dependencies’.

Definition 6.1 (Mutual independence). We say that an event A is mutually independent of a

collection of events B1, . . . , Bn, if for every choice of events Ci ∈ {Bi, B
C
i }, the events A and⋂

i∈[n]Ci are independent.
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Theorem 6.2 (Lovász, 1975). Let A1, . . . , An be events in a probability space. Suppose that p ∈
[0, 1) and d is a non-negative integer, such that: P(Ai) ≤ p and Ai is mutually independent of a

collection of all but at most d other events Aj, for i ∈ [n]; and ep(d+ 1) ≤ 1. Then

P


⋂

i∈[n]

AC
i


 > 0.

Remark 6.3. When d = 0 the independence condition implies that the events A1, . . . , An are

independent. Indeed, if say A,B,C are three events any one of which is mutually independent of the

other two, then we get: P(A∩B) = P(A∩B∩C)+P(A∩B∩CC) = P(A)P(B)P(C)+P(A)P(B)P(CC) =

P(A)P(B), showing that A and B are independent. Similarly, we can get that if Ai is mutually

independent of {Aj : j ∈ [n]−{i}} then the probability of the intersection of any subfamily of Aj ’s

is the product of the probabilities in the family, showing independence of the family. We thus get

that P
(
∩i∈[n](Ai)

C
)

=
∏

i∈[n] P(AC
i ) > 0, assuming that P(Ai) < 1.

We will prove the theorem later in the section. Before that, let us see some applications.

6.1 Ramsey numbers

Here is an application of the local lemma to Ramsey numbers, giving a small improvement over

Theorem 3.1.

Theorem 6.4. If e ·
(
k
2

)(
n−2
k−2

)
· 21−(k2) < 1, then r(k, k) > n.

Proof. Colour the edges of Kn red and blue, randomly and independently. For a set S of k vertices,

let AS be the event that S is monochromatic. Then P(As) = 21−(k2). Notice that AS is mutually

independent of the set {AT : T is a set of k vertices with |S ∩ T | ≤ 1}, a set which contains all but

at most
(
k
2

)(
n

k−2

)
− 1 sets of k vertices different from S. The local lemma, applied with p = 21−(k2)

and d =
(
k
2

)(
n−2
k−2

)
− 1, along with the assumption, proves the proposition.

Corollary 6.5. For every ε > 0 there exists k0 such that if k ≥ k0 then

r(k, k) ≥ (1 − ε) ·
√

2

e
· k · 2k/2.

Proof. Fix ε > 0 and suppose that n ≤ (1 − ε) ·
√
2
e · k · 2k/2. Then

e ·
(
k

2

)(
n− 2

k − 2

)
· 21−(k2) ≤ ek2 · 2−

1
2
(k+1)(k−2)

(
e(n− 2)

k − 2

)k−2

≤ ek2 ·
(

(1 + ε) · en
k · 2(k+1)/2

)k−2

≤ ek2(1 − ε2)k−2.
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(For the penultimate inequality we used (1 + ε)(k − 2) ≥ k, which holds for large enough k.)

This expression tends to 0 as k tends to infinity, so for large enough k it is at most 1. Thus,

by Theorem 6.4, we have r(k, k) ≥ n for large enough k. By choice of n, this gives r(k, k) ≥
(1 − ε)

√
2
e k2k/2, as claimed.

Remark 6.6. This improve the previous lower bound for r(k, k) that we obtained in Theorem 3.1

by about a factor of 2.

6.2 Colouring hypergraphs

Theorem 6.7. Let r ≥ 2 and suppose that H is an r-uniform hypergraph each of its edges intersects

at most d other edges. If e(d+ 1) ≤ 2r−1 then H is 2-colourable.

Proof. We wish to show that the vertices of H can be red-blue coloured so that no edge is monochro-

matic. As usual, consider a random red-blue colouring of H (namely, each vertex is coloured ran-

domly and independently). For an edge e, let Ae be the event that e is monochromatic. We would

like to show that P
(⋂

e∈E(H)A
C
e

)
> 0, i.e. there is a colouring where no edge is monochromatic.

To do so, we apply the local lemma (Theorem 6.2). Note that P(Ae) = 2 · 2−r = 2−(r−1), so we

set p = 2−(r−1). By assumption, each edge e touches at most d other edges, so Ae is mutually

independent of a collection of all but at most d other events Af , and ep(d + 1) ≤ 1. Thus, by the

local lemma, we have P
(⋂

eA
C
e

)
> 0, as desired.

Remark 6.8. Notice that Theorem 6.4 is a corollary of Theorem 6.7. Indeed, take H to be the

hypergraph with V (H) being the collection of edges of Kn, and E(H) the collection of edge sets of

copies of Kk in Kn.

Corollary 6.9. Let r ≥ 10 and suppose that H is an r-uniform hypergraph which is r-regular,

namely each of its vertices is in exactly r edges. Then H is 2-colourable.

Proof. Notice that each edge in H touches at most r2 other edges. Putting d = r2, by Theorem 6.7,

it suffices to show that e(r2 + 1) ≤ 2r−1, which indeed holds for r ≥ 10.

6.3 Colouring real numbers

Theorem 6.10. Let n and k be two positive integers satisfying

e(n(n− 1) + 1) · k
(

1 − 1

k

)n

≤ 1.

Then for every set S of n real numbers, there is a colouring of R with k colours such that every

translation of S (namely a set of form x+ S) has elements of all colours.
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Proof. Fix S ⊆ R of size n. We first prove: for every finite R ⊆ R, there is a k-colouring of R with

no monochromatic translations of S. To see this, fix a finite R ⊆ R, and colour each vertex with

a colour from [k], chosen randomly and independently. For a translation T = x + S of S which is

contained in R, let AT be the event that T is monochromatic. Then P(AT ) ≤ k
(
1 − 1

k

)n
. Notice

that AT is mutually independent of the set of translations of S contained in R which are disjoint

of T . As there are at most n(n − 1) translations of S distinct from T that intersect T (each such

translation is determined by a choice of elements s ∈ S and t ∈ T , such that t ̸= x+ s, and taking

the unique translation of S where s is mapped to t). In particular, AT is mutually independent of all

but at most n(n− 1) other events AT ′ . Apply the local lemma (Theorem 6.2) with p = k
(
1 − 1

k

)n

and d = n(n− 1) to deduce that there is a colouring where all events AC
T holds, i.e. where there are

no monochromatic translations of S.

We now prove the same for all countable sets R ⊆ R. To do this, fix R ⊆ R, which is countable

and infinite. Enumerate it as (ri)i≥1, and define Ri = {r1, . . . , ri}. By the above, for every i there

is a colouring fi : Ri → [k] where no translation of S is monochromatic. For i < j, we say that a

colouring f of Rj extends a colouring g of Ri if the restriction of f to Ri agrees with g.

Claim 6.11. There is a sequence (gi)i≥1 satisfying: gi is a colouring gi : Ri → [k]; gi extends gi−1

for every i ≥ 2; and for infinitely many j ≥ i, the colouring fj extends gi.

Proof. We prove by induction that there is a sequence g1, . . . , gi as in the claim, for i ≥ 0, noting

that there is nothing to prove for i = 0. Suppose that we have defined a sequence g1, . . . , gi satisfying

the above properties. Let X be an infinite set of indices j > i such that fj extends gi; such a set

exists by the properties of the sequence. By the pigeon hole principle, there exists c ∈ [k] such that

fj(si+1) = c for infinitely many j ∈ X. Let gi+1 : Si+1 → [k] defined by

gi+1(rj) =

{
gi(rj) j ∈ [i]

c j = i+ 1.

It is easy to check that gi+1 satisfies the required properties.

Let (gi)i≥1 be a sequence as guaranteed by the above claim. Now consider the colouring g : R→ [k],

obtained by taking g(ti) = gi(ti). We claim that this is a k-colouring of R with no monochromatic

translations of S. Indeed, consider a translation T of S which is contained in R, and let i be such

that T ⊆ Ri. Notice that the restriction of g to Ri is gi, and recall that fj extends gi for infinitely

many j > i, showing that gi has no monochromatic translations of S. In particular, T is not

monochromatic in gi and thus in g.

Write S = {s1, . . . , s|S|} and SpanZ(S) = {a1s1 + . . . + a|S|s|S| : a1, . . . , a|S| ∈ Z}. Finally, we

conclude that R can be k-coloured with no monochromatic translations of S. Define a binary

relation ∼ as follows: for x, y ∈ R, we write x ∼ y if x− y ∈ SpanZ(S). It is easy to check that ∼ is

an equivalence relations, and that every translation of S is contained in an equivalence class. Thus

it suffices to show that each equivalence class can be k-coloured with no monochromatic translation
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of S. This easily follows by the previous paragraph, by observing that each equivalence class is a

translation of SpanZ(S).

Remark 6.12. For the last part of the proof, we implicitly used the axiom of choice, which asserts

that any product of non-empty sets is non-empty. This allows us to simultaneously choose an

appropriate colouring for each equivalence class.

Remark 6.13. For k large, it suffices to take n = 4k log k. Indeed, then

e(n(n− 1) + 1)k

(
1 − 1

k

)n

≤ en2k exp
(
−n
k

)
= 16ek3(log k)3 exp(−4 log k) =

16e(log k)2

k
≤ 1,

where the latter holds for large k (as the expression tends to 0).

6.4 Proof of the local lemma

Proof of Theorem 6.2. We will prove the following claim.

Claim 6.14. For every subset S ⊆ [n] and every i ∈ [n] \ S,

P


Ai

∣∣∣
⋂

j∈S
AC

j


 ≤ 1

d+ 1
. (20)

Before proving Claim 6.14, we prove that it implies the theorem. To see this, note that for every

ℓ ∈ [n− 1],

P


⋂

i∈[ℓ]

AC
i

∣∣∣
⋂

i∈[ℓ+1,n]

AC
i


 = P


 ⋂

i∈[ℓ−1]

AC
i

∣∣∣
⋂

i∈[ℓ,n]

AC
i


 · P


AC

ℓ

∣∣∣
⋂

i∈[ℓ+1,n]

AC
i




= P


 ⋂

i∈[ℓ−1]

AC
i

∣∣∣
⋂

i∈[ℓ,n]

AC
i


 ·


1 − P


Aℓ

∣∣∣
⋂

i∈[ℓ+1,n]

AC
i






≥ P


 ⋂

i∈[ℓ−1]

AC
i

∣∣∣
⋂

i∈[ℓ,n]

AC
i


 ·

(
1 − 1

d+ 1

)
.

using P(A ∩B |C) = P(A |B ∩ C) · P(B |C), which holds for any events A,B,C. Iterating this,

P


⋂

i∈[n]

AC
i


 = P


 ⋂

i∈[n−1]

AC
i

∣∣∣ AC
n


 ·

(
1 − 1

d+ 1

)

≥ P


 ⋂

i∈[n−2]

AC
i

∣∣∣ AC
n−1 ∩AC

n


 ·

(
1 − 1

d+ 1

)2

≥ . . . ≥
(

1 − 1

d+ 1

)n

> 0,

as required.
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Proof of Claim 6.14. The proof is by induction on |S|. Notice that when |S| = 0 (i.e. S = ∅),

this amounts to showing that P(Ai) ≤ 1
d+1 for every i ∈ [n], which holds by assumption due to

p ≤ 1
e(d+1) <

1
d+1 .

Now let S ⊆ [n] and i ∈ [n] \ S, and suppose that (20) holds for all subsets S′ ⊆ [n] with |S′| < |S|
(and all i ∈ [n] \ S′). Let T ⊆ S be a set of size at most d such that Ai is mutually independent of

{Aj : j ∈ S \ T}, and write R = S \ T . Then

P


Ai

∣∣∣
⋂

j∈S
AC

j


 =

P
(⋂

j∈T A
C
j ∩Ai

∣∣∣
⋂

j∈RA
C
j

)

P
(⋂

j∈T A
C
j

∣∣∣
⋂

j∈RA
C
j

) . (21)

We now estimate the numerator in (21).

P


⋂

j∈T
AC

j ∩Ai

∣∣∣
⋂

j∈R
AC

j


 ≤ P


Ai

∣∣∣
⋂

j∈R
AC

j


 = P(Ai) ≤ p. (22)

Here the equality follows from the independence of Ai with
⋂

j∈RA
C
j .

Next, we estimate the denominator. Write T = {i1, . . . , it}. For every ℓ ∈ [t] we have

P


⋂

j∈[ℓ]

AC
ij

∣∣∣
⋂

j∈[ℓ+1,t]

AC
ij ∩

⋂

j∈R
AC

j




= P


 ⋂

j∈[ℓ−1]

AC
ij

∣∣∣
⋂

j∈[ℓ,t]

AC
ij ∩

⋂

j∈R
AC

j


 · P


AC

jℓ

∣∣∣
⋂

j∈[ℓ+1,t]

AC
ij ∩

⋂

j∈R
AC

j




= P


 ⋂

j∈[ℓ−1]

AC
ij

∣∣∣
⋂

j∈[ℓ,t]

AC
ij ∩

⋂

j∈R
AC

j


 ·


1 − P


Ajℓ

∣∣∣
⋂

j∈[ℓ+1,t]

AC
ij ∩

⋂

j∈R
AC

j






≥ P


 ⋂

j∈[ℓ−1]

AC
ij

∣∣∣
⋂

j∈[ℓ,t]

AC
ij ∩

⋂

j∈R
AC

j


 ·

(
1 − 1

d+ 1

)
,

where for the first equality we used P(A∩B |C) = P(A |B∩C)·P(B∩C), which holds for any events

A,B,C, and for the inequality we used the induction hypothesis, noting that the set R∪{iℓ+1, . . . , it}
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does not contain iℓ and thus has size less than |S|. Applying this iteratively, we get

P


⋂

j∈T
AC

j

∣∣∣
⋂

j∈R
AC

j


 = P


⋂

j∈[t]

AC
ij

∣∣∣
⋂

j∈R
AC

j




≥ P


 ⋂

j∈[t−1]

AC
ij

∣∣∣ (Ait)
C ∩

⋂

j∈R
AC

j


 ·

(
1 − 1

d+ 1

)

≥ P


 ⋂

j∈[t−2]

AC
ij

∣∣∣ (Ait−1)C ∩ (Ait)
C ∩

⋂

j∈R
AC

j


 ·

(
1 − 1

d+ 1

)2

. . . ≥
(

1 − 1

d+ 1

)t

≥
(

1 − 1

d+ 1

)d

≥ e−1.

(23)

For the last inequality, we used that
(
1 + 1

d

)d
is an increasing sequences whose limit is e and(

1 − 1
d+1

)d
=
(
1 + 1

d

)−d
.

Plugging in (22) and (23) into (21), we get

P


Ai

∣∣∣
⋂

j∈S
AC

j


 ≤ ep ≤ 1

d+ 1
,

using ep(d+ 1) < 1, as required for (20), proving the claim.

As explained above, the claim implies the theorem.

6.5 Cycles in directed graphs

The following is the final application of the local lemma that we will see. The statement consider

directed cycles in digraphs, which does not involve any colouring, unlike previous applications.

Neverthelesss, as we shall see, the proof does introduce colours.

Theorem 6.15 (Alon–Linial, 1989). Let d, k be positive integers satisfying

e(d(d+ 1) + 1)

(
1 − 1

k

)d

≤ 1.

Suppose that D is a d-regular digraph (meaning that each vertex has both in- and out-degree equal

to d). Then D contains a directed cycle of length divisible by k.

Proof. We colour each vertex with a colour from [k], chosen randomly and independently, denoting

the resulting colouring by c. We will show that, with positive probability, every vertex c has an

out-neighbour u such that c(u) ≡ c(v) + 1 (mod k).
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Before proving this, let us see why this would imply the result. Fix c satisfying the above property,

and consider the subdigraph D′ ⊆ D obtained by keeping edges uv such that c(u) ≡ c(v) + 1

(mod k). So D′ has minimum out-degree at least 1, and thus it has a directed cycle C = (v1 . . . vℓ).

Indeed, let u1 . . . ut be a longest directed path in D′. By maximality of the path and the minimum

degree assumption on D′, the vertex ut has an out-neighbour among {u1, . . . , ut−1}; denote it by

ui. Then (ui . . . uℓ) is a directed cycle in D′. By choice of D′ we have c(vi+1) ≡ c(vi) + 1 (mod k)

for i ∈ [ℓ − 1] and c(v1) ≡ c(vℓ) + 1 (mod k). Thus c(v1) ≡ c(vℓ) + 1 ≡ . . . ≡ c(v1) + ℓ (mod k).

This implies ℓ ≡ 0 (mod k); namely, C is a directed cycle whose length is divisible by k.

Define N+(v) to be the out-neighbourhood of the vertex v, and let N+[v] be the closed out-

neighbourhood of v, namely the union N+(v)∪ {v}. We now prove that c has the desired property

with positive probability. To see this, define Av to be the event that v does not have an out-neighbour

u with c(u) ≡ c(v) + 1 (mod k).

First notice that P(Av) =
(
1 − 1

k

)d
. Indeed, Av fails to hold whenever none of the out-neighbours

of v have colour c(v) + 1 (mod k).

Next, notice that Av only depends on the outcome of v in the closed out-neighbourhood N+[v].

As such, Av is mutually independent of the events Au where N+[u] ∩ N+[v] = ∅. Suppose that

N+[u] ∩ N+[v] ̸= ∅ and u ̸= v. Then one of the following holds: u ∈ N+(v); v ∈ N+(u);

N+(u) ∩ N+(v) ̸= ∅. There are exactly d vertices u satisfying each of the first two properties (by

regularity, and because the second is equivalent to u ∈ N−(v)), and there are at most d(d−1) vertices

u satisfying the third property (it is equivalent to u being an in-neighbour of an out-neighbour of

v which is not v itself; there are d ways of choosing an out-neighbour w of v and d − 1 ways of

choosing an in-neighbour of w which is not u). This leaves at most (d−1)d+d+d = d(d+1) options

for u (each vertex in N+(v) contributes at most d − 1 in-neighbours other than v, v contributes d

in-neighbours, and u could also be in N+(v)).

By Theorem 6.2, applied with p =
(
1 − 1

k

)d
and d6.2 = d(d+ 1), and the assumption regarding the

relation between p and d, there is an outcome of c where none of the events Av hold, as claimed.

Remark 6.16. For large k, it suffices to take d = 3k log k. Indeed, then

e(d(d+ 1) + 1)

(
1 − 1

k

)d

≤ 2ed2 exp

(
−d
k

)
= 18ek3(log k)2 exp(−3 log k) =

18e(log k)2

k
≤ 1.

7 Concentration inequalities: McDiarmid’s inequality

7.1 McDiarmid’s inequality

Recall that Chernoff’s bounds allowed us to upper bound the probability that a random variable X,

which is the sum of independent random variables X1, . . . , Xn, is far from its expectation. While

this is a very useful tool, the assumption on X is quite specific. The following inequality, due
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to McDiarmid4 proves a bound similar to Chernoff’s, which applies to functions of independent

random variables satisfying a ‘Lipschitz property’. We will not proves this inequality.

Theorem 7.1 (McDiarmid’s inequality, 1989). Let X1, . . . , Xn be independent random variables,

where Xi takes values in the set Si. Let c > 0 and let f : S1 × . . .×Sn → R be a function satisfying

|f(x) − f(x′)| ≤ c for every x, x′ ∈ S1 × . . .× Sn differing on at most one coordinate. Then

P
(
f(X1, . . . , Xn) ≤ E (f(X1, . . . , Xn) − t

)
≤ exp

(
− 2t2

c2n

)

P
(
f(X1, . . . , Xn) ≥ E (f(X1, . . . , Xn) + t

)
≤ exp

(
− 2t2

c2n

)
.

Remark 7.2. Notice that by taking Si = {0, 1} and taking f(s1, . . . , sn) = s1 + . . .+ sn we recover

a version of Chernoff’s bound (Theorem 5.4).

Nevertheless, like in Remark 5.6, stronger variants of Chernoff’s bound such as Theorem 5.5 yield

significantly stronger bounds than Theorem 7.1 when E(X) is much smaller than n.

7.2 Random functions

To illustrate the power of Theorem 7.1, we start with an easy consequence of it.

Theorem 7.3. Let f be a function from [n] to [n], chosen randomly among all such functions, and

let X be the random variable counting the number of elements in [n] that are not in the image of f .

Then

P
(∣∣∣∣X − n

(
1 − 1

n

)n∣∣∣∣ ≥ λ
√
n

)
≤ 2e−2λ2

. (24)

In particular, with high probability, X ≈ n
e .

Proof. First, we note that E(X) = n
(
1 − 1

n

)n
. Indeed, this follows from linearity of expectation,

and noting that the probability that i is not in the image of f is
(
1 − 1

n

)n
. Next, observe that f

can be thought of as constructed from n independent random variables X1, . . . , Xn, each of which

is uniformly distributed on [n]. Indeed, given X1, . . . , Xn we assign f(i) = Xi. Notice also that X

satisfies the Lipschitz property with constant 1, namely changing one coordinate in the sequence of

outcomes of the Xi’s changes X by at most 1 (the size of the set {X1, . . . , Xn} can change by at

most 1 by changing Xi: at most one element is removed, and at most one element is added). Thus,

by Theorem 7.1, we get (24). The ‘In particular’ part easily follows from noting that
(
1 − 1

n

)n
tends

to e−1 as n tends to infinity, and taking, say, λ = log n.

7.3 Isoperimetric inequality

Recall that the hypercube Qn of dimension n is the graph on vertices {0, 1}n whose edges are pairs

of vertices that differ on exactly one coordinate (see Definition 3.14).

4You may have heard or may hear of ‘Azuma–Hoeffding’s inequality’; McDiarmid’s inequality is a consequence of
it.
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The distance between two vertices v, u ∈ V (Qn), denoted dist(v, u), is the number of coordinates

on which v and u differ (in fact, this is just the usual notion of distance in a graph, namely the

minimum number of edges in a path from v to u). The distance between a set of vertices U ⊆ V (Qn)

and a vertex v ∈ V (Qn), denoted dist(v, U), is the minimum of dist(v, u) over all u ∈ U .

The ball of radius r around a vertex v, denoted Br(v), is the set of vertices at distance at most r

from v. For a set of vertices U we denote by Br(U) the set of vertices that are at distance at most

r from U .

Theorem 7.4. For every ε > 0 there is a constant λ such that for large enough n the following

holds. If U is a set of at least ε2n vertices in the hypercube Qn then |Bλ
√
n(U)| ≥ (1 − ε)2n.

Remark 7.5. Theorem 7.4 can be thought of as a form of isoperimetric result. An classic isoperi-

metric problem is the following: among all shapes in R2 with a given area, which one minimises the

boundary? It is well known that the answer is a disk.

One can define a notion of boundary in graphs. Given a graph G, the vertex boundary of a set of

vertices U , denoted ∂v(U), is the set of vertices in G that have a neighbour in U but are not in U

(so, for example, ∂v(V (G)) = ∅). A theorem of Harper (1966) asserts that, in the hypercube, the

Hamming ball of radius r, namely the set Br(v) for any vertex v, minimises the vertex boundary

among all sets of vertices of the same size (standard proofs of this are combinatorial). One could

use this theorem to prove Theorem 7.4, but we will see a proof using McDiarmid’s inequality.

Proof of Theorem 7.4. Let X1, . . . , Xn be independent random variables, each chosen uniformly

from {0, 1}. Write X = (X1, . . . , Xn), and let D = dist(X,U). Notice that D is 1-Lipschitz with

respect to (X1, . . . , Xn). Indeed, changing one coordinate of X would change the distance of X from

any point in Qn by at most 1, thus changing D by at most 1. Thus, by McDiarmid’s inequality,

P
(
|D − E(D)| ≥ λ

√
n
)
≤ 2 exp

(
−2λ2

)
< ε,

where the last inequality holds for sufficiently large λ.

Notice that P(D = 0) = |U |
2n ≥ ε, as X a uniformly random element of V (Qn). Thus, E(D) < λ

√
n.

Indeed, otherwise,

ε ≤ P(D = 0) ≤ P
(
|D − E(D)| ≥ λ

√
n
)
< ε,

a contradiction.

Hence,

P
(
X /∈ B2λ

√
n(U)

)
= P

(
D ≥ 2λ

√
n
)
≤ P

(
|D − E(D)| ≥ λ

√
n
)
≤ ε.

In particular, P(X ∈ B2λ
√
n(U)) ≥ 1 − ε. Equivalently, |B2λ

√
n(U)| ≥ (1 − ε)2n, as required for the

theorem (taking 2λ instead of λ).

Remark 7.6. Notice that we did not need to know E(X) for the above proof. This is a common

occurence when using McDiarmid’s inequality.
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7.4 The chromatic number of random graphs

In the remainder of these notes, we will be interested in the chromatic number of the random graph

G(n, p). First, we give a straightforward consequence of McDiarmid’s inequality to prove that, with

high probability, the the chromatic number of G(n, p) is quite close to its expectation.

Theorem 7.7 (Shamir–Spencer, 1987). For every ε > 0 there exists λ > 0 such that the following

holds. For every n and p = p(n) ∈ (0, 1) there is an interval I of at most λ
√
n integers such that

χ(G(n, p)) ∈ I with probability at least 1 − ε.

Proof. Write G = G(n, p) and Y = χ(G). We think of Y as a function of n independent random

variables X1, . . . , Xn, where Xi encodes the outcomes of the edges ij with j ∈ [i−1]. We claim that

Y is 1-Lipschitz. Indeed, changing Xi amounts to adding and/or removing some edges incident to

the vertex i, which we claim can change the chromatic number by at most 1. To see this, suppose

that H1, H2 are two graphs that differ only on the edges touching a vertex v. Then

χ(H1) ≤ χ(H1 − {v}) + 1 = χ(H2 − {v}) + 1 ≤ χ(H2) + 1.

(for the second inequality, given a proper colouring of H1 − {v} with χ(H1 − {v}) colours, colour v

with a new colour.) By symmetry, we also have χ(H2) ≤ χ(H1) + 1, and thus χ(H2)− 1 ≤ χ(H1) ≤
χ(H2) + 1, showing |χ(H1) − χ(H2)| ≤ 1.

Thus, by McDiarmid’s inequality (Theorem 7.1),

P
(
|Y − E(Y )| ≥ λ

√
n
)
≤ 2 exp(−2λ2).

Taking λ to be large enough so that 2 exp(−2λ2) ≤ ε and taking the interval I = [E(Y )−λ
√
n,E(Y )+

λ
√
n], we get that I is an interval of length 2λ

√
n such that χ(G(n, p)) ∈ I with probability at least

1 − ε, as required (again taking 2λ instead of λ).

Remark 7.8. Again, this proof works without knowing (even approximately) the expected value

of χ(G(n, p)).

Remark 7.9. A more natural way of thinking of G(n, p) as a function of indepedent random

variables would be to have a separate random variable for pair ij with i, j ∈ [n], encoding whether

or not ij is an edge. This is known as the edge exposure martingale (though we will not define

martingales in this module). This point of view is not helpful here because this would mean having(
n
2

)
random variables instead of just n, leading to a much worse bound on the probability of deviating

from the mean. Instead, the above proof used the vertex exposure martingale. This name makes

sense, as X1, . . . , Xi determine the subgraph of G(n, p) induced on [i].

7.5 The chromatic number of dense random graphs

The following results determines, asymptotically and with high probability, the chromatic number

of G(n, 1/2).
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Theorem 7.10 (Bollobás, 1988). With high probability, the chromatic number of G(n, 1/2) is

(1 + o(1)) n
2 log2 n

.

As in Section 4.5, we define f : N → N as follows

f(k) =

(
n

k

)
2−(k2).

Let k0 = k0(n) be the largest k such that f(k) ≥ 1 (this is a slightly different choice) and write

k1 = k1(n) = k0 − 4. Claim 4.17 and Claim 4.19 yield that k0 = (2 + o(1)) log2 n and f(k)
f(k+1) ≥ n1/2

for k ≥ 1.99 log2 n, implying k1 = (2 + o(1)) log2 n and f(k1) ≥ n2.

Lemma 7.11. With probability at least 1 − en
2/(log2 n)

13
, the clique number of G(n, 1/2) is at least

k1.

Remark 7.12. By symmetry, the results are the same. This results is stronger than Section 4.5

because here we give a much stronger bound on the probability of failure. Section 4.5 is stronger

in the sense that the bound on the clique number there is a bit stronger.

First, we show how the lemma implies Theorem 7.10.

Proof of Theorem 7.10 using Lemma 7.11. Write m = m(n) = n
(log2 n)

2 and let k2 = k1(m). Then

k2 = (2 + o(1)) log2m = (2 + o(1)) log2 n,

and by Lemma 7.11, with probability at least 1 − exp(−m2/(log2m)13) ≥ 1 − exp(−n2/(log2 n)18),

the independence number of G(m, 1/2) is at least k2 (using the symmetry between G(n, 1/2) and

its complement, which allows us to deduce the analogue of the lemma for independent sets of size

k2). Thus, the probability that there is a set of m vertices in G = G(n, 1/2) with independence

number less than k2 is at most

(
n

m

)
exp

(
− n2

(log2 n)18

)
≤ 2n−n3/2

= o(1).

So, with high probability, every set of m vertices contains an independent set of size k2. It follows

that, with high probability, the chromatic number of G(n, 1/2) is at most

n

k2
+m = (1 + o(1))

n

2 log2 n
.

Indeed, a maximal collection of pairwise vertex disjoint independent sets of size at least k2 covers

all but at most m vertices and consists of at most n
k2

sets; we can colour each such independent

set with its own colour and colour each vertex not covered by the collection with a new unique

colour.

Proof of Lemma 7.11. Write k = k1(n) for convenience. Define Y to be the maximum number of

pairwise edge-disjoint cliques of size k that can be found in G = G(n, 1/2).
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Claim 7.13. E(Y ) ≥ n2

k6
.

We will prove the claim next time. We now prove the lemma using the claim.

We think of Y as a function of
(
n
2

)
independent random variables (Xij : 1 ≤ i < j ≤ n), where Xij

encodes whether or not ij is an edge. Notice that Y is 1-Lipschitz. Indeed, changing one variable

Xij , which amounts to adding or removing one edge, can add or remove at most one clique from

a largest collection of pairwise edge-disjoint k-cliques. We may thus apply McDiarmid’s inequality

(Theorem 7.1), to deduce

P(Y = 0) ≤ P
(
|Y − E(Y )| ≥ E(Y )

)
≤ 2 exp

(
−2(E(Y ))2(

n
2

)
)

≤ 2 exp


−

(
n2

k6

)2

n2


 ≤ 2 exp

(
− n2

k12

)
≤ 2 exp

(
− n2

(log2 n)13

)
.

This completes the proof of the lemma, as Y = 0 exactly when G has no cliques of size k.

Proof of Claim 7.13. Let X be the number of cliques of size k in G, and let Z be the number

of ordered pairs of cliques of size k that intersect in at least two vertices. Write µ = E(X) and

ν = E(Z). Then µ = f(k) ≥ n2. We first show that

ν

µ2
≤ 2k5

n2
. (25)

To see this, write g(i) =
(ki)(

n−k
k−i)2

(i
2)

(nk)
. Then

ν = E(Z) =
∑

i∈[2,k]

(
n

k

)(
k

i

)(
n− k

k − i

)
2−2(k2)+(i

2) =

((
n

k

)
2−(k2)

)2 ∑

i∈[2,k]

g(i) = µ2
∑

i∈[2,k]

g(i).

By Claim 4.20 (albeit with slightly different value of k, which does not change the estimates), we

have g(i) ≤ max{g(2), g(k)}. Hence, it suffices to show that g(i) ≤ 2k4

n2 for i ∈ {2, k}.

g(2) =

(
k
2

)
·
(
n−k
k−2

)
2(22)

(
n
k

) ≤
k2 (n−k)k−2

(k−2)!

(n−k)k

k!

≤ k4

(n− k)2
≤ 2k4

n2
.

g(k) =
1

(
n
k

)
2−(k2)

=
1

µ
≤ 1

n2
≤ 2k4

n2
.

The penultimate inequality in the second line follows from the choice of k which implies f(k) ≥ n2.

This completes the proof of (25).

Now, let q be a probability to be determined. Let K be a family of k-cliques (i.e. cliques of size

k) in G, obtained by including each k-clique in G with probability q, indepedently. Let F be the
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family of ordered pairs of k-cliques in K that intersect in at least two vertices. Finally, let K′ be

the subfamily of K, obtained by removing a k-clique from each pair in F . Then

E(|K′|) ≥ E(|K|) − E(|F|) = qE(|K|) − q2E(Z) = qµ− q2ν.

Take q = µ
2ν . (Notice that this is less than 1, as ν ≥ µ.) This gives E(|K′|) ≥ µ2

4ν ≥ n2

8k5
≥ n2

k6
. Since

K′ is a family of pairwise edge-disjoint k-cliques in G, we have E(Y ) ≥ E(|K′|) ≥ n2

k6
.

7.6 The chromatic number of sparse random graphs

Theorem 7.14 ( Luczak, 1991). Let p = p(n) ∈ (0, 1) satisfy p ·n5/6 → 0. Then there exists u such

that, with high probability,

u ≤ χ(G(n, p)) ≤ u+ 3.

Lemma 7.15. Let c > 0 be a constant and let p = p(n) ∈ (0, 1) satisfy p · n5/6 → 0. Then, with

high probability, every subgraph of G(n, p) on at most c
√
n vertices is 3-colourable.

Proof. We first show that, with high probability, for every t ≤ c
√
n, every t vertices induce fewer

than 3t/2 edges. Indeed, the probability of this failing for some t ≤ c
√
n is at most

∑

4≤t≤c
√
n

(
n

t

)((t
2

)
3t
2

)
p3t/2 ≤

∑

4≤t≤c
√
n

(en
t

)t(2et2

3t

)3t/2

p3t/2

≤
∑

4≤t≤c
√
n

(
10n2/3pt1/3

)3t/2

≤
∑

4≤t≤c
√
n

(
10c1/3n5/6p

)3t/2

≤
∞∑

t=4

(
10c1/3n5/6p

)t
≤ 2

(
10c1/3n5/6p

)4
→ 0,

using that p · n5/6 → 0.

Now suppose that there is a subgraph G′ of G = G(n, p) on at most c
√
n vertices which is not

3-colourable, and take G0 to be a minimal such graph. By the above, we may assume that every

subgraph of G on t vertices, with t ≤ c
√
n, has fewer than 3t/2 edges. In particular, the average

degree of G0 is less than 3, showing that there is a vertex v ∈ V (G0) with degree at most 2 in G0.

By minimality of G0, the graph G0 − v is 3-colourable. By this means that G0 is also 3-colourable

(colour v by a colour not present in its neighbourhood), a contradiction.

Proof of Theorem 7.14. Write G = G(n, p). Let ε > 0 be an arbitrary constant, and let u =

u(n, p, ε) be the least integer satisfying

P(χ(G) ≤ u) ≥ ε.
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(It is easy to see that such u exists.)

Let Y be the minimal size of a set S such that G− S is u-colourable. As in Theorem 7.7, we think

of Y as a function of n independent random variables X1, . . . , Xn, where Xi encodes the edges from

the vertex i to the vertices [i − 1]. Notice that Y is 1-Lipschitz, namely changing the value of Xi

changes Y by at most 1 (if G and G′ differ only on edges touching a vertex v, then if S is a set for

which G − S is u-colourable, then G′ − (S ∪ {v}) is also u-colourable, and vice versa). Hence, by

McDiarmid’s inequality (Theorem 7.1), letting µ = E(Y ),

P
(
|Y − E(Y )| ≥ λ

√
n
)
≤ 2e−2λ2

< ε, (26)

where λ is a constant satisfying e−2λ2
< ε.

We claim that E(Y ) ≤ λ
√
n. Indeed, otherwise P(Y = 0) ≤ P(|Y −E(Y )| ≥ λ

√
n) < ε. Since Y = 0

exactly when G is u-colourable, this is a contradiction to the choice of u. By E(Y ) ≤ λ
√
n, with

probability at least 1− ε, we have Y ≤ 2λ
√
n. Assume this holds, and take S to be a set of minimal

size such that G − S is u-colourable, so |S| ≤ 2λ
√
n. By Lemma 7.15, the subgraph of G induced

by S is 3-chromatic. Altogether, we find that G is (u + 3)-chromatic (we can colour G − S by u

colours, and colour the rest by three different colours).

In summary, we have shown that P(u ≤ χ(G) ≤ u+ 3) ≥ 1 − 2ε. Since ε was arbitrary, this proves

the theorem.

Remark 7.16. With a little more effort,  Luczak’s proof actually gives a 2-point concentration,

namely it shows the existence of u such that, with high probability, χ(G(n, p)) ∈ {u, u + 1}, for p

(roughly) in the same range. This was improved by Alon–Krivelevich (1997) to a 2-point concen-

tration result for p ≥ n−1/2+ε, for any constant ε > 0.
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