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Abstract

A typical theme for many well-known decomposition problems is to show that some obvious

necessary conditions for decomposing a graph G into copies H1, . . . ,Hm are also sufficient. One such

problem was posed in 1987, by Alavi, Boals, Chartrand, Erdős, and Oellerman. They conjectured

that the edges of every graph with
(
m+1
2

)
edges can be decomposed into subgraphs H1, . . . ,Hm such

that each Hi has i edges and is isomorphic to a subgraph of Hi+1. In this paper we prove this

conjecture for sufficiently large m.

1 Introduction

For a graph G, we say a collection of graphs H1, . . . ,Hm is a decomposition of G, if G is an edge-disjoint

union of H1, . . . ,Hm. Decomposition problems have been a central theme in combinatorics since Euler’s

work on the existence of orthogonal Latin squares in the 18th century; recall that a Latin square is an

n× n array, filled with numbers from [n], such that each i ∈ [n] appears exactly once in each row and

column. Euler asked for which values of n there exist two n× n Latin squares L,L′ with the property

that all n2 ordered pairs (Li,j , L
′
i,j), with 1 ≤ i, j ≤ n, are distinct. This problem turns out to have an

equivalent formulation in terms of graph decompositions. Indeed, one can show that Euler’s problem is

equivalent to determining which complete 4-partite graphs Kn,n,n,n have a decomposition H1, . . . ,Hm

where each Hi is a K4-factor, namely each Hi is a collection of vertex-disjoint K4’s, such that each

vertex of Kn,n,n,n appears in one K4.

A large variety of other graph/hypergraph decomposition problems has been studied over the years. A

typical theme for many well-known such problems is to show that some obvious necessary conditions

for decomposing a graph G into copies of H1, . . . ,Hm are also sufficient. For example, the famous

“existence of designs” question posed in 1853 by Steiner asked to prove that for large enough n, the

complete r-uniform hypergraph K(r)
n has a decomposition into copies of K(r)

k if and only if
(
n
r

)
is divisible

by
(
k
r

)
(which is equivalent to asking that the number of edges of K(r)

n is divisible by the number of

edges of K(r)
k ) and also that, for i ∈ [r − 1],

(
n−i
r−i

)
is divisible by

(
k−i
r−i

)
(which is equivalent to asking

that the codegree of any i-set of vertices in K(r)
n is divisible by the codegree of each i-set of vertices
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in K(r)
k ). The existence of designs problem was solved by Keevash in [16] (see [11] for an alternative

proof). Other recently solved problems include the Oberwolfach problem (decompositions of complete

graphs into cycle factors, see [10, 18]) and Ringel’s conjecture (decompositions of complete graphs into

copies of a fixed tree T , see [21, 17]).

One famous conjecture in the area that is still open and the closest to the problem we will consider

here is the tree packing conjecture of Gyárfás [12]. It says that for any collection of trees T1, . . . , Tn

where Ti has i edges, the complete graph Kn+1 can be decomposed into copies of T1, . . . , Tn. Again the

motivation here is to show that the trivial condition
(
n+1
2

)
= e(Kn) = e(T1)+ · · ·+e(Tn) = 1+ · · ·+n is

also sufficient for such a decomposition to exist. Some strong results have been proved for this problem

when there is some control over the degrees of Ti. Joos, Kim, Kühn, and Osthus [14] proved the

conjecture when ∆(Ti) ≤ ∆ for all Ti and n is large compared to ∆, and subsequently Allen, Böttcher,

Clemens, Hladký, Piguet, and Taraz [3] proved the conjecture when ∆(Ti) ≤ cn/ log n for all Ti, for

some universal constant c > 0. But for trees with unbounded degrees, the conjecture is still wide open.

For example, it is not even known if we can find edge-disjoint copies of Tn, Tn−1, . . . , Tn−5 in Kn.

All the problems discussed so far have had the host graph G being complete and the target graphs

H1, . . . ,Hm being similar to each other in some way (i.e. we wanted all Hi to be copies of K(r)
k ,

or all Hi to be cycle factors, or all Hi to be trees). In 1987, Alavi, Boals, Chartrand, Erdős, and

Oellerman suggested that some degree of similarity of H1, . . . ,Hm can be still achieved without putting

any additional restrictions on G whatsoever aside from the trivial condition that e(G) = e(H1) + · · ·+

e(Hm). Specifically, they called a decomposition of G into H1, . . . ,Hm ascending if e(Hi) = i, and

each Hi is isomorphic to a subgraph of Hi+1. Since e(H1) + · · ·+ e(Hm) =
(
m+1
2

)
, the trivial necessary

condition for the existence of an ascending decomposition is e(G) =
(
m+1
2

)
. Alavi, Boals, Chartrand,

Erdős, and Oellerman [1] conjectured that this is also sufficient.

Conjecture 1 (Alavi, Boals, Chartrand, Erdős, and Oellerman [1]). Every graph G with
(
m+1
2

)
edges

has an ascending subgraph decomposition, namely a decomposition H1, . . . ,Hm such that e(Hi) = i and

Hi is a subgraph of Hi+1.

This conjecture does not prescribe the graphs H1, . . . ,Hm in the decomposition as much as the conjec-

tures of, e.g., Gyárfás or Ringel do. However, this is necessary if one wants to prove a decomposition

statement that holds for all graphs. Indeed, if G is a matching, then the only subgraphs it has are

matchings and therefore in any decomposition, all Hi’s must be matchings. Similarly, if G is a star,

then in any decomposition, all Hi’s must be stars. So, in order for a decomposition result to hold for

all possible host graphs G, the result must allow for using different Hi’s for different host graphs.

There are several partial results that find an ascending subgraph decomposition when G lies in a

restricted class of graphs. In [1] the authors verified the conjecture when G has maximum degree

at most 2, using only matchings in the decomposition. After partial results [1, 7, 6] Faudree and

Gould [5] proved that forests have an ascending subgraph decomposition into star forests. The case of

regular graphs was settled by Fu and Hu [9] using linear forests in the decomposition. Faudree, Gould,

Jacobson, and Lesniak [6] proved the conjecture for m sufficiently large and G of maximum degree at

most (2
√

2 − 2)m, where the graphs in the decomposition are short paths. This extends a previous

result of Fu [8] who proved the conjecture for graphs of degree at most m/2.

Finding ascending decompositions can be difficult and interesting even for rather specific host graphs.

For example Ma, Zhou, and Zhou [19] proved that a star forest with components of size at least m has

2



an ascending subgraph decomposition into stars. Here and throughout the paper, the size of a graph is

the number of its edges. This was previously another conjecture of Alavi, Boals, Chartrand, Erdős, and

Oellerman which is appealing due to having an entirely number-theoretic formulation. In this case the

problem is equivalent to saying that for any set of numbers a1, . . . , at ≥ m with a1+· · ·+at = m(m+1)/2

it is possible to decompose the interval [m] into sets A1, . . . , At with the numbers in each Ai summing

to ai. For a comprehensive survey of prior results in this area we refer the reader to [2, Chapter 8].

Our main theorem resolves the ascending subgraph decomposition conjecture for all large enough

graphs.

Theorem 2. Let m be a sufficiently large integer. Then every graph with
(
m+1
2

)
edges has an ascending

subgraph decomposition.

As an intermediate step towards proving this theorem, we show if G is a star forest where the ith star

has size at least min{1600i, 20(m + 1)}, then G has an ascending subgraph decomposition into stars.

This statement is more flexible than the one by Ma, Zhou, and Zhou [19] (mentioned above), since it

allows for initial stars to be small. This result also has a purely number-theoretic formulation.

Theorem 3. For any set of numbers a1, . . . , at with a1 + · · · + at = m(m + 1)/2 and each ai ≥
min{1600i, 20(m+1)}, it is possible to decompose the interval [m] into sets A1, . . . , At with the numbers

in each Ai summing to ai.

We also prove the following statement that may be of independent interest. It says that any graph

G with Θ(m2) edges and maximum degree O(m) can be decomposed into Θ(m) pairwise isomorphic

graphs plus o(m2) edges; see Lemma 21.

Notation. We use standard asymptotic notation throughout. For positive real functions f, g of a

positive variable n we write f = O(g) if the limit lim supn→∞ f(n)/g(n) is finite, and write f = o(g) if

the limit is 0.

Theorem 2 follows by combining Theorem 3 above with Lemma 6 below, which shows that a graph

with
(
m+1
2

)
edges and maximum degree O(m) has an ascending subgraph decomposition (we sometimes

abbreviate this to ASD). Before describing how we deal with each component separately, let us sketch

how Theorem 2 follows from Theorem 3 and Lemma 6. First note that Theorem 3 implies the following.

Theorem 4. Let G be an edge-disjoint union of stars with
(
m+1
2

)
edges, where the ith star has size at

least min{1600i, 20(m + 1)}. Then G has an ascending subgraph decomposition into stars.

Proof of Theorem 2 using Theorem 4 and Lemma 6. Suppose G is an arbitrary graph with(
m+1
2

)
edges. Set G0 = G, and repeat the following: for i ≥ 1 let vi ∈ V (Gi−1) be a vertex of degree

at least Ω
(√

e(Gi−1)
)

, if it exists, and let Gi := Gi−1 \ {vi}. We can continue this process until we

reach a graph G′ of maximum degree O
(√

e(G′)
)

, which by Lemma 6 has an ASD denoted H1, . . . ,Hk

for k ≈
√

2e(G′). A technicality here is that e(G′) might not be a binomial coefficient. However, our

argument gives an ASD also for such graphs, for a natural generalisation of an ASD (see the beginning

of Section 2.2 for the definition). For now let us ignore this technicality and assume that e(G′) is a
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binomial coefficient, i.e. e(G′) =
(
k+1
2

)
for some integer k. Let G′′ = G\G′. Then G′′ is an edge-disjoint

union of large stars, which readily implies that inside G′′ we can find isomorphic stars Ŝ1, . . . , Ŝk of

size m − k such that Ŝi is vertex-disjoint of Hi. Then we set Ĝi = Hi ∪ Ŝi, and observe that Ĝi is

isomorphic to a subgraph of Ĝi+1. The graphs Ĝ1, . . . , Ĝk will be the last k graphs in the ASD of G.

Finally, by taking some extra care when picking the stars Ŝi, we may assume that G′′ −
⋃

i Ŝi is still

an edge-disjoint union of large stars, which by Theorem 4 has an ASD into stars S1, . . . , Sm−k. These

stars will be the first m− k graphs in the ASD of G, and along with Ĝ1, . . . , Ĝk they yield a complete

ASD of G.

We prove Theorem 2 in Section 2. We next sketch the other two main parts of the proof.

Theorem 4. The proof of this is easiest to explain in the number theoretic formulation given in

Theorem 3. If we assume that m is even (the odd case reduces to the even case), then
∑

i ai = m
2 (m+1)

is divisible by m + 1. Suppose first that each ai is divisible by m + 1, i.e. ai = λi(m + 1) for some

positive integer λi, so
∑

i λi = m/2. Then the sets {x,m+ 1− x}, where x ∈ [m/2], partition [m], and

any λi of them sum to ai. Hence we can set Ai to be any λi of these pairs, such that each pair is used

by exactly one Ai. We reduce the general case to the above setup by iterating the following procedure:

note that since
∑

ai ≡ 0 (mod m + 1), there cannot be just one ai that is not divisible by m + 1 —

so we have distinct ai and aj which are not divisible by m + 1. Pick x ̸= y ∈ [m/2], with ai ≡ x + y

(mod m + 1). Replace ai by a′i := ai − x− y, aj by a′j := aj − (m + 1 − x) − (m + 1 − y) and remove

the elements x,m + 1 − x, y,m + 1 − y from [m]. Note that we need here to guarantee a′i, a
′
j > 0. This

is done by appropriately choosing x, y and using the condition of the theorem on the size of the ith

component of a star forest. The effect is that we have reduced the number of terms not divisible by

m + 1, and hence, by repeating this procedure we end up in the situation when all ai are divisible by

m + 1, which we already know how to solve. Theorem 4 is proved in Section 2.1.

Lemma 6. Now we sketch the proof that every G with maximum degree at most O(m) has an ASD.

The main idea is to almost decompose G in several stages, so that at each stage the decomposition

consists of “nice” graphs which at the very end can be combined to form an ASD. First, we decompose

edges incident to small degree vertices (namely, at most cm for some appropriate constant c) into

isomorphic star forests and a remainder that has few edges (cf. Lemma 20). For this step, we first

decompose edges with one large degree vertex and one small degree vertex into isomorphic star forests,

via Lemma 10, then we decompose edges incident to only small degree vertices via Vizing’s theorem

and Lemma 8, and finally we combine the star forests and matchings via Lemma 12. Second, we almost

decompose the edges incident only to large degree vertices into copies of complete bipartite graphs (cf.

Lemma 14). This gives an almost decomposition of G into isomorphic “forests” whose components are

stars and complete bipartite graphs, and each forest contains a large matching (cf. Lemma 21). Third,

by carefully rearranging the graphs in the decomposition, we obtain an “approximate” ASD consisting

of a remainder R of small maximum degree; and graphs (H1, . . . ,Hm′), where each Hi has a large

isolated matching (i.e. a matching touching no other edges of Hi), and Hi is isomorphic to a subgraph

of Hi+1 (cf. Lemma 22). In this step it is crucial that we are working with a graph having maximum

degree O(m). If this were not the case, then the graph need not have any large matchings at all. These

will be the basis for the last m′ graphs in the ASD of G. Fourth, in Lemma 23, we randomly remove

an isolated matching Mi of each Hi so that Hi \ Mi has the correct number of edges for its position

in the ASD. Let F =
⋃

iMi. Then from a standard concentration bound (Chernoff’s bound) it follows
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that each vertex has small degree in F , and hence the maximum degree of F ∪ R is small. Therefore

we can find an ASD of F ∪ R into matchings by using a result of Fu [8] about ascending subgraphs

decompositions into matchings of graphs with small maximum degree (cf. Lemma 9). By construction,

the graphs Hi \Mi contain a large matching, so that the ASD of F ∪R into matchings combined with

H1 \M1, . . . ,Hm′ \Mm′ give an ASD of G. The proof of Lemma 6 is given at the end of Section 4.

2 Finding ascending subgraph decompositions

In section 2.1 we prove Theorem 3 about decomposing the interval [m] into sets summing to a1, . . . , ak,

for any such sequence with appropriate properties. In section 2.2 we use it to reduce Theorem 2 to

graphs with linear maximum degree.

2.1 Ascending star decompositions

The goal of this section is to prove Theorem 3 (and Theorem 4 which immediately follows from it). We

now introduce some notation. Given a sequence of positive integers a1, . . . , ak, we say R ⊆ N separates

a1, . . . , ak if there exists a partition I1, . . . , Ik of R such that ai =
∑

x∈Ii x. The next lemma is an

equivalent formulation of Theorem 3.

Lemma 5 (Equivalent formulation of Theorem 3). Let k,m be positive integers. Let a1 ≤ . . . ≤ ak be

a sequence of positive integers such that
∑

i ai =
(
m+1
2

)
, and ai ≥ min{1600i, 20(m + 1)} for i ∈ [k].

Then [m] separates a1, . . . , ak.

Proof. Let k′ be maximal such that ak′ < 20(m + 1). Then

(
m + 1

2

)
≥

k′∑
i=1

ai ≥
k′∑
i=1

1600i = 1600

(
k′ + 1

2

)
≥
(

40k′ + 1

2

)
,

so k′ ≤ m/40. Additionally, k−k′ ≤
(
m+1
2

)
/20(m+1) = m/40. Altogether, k ≤ m/20. This also shows

that ak ≥ 20(m+1) (otherwise, k = k′ ≤ m/40 and then ak′ ≥
(
m+1
2

)
/k′ ≥ 20(m+1), a contradiction).

If m is odd, we set m′ := m− 1 and a′k := ak −m ≥ 19(m′ + 1), so that a1, . . . , ak−1, a
′
k is a sequence

of positive integers summing to
(
m′+1

2

)
such that the ith term is at least min{1600i, 19(m′ + 1)}, and

then it suffices to show [m′] separates a1, . . . , ak−1, a
′
k. In this case we have k ≤ (m′ + 1)/20 ≤ m′/16

(using m′ ≥ 4, which follows implicitly from the assumptions).

Thus, from now on we assume that m is even, ai ≥ min{1600i, 19(m + 1)} for i ∈ [k], and k ≤ m/16.

Let Pm := {{x,m + 1 − x} : x ∈ [m/2]}. For S ⊆ Pm, we say that S separates a1, . . . , ak if there exists

S′ ⊆ S such that
⋃
S′ separates a1, . . . , ak; if S′ = S we say S separates the sequence perfectly.

Claim 5.1. Let a1, . . . , ak be a sequence of positive integers, such that ai = λi(m+ 1) for some positive

integer λi, for every i ∈ [k]. Let S ⊆ Pm with |S| ≥
∑

i λi. Then S separates a1, . . . , ak.

Proof. Since |S| ≥
∑

i λi, for each i ∈ [k] we can pick a set Si consisting of λi distinct sets {x,m+1−x}
from S, so that the sets Si are pairwise disjoint. The elements in Si sum to ai, for i ∈ [k].
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For n ∈ N let

T (n) = {(x, y) : 1 ≤ x < y ≤ m, x + y ≡ n (mod m + 1) and x + y ≤ n} .

Claim 5.2. |T (n)| ≥ min{n/2,m/2} − 1.

Proof. Consider first the case n ≥ m+ 1. For x ∈ [m], take yx to be the smallest non-negative number

such that x + yx ≡ n (mod m + 1). Then yx ∈ [0,m], and, since n − x > 0, we have yx ≤ n − x,

showing x + yx ≤ n. Thus the number of ordered pairs (x, y) satisfying x ∈ [m], y ∈ [0,m], x + y ≡ n

(mod m + 1), and x + y ≤ n is at least m. Note that at most one such pair satisfies x = y (using that

m is even and so m+ 1 is odd), and at most one pair has y = 0. Hence there are at least m/2− 1 pairs

(x, y) with x, y ∈ [m], x + y ≡ n (mod m + 1) and x < y. This shows |T (n)| ≥ m/2 − 1.

If n ≤ m, for each x ∈
[
⌊(n− 1)/2⌋

]
taking yx := n− x shows that |T (n)| ≥ n/2 − 1.

Claim 5.3. Let a1, . . . , ak be a sequence of positive integers, satisfying ai ≥ 3(m + 1) for i ∈ [k − 1],

ak ≥ m + 1, and
∑

i ai = ℓ(m + 1) for an integer ℓ. Let S ⊆ Pm satisfy |S| ≥ m/4 + 2k. Then there is

a sequence b1, . . . , bk such that ai ≥ bi and ai ≡ bi (mod m + 1), for i ∈ [k], which is separated by S.

Proof. We prove the statement by induction on k. For the base case k = 1, notice that a1 ≡ 0

(mod m+1) and thus we can take b1 = m+1 (and use any S′ ⊆ S of size 1, which separates b1 because

S ⊆ Pm).

For the induction step, assume that k ≥ 2 and that the claim holds up to k − 1. Since ak ≥ m + 1,

Claim 5.2 tells us that |T (ak)| ≥ m/2 − 1. Because every x ∈ [m] appears in at most one pair in

T (ak), and
⋃
S ⊆

⋃
Pm = [m] the number of pairs in T (ak) containing an element not in

⋃
S is at

most m − |
⋃

S| = m − 2|S| ≤ m/2 − 4k < m/2 − 1, showing that there is a pair (x, y) ∈ T (ak) with

x, y ∈
⋃

S.

Define bk := x + y and let

b′′k−1 :=

{
(m + 1 − x) + (m + 1 − y) if x + y ̸= m + 1,

0 otherwise.

Set S′ := S \ {{x,m + 1 − x}, {y,m + 1 − y}}, and let a′i := ai for i ∈ [k − 2] and a′k−1 := ak−1 − b′′k−1.

Now apply the induction hypothesis to the sequence a′1, . . . , a
′
k−1. To see that it is applicable, notice

that ai ≥ 3(m + 1) for i ∈ [k − 2] and a′k−1 ≥ ak−1 − 2(m + 1) ≥ m + 1. Moreover, we have∑k′−1
i=1 a′i = ℓ(m + 1) − ak − b′′k−1, which is divisible by m + 1. Finally |S′| = |S| − 2 ≥ m/4 + 2(k − 1).

Hence, by induction, there is a sequence b′1, . . . , b
′
k−1 which is separated by S′ and which satisfies b′i ≤ a′i

and a′i ≡ b′i (mod m + 1). Set bi := b′i for i ∈ [k − 2], bk−1 := b′k−1 + b′′k−1 and recall that bk = x + y.

Then the sequence b1, . . . , bk is separated by S, which proves the induction step.

Claim 5.4. Let a1, . . . , ak be a sequence of positive integers with ai ≥ 3(m + 1) and
∑

i ai = ℓ(m + 1),

for some integer ℓ. Let S ⊆ Pm with |S| ≥ max{ℓ, m/4 + 2k}. Then S separates a1, . . . , ak.

Proof. Let b1, . . . , bk be a sequence as in Claim 5.3, and let S′ ⊆ S be a set that separates this sequence

perfectly. Since pairs in S add up to m + 1, this tells us that |S′| = 1
m+1

∑
x∈S′ x = 1

m+1

∑
i bi. Using
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that ai − bi is divisible by m + 1, we can write
∑

i(ai − bi) = ℓ′(m + 1) for an integer ℓ′. Since |S| ≥ ℓ

we have |S \ S′| = |S| − |S′| = |S| − 1
m+1

∑
i bi = |S| + ℓ′ − 1

m+1

∑
i ai = |S| + ℓ′ − ℓ ≥ ℓ′, and thus

Claim 5.1 shows that S \S′ separates the sequence a1−b1, . . . , ak−bk. Hence S separates a1, . . . , ak, as

desired. Indeed, since S′ separates b1, . . . , bk, we have disjoint subsets Ii ⊆
⋃
S′ with

∑
Ii = bi. Since

S \ S′ separates a1 − b1, . . . , ak − bk, we have disjoint subsets Ji ⊆
⋃
S \ S′ with

∑
Ji = ai − bi. Now

the sets Ii ∪ Ji ⊆
⋃
S satisfy the definition of S separating a1, . . . , ak.

Claim 5.5. Let a1 ≤ . . . ≤ ak be a sequence such that aj ≥ min{16j, 3(m+1)} for every j ∈ {i, . . . , k},
and let S ⊆ Pm. Let i ∈ [k] and ℓ be an integer such that

∑k
j=i aj = ℓ(m + 1). Assume that |S| ≥ ℓ,

and ℓ ≥ max{m/2 − 4i + 1,m/4 + 4(k − i), 5(k − i + 1)}. Then S separates ai, . . . , ak.

Proof. We prove the claim by induction. For the base case i = k we have ak = ℓ(m + 1), and then any

S ⊆ Pm with |S| ≥ ℓ separates ak.

For i < k, if ai ≥ 3(m+1) the claim follows from Claim 5.4 (using the assumption |S| ≥ m/4+4(k− i),

since the length of the sequence is k−i), so we may assume otherwise. Thus |T (ai)| ≥ min{ai/2,m/2}−
1 ≥ 8i − 1 (using Claim 5.2 for the first inequality, and ai ≥ 16i and i ≤ k ≤ m/16 for the second

inequality). Notice that every x ∈ [m] is in at most one pair in T (ai). Hence, the number of pairs

(x, y) ∈ T (ai) containing an element from [m]\
⋃
S is at most m−|

⋃
S| = m−2|S| ≤ m−2ℓ ≤ 8i−2.

It follows that there is a pair (x, y) ∈ T (ai) with x, y ∈
⋃
S.

Define a′i := ai − x− y. If x + y ̸= m + 1, define a′k := ak − (m + 1 − x) − (m + 1 − y) (and otherwise

set a′k := ak). Notice that ak ≥ ℓ(m+1)
k−i+1 ≥ 5(m + 1), so a′k ≥ 3(m + 1).

Moreover, since a′i ∈ {0,m + 1, 2(m + 1)}, we can separate a′i by using (at most) two pairs from

S \ {{x,m + 1 − x}, {y,m + 1 − y}}. Let S′ be the remainder of S \ {{x,m + 1 − x}, {y,m + 1 − y}}.

Let bi+1, . . . , bk be the non-decreasing sequence obtained by permuting the elements ai+1, . . . , ak−1, a
′
k.

Then bj ≥ min{16j, 3(m + 1)} for all j ∈ [i + 1, k] (let t be such that bt = a′k. For j ≥ t we have

bj ≥ bt = a′k ≥ 3(m + 1). For j < t we have bj = aj ≥ min(16j, 3(m + 1))). We will now show that S′

separates bi+1, . . . , bk, implying that the original sequence ai, . . . , ak is separated by S.

Observe by the definition of S′ that
∑

i+1≤j≤k bj = ℓ′(m+1) with ℓ′ an integer such that |S′| ≥ ℓ′ ≥ ℓ−4.

We thus have

ℓ′ ≥


m/2 − 4i + 1 − 4 = m/2 − 4(i + 1) + 1

m/4 + 4(k − i) − 4 = m/4 + 4(k − (i + 1))

5(k − i + 1) − 4 ≥ 5(k − i).

Hence the conditions of the induction hypothesis hold and, by induction, S′ separates bi+1, . . . , bk, as

required.

We now prove the lemma by verifying the conditions of Claim 5.5 for i = 1, ℓ = m/2 and S = Pm.

Recalling that k ≤ m/16, we have ℓ = m/2 ≥ max{m/2− 4 · 1 + 1,m/4 + 4(k− 1), 5k}, as required for

the claim. Hence by Claim 5.5 the theorem follows.

2.2 Proof of main result

An ascending subgraph decomposition of a graph G with e edges, where
(
m
2

)
< e ≤

(
m+1
2

)
, is a de-

composition of G into graphs H1, . . . ,Hm, such that Hi is isomorphic to a subgraph of Hi+1 and

7



e(Hi) ≤ e(Hi+1) ≤ e(Hi) + 1. Specifically, writing t = e−
(
m
2

)
(so 1 ≤ t ≤ m), we have

e(Hi) =

{
i i ≤ t

i− 1 i > t.

In the next section we will prove the following lemma, showing that graphs with roughly m2/2 edges

and maximum degree O(m) have an ASD.

Lemma 6. Let c = 106 and m sufficiently large. Suppose that G is a graph satisfying e(G) ∈
(
(
m
2

)
,
(
m+1
2

)
] and ∆(G) ≤ cm. Then G has an ascending subgraph decomposition.

We use this lemma to prove our main result, Theorem 2.

Proof of Theorem 2 using Lemma 6. Let c = 106 (as in Lemma 6), let m0 be such that Lemma 6 holds

for m ≥ m0, and let m ≥ m2
0.

Let G0 = G and let v1, . . . , vk ∈ V (G) be such that vi+1 has maximum degree in Gi := G−{v1, . . . , vi}
and satisfies di+1 := dGi(vi+1) > c

√
e(Gi), for i ∈ [0, k − 1]. Suppose that this is a maximal sequence

with this property i.e. that ∆(Gk) ≤ c
√

e(Gk). We may assume k ≥ 1 since otherwise we are done

by Lemma 6. Note that d1 ≥ · · · ≥ dk, d1 ≥ c
√(

m+1
2

)
≥ m, and e(Gk−1) ≥ 1 since otherwise

∆(Gk−1) ≤
√
e(Gk−1) and we would get a sequence of length k − 1, contradicting maximality.

We claim that the sequence d1, . . . , dk satisfies di ≥ c(k − i + 1). This follows by induction on i. The

initial case i = k holds because dk > c ·
√
e(Gk−1) ≥ c. For i ≤ k − 1, using the induction hypothesis,

di > c
√
e(Gi−1) ≥ c

√√√√ k∑
j=i+1

dj (1)

≥ c

√√√√ k∑
j=i+1

c(k − j + 1) = c

√
c

(
k − i + 1

2

)
≥ c(k − i + 1).

For i ∈ [k], let Si be the star rooted at vi with edges in Gi−1, so that e(Si) = di.

If e(Gk) = 0, then E(G) =
⋃

iE(Si) and the theorem follows from Theorem 4 to the sequence dk, . . . , d1.

Indeed, notice that the ith element in this sequence, namely dk+1−i, satisfies dk+1−i ≥ ci ≥ 1600i, so

the theorem is applicable. Suppose e(Gk) ≥ 1. We will build an ASD of G in the following way: given

an edge decomposition of Gk and a graph Hi in the decomposition, we will find a large substar Ŝi

among S1, . . . , Sk that has several edges not used yet which are vertex disjoint from Hi and pick G′
i of

appropriate size so that Hi ⊆ G′
i ⊆ Hi∪ Ŝi. Then all the remaining edges will be substars of S1, . . . , Sk,

and they can be decomposed using Theorem 4.

Let 1 ≤ t ≤ m− 1 be the integer such that
(
t
2

)
< e(Gk) ≤

(
t+1
2

)
, so ∆(Gk) ≤ c

√
e(Gk) ≤ c

√(
t+1
2

)
≤ ct.

Let Hr+1, . . . ,Hm be an edge decomposition of Gk as follows. If t ≥ m0, then by Lemma 6 Gk has

an ASD consisting of t graphs, in which case set r := m − t and let Hr+1, . . . ,Hm be an ASD of

Gk. Otherwise, set r := m − e(Gk), and let Hr+1, . . . ,Hm be a decomposition of Gk into individual

edges. Note that, by definition, each Hj has at most j − r edges. Also observe that in both cases

8



e(G \Gk) ≤ 2mr. Indeed, if r = m− t, we have

e(G \Gk) ≤
(
m + 1

2

)
−
(
t

2

)
=

(
r + 1

2

)
+ (r + 1)(m− r) ≤ (r + 1)m ≤ 2rm.

Otherwise, r ≥ m−
(
m0

2

)
≥ m/2, using m ≥ m2

0, and so e(G \Gk) ≤ 2mr.

Claim 6.1. Let h =
√
c

4
√
2
(so 100 ≤ h ≤ 1000, recalling that c = 106). Then k ≤ r

h .

Proof. Let k′ be maximal such that dk′ ≥ 4mh. Then from e(G \ Gk) ≤ 2mr and the lower bound

e(G \Gk) ≥ k′dk′ , we have k′ ≤ r
2h . If t ≥ m

2 then dk ≥ c
√(

m/2
2

)
≥ cm

4 ≥ 4mh, so k = k′ ≤ r
2h .

So, we may assume that t ≤ m
2 . Then r ≥ m

2 , using that r ≥ m/2 if r ̸= m − t, and so e(G \ Gk) ≤
2mr ≤ 4r2. On the other hand, by (1), we have e(G\Gk) ≥

∑k
i=k′ di ≥

∑k
i=k′ c (k− i+1) ≥ c

2(k−k′)2.

Thus k − k′ ≤
√

8
c r

2 = r
2h .

We define stars Ŝr+1, . . . , Ŝm contained in S1 ∪ · · · ∪ Sk inductively as follows. Let

Ti ∈
{
S1 \

(
Ŝi+1 ∪ · · · ∪ Ŝm

)
, . . . , Sk \

(
Ŝi+1 ∪ · · · ∪ Ŝm

)}
be a star of maximum size, and let Ŝi be a substar of Ti \ V (Hi) of size i − e(Hi) (this is possible by

the following claim).

Claim 6.2. e(Ti \ V (Hi)) ≥ i− e(Hi) + 20(r + 1).

Proof. Let i ∈ {r, . . . ,m}, and assume that the stars Ŝi+1, . . . , Ŝm were defined as above. Then

e(S1 ∪ . . . ∪ Sk) − e(Ŝi+1 ∪ . . . ∪ Ŝm) =

(
m + 1

2

)
− e(Gk) −

m∑
j=i+1

(j − e(Hj))

=

m∑
j=1

j −
m∑

j=r+1

e(Hj) −
m∑

j=i+1

j +

m∑
j=i+1

e(Hj)

=

(
i + 1

2

)
−

i∑
j=r+1

e(Hj)

≥
(
i + 1

2

)
−

i∑
j=r+1

(j − r)

= r

(
i− r

2
+

1

2

)
≥ r

(
i− r

2

)
,

where for the first inequality we used e(Hj) ≤ j − r. Then

e(Ti) ≥
1

k
· r
(
i− r

2

)
≥ h

(
i− r

2

)
,

using the bound k ≤ r
h . Hence
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e(Ti \ V (Hi)) −
(
i− e(Hi) + 20(r + 1)

)
≥ e(Ti) − e(Hi) − i− 20(r + 1)

≥ h
(
i− r

2

)
− (i− r) − i− 20(r + 1)

≥ (h− 2)i− hr

2
− 40r

≥ (h− 2)r − hr

2
− 40r = r

(
h

2
− 42

)
≥ 0.

Here we used that the centre of Ti is not in Hi and |V (Hi)| ≤ 2e(Hi) for the first inequality, that

e(Hi) ≤ i − r for the second inequality, and that h ≥ 100 for the last inequality. This proves e(Ti \
V (Hi)) ≥ i− e(Hi) + 20(r + 1), as required.

Define Ĝi := Ŝi∪Hi for i ∈ [r+1,m], so e(Ĝi) = i. Observe that the graphs Ĝr+1, . . . , Ĝm are pairwise

edge-disjoint and cover all but
(
r+1
2

)
edges of G, and all uncovered edges lie in S1 ∪ . . .∪Sk. For i ∈ [k]

let S′
i = Sk−i+1 \

⋃m
j=r+1 Ĝj . Note that if some edges of the star Sj were used by Ŝr+1, . . . , Ŝm, then

in the end of the process it still has at least 20(r + 1) edges. Otherwise, by (1) the size of the star

Sj remains dj and is thus at least c(k − j + 1). Either way, e(S′
i) ≥ min{20(r + 1), ci}. Hence, by

Theorem 4, there is a decomposition of the last
(
r+1
2

)
edges into stars Ĝ1, . . . , Ĝr with e(Ĝi) = i.

We claim that Ĝ1, . . . , Ĝm is an ASD of G. Indeed, first notice that e(Ĝi) = i. Next, we confirm that

Ĝi is isomorphic to a subgraph of Ĝi+1, for i ∈ [m − 1]. This clearly holds when i ∈ [r − 1], because

both Ĝi and Ĝi+1 are stars. Next, notice that e(H1) = 1, and thus Ĝr+1 is the disjoint union of a star

of size r and an edge, implying that Ĝr is isomorphic to a subgraph of Ĝr+1.

Finally, recall that Hi is isomorphic to a subgraph of Hi+1 and e(Hi+1) ∈ {e(Hi), e(Hi) + 1} for

i ∈ [r + 1,m − 1]. Since Ŝj is a star of size j − e(Hj), for j ∈ [r + 1,m], it follows that either

e(Hi+1) = e(Hi) and e(Ŝi+1) = e(Ŝi) + 1, or e(Hi+1) = e(Hi) + 1 and e(Ŝi+1) = e(Ŝi). Either way,

Ĝi = Ŝi ∪Hi is isomorphic to a subgraph of Ŝi+1 ∪Hi+1 = Ĝi+1, for i ∈ [r + 1,m− 1], completing the

proof that Ĝ1, . . . , Ĝm is an ascending subgraph decomposition of G.

3 Preliminary lemmas

In this section we prove various preliminary lemmas that will be used in the proof of Lemma 6, which

shows that graphs of linear maximum degree have an ascending subgraph decomposition.

At the end of the proof of Lemma 6 we will need to use the Chernoff bound.

Theorem 7 (Chernoff Bound, [13, eq. (2.9) and Theorem 2.8]). Let X be the sum of n mutually

independent indicator random variables. Then, for every t ≥ 0,

P
[
X ≥ E[X] + t

]
≤ e−

2t2

n .

3.1 Matching lemmas

In this section we prove some lemmas related to matchings. Several of these have appeared in the

literature, but we include the proofs here for completeness.
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We say that two sets have almost equal size if their sizes differ by at most one. The next lemma shows

that a collection of edge-disjoint matchings can be rearranged so that the matchings have almost equal

size.

Lemma 8 (cf. [4], [20]). Let M1, . . . ,Mk be a collection of pairwise edge-disjoint matchings in a graph

G. Then there is a collection M ′
1, . . . ,M

′
k of pairwise edge-disjoint matchings of almost equal size such

that
⋃

Mi =
⋃

M ′
i .

Proof. Without loss of generality |M1| ≤ . . . ≤ |Mk| and suppose |Mk| ≥ |M1| + 2 since otherwise we

are done.

The connected components of M1 ∪Mk are paths and even cycles, such that in both cases consecutive

edges belong to different matchings. Notice that in even paths and cycles the number of edges belonging

to each of the two matchings is the same. Hence, there is a connected component P that is an odd path

whose first and last edges lie on Mk. Swap the edges of M1,Mk on P and let M ′
1,M

′
k be the resulting

matchings. Then |M ′
1| = |M1| + 1, |M ′

k| = |Mk| − 1 and M ′
1,M

′
k are edge-disjoint.

If the matchings M ′
1,M2, . . . ,Mk−1,M

′
k are not almost equal, iterating the above argument either

decreases the maximum difference in size between two matching, or decreases the number of pairs

of matchings whose difference in size is at least 2 and maximum. This procedure must eventually

terminate, yielding a collection of almost equal matchings decomposing M1 ∪ . . . ∪Mk.

Next we use Vizing’s theorem together with Lemma 8 to prove that graphs with small maximum degree

have ascending subgraph decompositions into matchings; this fact was (essentially) already proved by

Fu [8].

Lemma 9 (cf. [8]). Let G be a graph with e edges, where
(
m
2

)
< e ≤

(
m+1
2

)
, and suppose that G has

maximum degree at most ⌊m/2⌋−1. Then G has an ascending subgraph decomposition into matchings.

Proof. Let t = e −
(
m
2

)
≤ m. By Vizing’s theorem we can decompose E(G) into at most ⌊m/2⌋

matchings. Thus, as the following calculation shows, there exists a matching M∗ of size t: e
⌊m/2⌋ >

(m2 )
m/2 = m− 1. Let G′ = G−M∗, so that e(G′) =

(
m
2

)
. We now consider two cases based on the parity

of m.

If m is even, by Vizing’s theorem and Lemma 8, we can decomposes G′ into matchings M1, . . . ,Mm/2

of size m − 1 each. Let Hm−1 := Mm/2. For i ∈ [m/2 − 1] let Hi consist of i edges from Mi and let

Hm−i−1 := Mi −Hi. Then (H1, . . . ,Ht−1,M
∗, Ht, . . . ,Hm−1) is an ascending subgraph decomposition.

If m is odd, by Vizing and Lemma 8, there is a decomposition of G′ into matchings M1, . . . ,M(m−1)/2

of size m each. For i ∈ [(m − 1)/2] let Hi consist of i edges of Mi, and let Hm−i := Mi − Hi. Then

(H1, . . . ,Ht−1,M
∗, Ht, . . . ,Hm−1) is an ascending subgraph decomposition of G.

The next lemma is a generalisation of Hall’s theorem, that in our context yields a decomposition of a

bipartite graph into isomorphic star forests and a graph of small maximum degree.

Lemma 10. Let H be a bipartite graph with bipartition {X,Y } such that d(x) < d for every x ∈ X.

Then H can be decomposed into (SF1, . . . ,SFd, R), where the SFi’s are isomorphic star forests of at

most |Y | components whose stars have size at most ∆(H)/d, and ∆(R) < d.
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Proof. Let Y1 be the set of vertices in Y of degree at least d. Let R be a subgraph of H consisting

of d(y) (mod d) ≤ d − 1 edges through each y ∈ Y , noting that it contains all edges through Y \ Y1
and has ∆(R) < d. Moreover, the degrees of all the vertices from Y1 in graph H \ R are divisible by

d. We define a new bipartite graph H ′ as follows. For each y ∈ Y1, introduce vertices y1, . . . , y⌊d(y)/d⌋
and set Y ′ =

⋃
y∈Y1

{y1, . . . , y⌊d(y)/d⌋}. Let the two parts of H ′ be X and Y ′. For the edges of H ′, split

NH\R(y) into disjoint sets N1, . . . , Nd(y)/d of size d, and join each yi to all the vertices in Ni. This way,

contracting each set {y1, . . . , y⌊d(y)/d⌋} into a single vertex turns H ′ into H \R.

Notice that H ′ is a bipartite graph with maximum degree at most d. Then by König’s theorem, E(H ′)

can be decomposed into d matchings M1, . . . ,Md. Since all vertices in Y ′ have degree exactly d, each

matching uses precisely one edge incident to each yi. Thus, each matching Mi corresponds to a star

forest SFi in H whose stars are centred at Y1 and such that the star centred at y has size ⌊d(y)/d⌋,
for y ∈ Y1. In particular, the star forests SF1, . . . ,SFd are isomorphic, have |Y1| components, and their

stars have size at most ∆(H)/d.

3.2 Combining graphs

A graph G is r-divisible, if for every graph H, the number of connected components of G which are

isomorphic to H is divisible by r. Note that every r-divisible graph G can be edge-decomposed into r

isomorphic vertex-disjoint subgraphs, consisting of a 1/r fraction of components belonging in the same

isomorphism class. Use G/r to denote the isomorphism class of these graphs. In this section we prove

two lemmas that will be used to combine divisible graphs with stars and matchings.

The following lemma is used for combining divisible graphs with stars.

Lemma 11. Let H be 4-divisible, S a star of even size, and G have a decomposition (H,S). Then

there is a decomposition (H1, . . . ,H4, S1, . . . , S4) of G such that: Hi, Si are vertex-disjoint for i ∈ [4];

each of the graphs H1, . . . ,H4 is isomorphic to H/4; and S1, . . . , S4 are stars with e(S1) = e(S)/2.

Proof. Let (H1, . . . ,H4) be a decomposition of H into four copies of H/4. Without loss of generality,

the centre c of S is not in H1 ∪H2 ∪H3. Order H1, H2, H3 so that |V (S)∩V (H1)| ≤ |V (S)∩V (H2)| ≤
|V (S) ∩ V (H3)|, noting that this gives |V (S) ∩ V (H1)| ≤ e(S)/3. Then |V (S) \ V (H1)| ≥ 2e(S)/3,

so we can pick a star S1 of size e(S)/2 disjoint from H1. Let S2 be the subgraph of S \ S1 whose

edges touch H3, let S3 = S \ (S1 ∪ S2), and set S4 = ∅. Then Hi, Si are vertex-disjoint for all i: for

i ∈ {1, 3, 4} this is trivial by construction; and for i = 2 this happens because H2, H3 are vertex-disjoint

and V (S2) ⊆ V (H3) ∪ {c}.

For graphs H1, H2 and integer a, the sum H1 +H2 is the disjoint union of H1 and H2 and a ·H1 is the

disjoint union of a copies of H1. The next lemma combines divisible graphs with matchings.

Lemma 12. Let ℓ, a1, . . . , ak be positive integers. Let F1, . . . , Fk, H be graphs satisfying H ∼= 5a1 ·F1 +

. . . + 5ak · Fk, and let M be a matching of size 5ℓ. If

ℓ >

√√√√ ln 5

2

k∑
j=1

aj |V (Fj)|2, (2)

then there is a decomposition of M ∪H into five graphs, each of which is isomorphic to H/5 +M/5 for

i ∈ [5].
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We now state McDiarmid’s inequality, which will be used in the proof of the last lemma.

Theorem 13 (McDiarmid’s inequality). Let X1, . . . , Xm be independent random variables with Xi

taking values in a set Si. Let f :
∏

i∈[m] Si → R be a function such that for any x,x′ ∈
∏

i∈[m] Si

differing only at the kth coordinate we have∣∣f(x) − f(x′)
∣∣ ≤ ck,

for some ck ∈ R. Then, for every t > 0,

P
[
f(X1, . . . , Xm) ≤ E[f(X1, . . . , Xm)] − t

]
≤ exp

(
− 2t2∑m

k=1 c
2
k

)
.

Proof of Lemma 12. For each j ∈ [k] partition the components of H isomorphic to Fj into aj sets of size

5 each. Permute uniformly at random the five copies of Fj in each set and for j ∈ [k], s ∈ [aj ] let Xj,s

be the resulting random permutation for the sth set of copies of Fj . This defines a random partition of

H into five graphs H1, . . . ,H5, where Hi consists of the copies of F1, . . . , Fk at the ith position in each

set, and so Hi
∼= H/5. We will show that, with positive probability, every Hi is vertex-disjoint of more

than 2ℓ edges of M .

For e ∈ M, i ∈ [5], let Y e
i be the indicator random variable for the event that e does not share a vertex

with Hi. Then E[Y e
i ] ≥ 3/5, since the endpoints of e can lie on at most two of the graphs H1, . . . ,H5.

Let Yi =
∑

e∈M Y e
i be the number of edges in M that Hi is vertex-disjoint of. Then E[Yi] ≥ 3

5 |M | = 3ℓ.

Observe that the random variables Y e
i and hence Yi are determined by (Xj,s)j∈[k],s∈[aj ]. Changing the

value of Xj,s for one pair (j, s) changes the value of Yi by at most |V (Fj)|. Hence, by Theorem 13

(McDiarmid’s inequality),

P
[
Yi ≤ 2l

]
≤ P

[
Yi ≤ E[Yi] − ℓ

]
≤ exp

(
− 2ℓ2∑k

j=1 aj |V (Fj)|2

)
,

which is less than 1/5 for ℓ >
√

ln 5
2

∑
j aj |V (Fj)|2. By taking a union bound over i ∈ [5] we deduce

that there exists a decomposition of H into H1, . . . ,H5 such that each Hi is isomorphic to H/5 and is

vertex-disjoint of more than 2ℓ edges of M .

Consider the bipartite graph G with bipartition (M,H), where H consists of ℓ copies of each Hi, so

|M | = |H| = 5ℓ. For e ∈ M, Hi ∈ H, put eHi ∈ E(G) if and only if the edge e is vertex-disjoint of

the graph Hi. Then we have dG(e) ≥ 3ℓ and dG(Hi) > 2ℓ for all e ∈ M,Hi ∈ H. It is easy to see

that G satisfies Hall’s condition: if S ⊆ M has |S| ≤ 3ℓ, clearly |N(S)| ≥ 3ℓ ≥ |S|; and if |S| > 3ℓ,

then |S| > |M | − dG(Hi) for all Hi ∈ H, so N(S) = H. Hence G has a perfect matching. This gives a

decomposition of M ∪H as follows: let Gi be the union of Hi and the edges of M that are matched

with the copies of Hi in G. Then Gi
∼= H/5 + M/5, and so (G1, . . . , G5) satisfies the requirements of

the lemma.

3.3 Almost decomposing dense graphs into Kt,t-forests

An F -forest is a disjoint union of copies of F . The aim of this subsection is to prove the following

lemma, which almost decomposes a dense graph into isomorphic Kt,t-forests.
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Lemma 14. Let t ≥ 1 be a fixed integer, let n be a large integer, and let k be an integer satisfying
n√
t
≤ k ≤ n2

t5/2
. Suppose that G is a graph on n vertices. Then G can be decomposed into k isomorphic

Kt,t-forests and a remainder of at most 4n2/
√
t edges.

The proof will use the following result due to Pippenger and Spencer [22]. For a hypergraph H and

v ∈ V (H), the degree of v, denoted d(v), is the number of edges incident to v. We denote the maximum

degree of H by ∆(H) and the minimum degree by δ(H). For u ̸= v, the codegree of u, v, denoted by

d(u, v), is the number of edges incident to both u and v. A matching in a hypergraph is a collection of

pairwise vertex-disjoint edges.

Theorem 15 (Pippenger–Spencer, [22, Theorem 1.1]). Let r be a positive integer and µ > 0. Then for

sufficiently small ν > 0 and for sufficiently large n the following holds. If H is an r-uniform hypergraph

on n vertices with δ(H) ≥ (1 − ν)∆(H) and d(u, v) ≤ ν∆(H), for all distinct u, v ∈ V (H), then there

is a decomposition of H into at most (1 + µ)∆(H) matchings.

In fact, we shall need the following easy corollary.

Corollary 16. Let r be a positive integer and µ > 0. Then for sufficiently small ν > 0 and for

sufficiently large n the following holds. If H is an r-uniform hypergraph on n vertices with d(u, v) ≤
ν∆(H), for all u, v ∈ V (H), then there is a decomposition of H into at most (1 + µ)∆(H) matchings.

Proof. Write d = ∆(H). We will embed H in a d-regular hypergraph H′ with the same maximum

codegree as H. Take r copies of H and add an edge through all copies of v ∈ V (H) for any v with

d(v) < d. This increases the minimum degree of the hypergraph by 1, does not increase the codegree

(pairs of copies of v have codegree 1) and does not increase the maximum degree. By repeating this

construction at most d− 1 times we obtain a hypergraph H′ as desired.

Apply Theorem 15 to H′ to decompose it into at most (1+µ)d matchings. This induces a decomposition

of H into at most (1 + µ)d matchings, as required.

Our proof will also use the following simple version of the classical Kővári–Sós–Turán theorem.

Theorem 17 (Kővári–Sós–Turán). Let t be a positive integer and n be sufficiently large. Let G be a

graph on n vertices with no subgraph isomorphic to Kt,t. Then G has at most n2−1/t edges.

Finally, recall that a projective plane of order p is a (p + 1)-uniform hypergraph on p2 + p + 1 vertices,

also called points, with p2 + p + 1 edges, also called lines, such that any two lines meet at exactly one

point and any two points lie in exactly one common line. There exist constructions of projective planes

of order p for any prime (see e.g. [15, section 12.4]).

The main step in the proof of Lemma 14 is the following lemma, which almost decomposes a dense

graph into a small number of Kt,t-forests (whose sizes may differ).

Lemma 18 (decomposing into Kt,t-forests). Fix α, t > 0 and let n be large. Suppose G is a graph on

n vertices with e(G) ≥ αn2. Then G can be decomposed into at most 2n/t many Kt,t-forests and a

remainder of at most 45n2−1/2t edges.
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Proof. Use Bertrand’s postulate to pick a prime p ∈ [
√
n, 2

√
n], and let P be a projective plane of order

p with q = p2 + p + 1 points and lines. Let f be an injection from V (G) to the points of P, and for

j ∈ [q] let Hj be the subgraph of G consisting of edges uv such that f(u), f(v) both lie in the j-th line

of P. Observe that H1, . . . ,Hq decompose G, since for any uv ∈ E(G), a unique line of P goes through

f(u), f(v). Moreover since each line of P has size p + 1, |Hj | ≤ p + 1 ≤ 3
√
n.

By the Kővári–Sós–Turán theorem (Theorem 17), we can greedily remove copies of Kt,t from each

graph Hj , until there are at most |Hj |2−1/t edges left. Let K be the collection of Kt,t-copies removed

in this process. In total, the Kt,t-copies in K cover all but at most

q∑
j=1

|Hj |2−1/t ≤ 45n2−1/2t,

edges of G, using that q ≤ 4n + 2
√
n + 1 ≤ 5n.

Let H be the 2t-uniform hypergraph on V (G) where a set U of 2t vertices is an edge if and only if it is

the vertex set of a Kt,t copy in K. Notice that the edges incident to a vertex v split into at most n/t

stars of size t, so each vertex is covered by at most n/t copies of Kt,t, i.e. ∆(H) ≤ n/t. Moreover, since

the number of edges covered by Kt,t-copies in K is at least e(G) − 45n2−1/2t ≥ αn2/2, some vertex v

has at least αn incident edges in the decomposition, and hence, since each Kt,t covers t edges incident

to v, v lies in at least αn
t copies of Kt,t in K, i.e. ∆(H) ≥ αn

t .

For any two vertices u, v, the only copies of Kt,t in K that can cover both u and v lie in the graph

Hj corresponding to the unique line through f(u), f(v). The number of Kt,t-copies in K that lie in

Hj and contain u, v is (crudely) at most the number of edges incident to u in Hj , which is less than

|Hj |. Thus, there are at most |Hj | ≤ p + 1 ≤ 3
√
n copies of Kt,t that contain both u, v. It follows

that the codegree of H is at most 3
√
n = o(∆(H)). Hence, by Corollary 16, we can decompose H into

at most (1 + µ)∆(H) ≤ 2n/t matchings. This corresponds to a partition of the above approximate

Kt,t-decomposition of G into at most 2n/t many Kt,t-forests.

The next proposition tells us that given ℓ parts of arbitrary size, we can further partition each part,

to obtain a total of k parts of equal size and a small number of unused elements, provided that k is

sufficiently larger than ℓ. We will apply it to prove Lemma 14.

Proposition 19. Let ℓ, k, s1, . . . , sℓ be positive integers satisfying
∑

i si ≥ k + ℓ. Then there exists a

positive integer s and non-negative integers σ1, . . . , σℓ such that σis ≤ si for i ∈ [ℓ],
∑

i σi = k and∑
i si − sk ≤ ℓ

k

∑
i si + k.

Proof. Let s := ⌊
∑

i si/(k + ℓ)⌋, let s′i ∈ [si − s + 1, si] be divisible by s (notice that there is a unique

such s′i) for i ∈ [ℓ]. Write σ′
i = s′i/s for i ∈ [ℓ].

Clearly, s ≤
∑

i si/(k + ℓ). Equivalently, sk ≤
∑ℓ

i=1 si − sℓ =
∑

i(si − s) <
∑

i s
′
i. By dividing both

sides by s, it follows that
∑

i σ
′
i ≥ k, which implies that we can pick σi ∈ [0, σ′

i] such that
∑

i σi = k.

Note that σis ≤ σ′
is = s′i ≤ si as required. As s ≥

∑
i si/(k + ℓ) − 1,

∑
i

si − ks ≤
∑
i

si − k

(∑
i si

k + ℓ
− 1

)
=

ℓ

k + ℓ

∑
i

si + k ≤ ℓ

k

∑
i

si + k.

Thus σ1, . . . , σℓ, s satisfy the requirements of the proposition.
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We now prove the main lemma of this subsection.

Proof of Lemma 14. Suppose e(G) ≥ 4n2
√
t
, since otherwise we can fit all edges of G in the remainder.

Apply Lemma 18 to G, to obtain a decomposition of G into Kt,t-forests KF1, . . . ,KFℓ, with ℓ ≤ 2n/t,

and a remainder of at most 45n2−1/2t edges. Let si be the number of Kt,t-copies in KFi. Then
∑

i si
is the number of edges of G covered by

⋃
i KFi, divided by t2. Thus

ℓ∑
i=1

si ≥
e(G) − 45n2−1/2t

t2
≥ e(G)

2t2
≥ 2n2

t2
√
t
≥ n2

t5/2
+

2n

t
≥ k + ℓ.

Therefore, by Proposition 19, there exist non-negative integers σ1, . . . , σℓ, s such that σis ≤ si for i ∈ [ℓ],∑
i σi = k and

∑
i

(si − σis) =
∑
i

si − sk ≤ ℓ

k

∑
i

si + k ≤ 2n/t

n/
√
t
· n

2

t2
+

n2

t5/2
=

3n2

t5/2
, (3)

where the second inequality follows from the bounds on ℓ, k and the fact that
∑

i si ≤ n2/t2.

Let KFi,j , with i ∈ [ℓ] and j ∈ [σi], consist of s different copies of Kt,t from KFi, such that the KFi,j ’s

are pairwise vertex-disjoint (this is possible because KFi consists of at least σis copies of Kt,t). Since∑
i σi = k, the collection (KFi,j) consists of exactly k many Kt,t-forests, which all have the same size.

By (3) and the fact that KF1, . . . ,KFℓ cover all but at most 45n2−1/2t edges of G, the number of edges

in G uncovered by (KFi,j) is at most

3n2

√
t

+ 45n2−1/2t ≤ 4n2

√
t
,

using that n is large. The collection (KFi,j) satisfies the requirements of the lemma.

4 Ascending subgraph decompositions for graphs with linear maxi-

mum degree

In this section we prove Lemma 6, asserting that graphs with linear maximum degree have ascending

subgraph decompositions.

In Lemmas 20 to 22 we will successively get finer edge decompositions of a graph with linear maximum

degree.

Lemma 20. Let ε ∈ (0, 1
10) be fixed, set c := 106, and let m be sufficiently large. Suppose that G

is a graph with ∆(G) ≤ cm and e(G) ≤ m2. Then for every k ∈ [εm,m] there is a decomposition

(H1, . . . ,Hk, R1, R2) of G such that Hi are isomorphic star forests, having components of size at most

s =
⌈
5 ε−1c

⌉
, e(R1) ≤ εm2 and |V (R2)| ≤ sm.

Proof. Take k′ := ⌈k/5⌉. Let L be the set of vertices in G with degree at least k′, and let S := V (G)−L.

Then m2 ≥ e(G) ≥ 1
2

∑
v∈L d(v) ≥ k′ |L| /2, so |L| ≤ 2m2/k′ ≤ 10mε−1 ≤ sm.

Apply Lemma 10 (with X = S, Y = L, d = k′) to obtain a decomposition (SF1, . . . ,SFk′ , R0) of G[S,L]

where the SFi’s are isomorphic star forests with at most |L| ≤ sm components, stars of size at most
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cm/k′ ≤ 5cε−1 ≤ s, and R0 has maximum degree less than k′. Set R := R0 ∪ G[S], and observe that

the maximum degree of R is still less than k′ (i.e. ∆(R) ≤ k′ − 1), since adding the edges of G[S] can

only affect the degree of vertices in S, which even in G have degree at most k′ − 1. Let SF be the

isomorphism class of the SFi’s. We assume that SF is 5-divisible, by removing up to four components

of each size from each SFi (these components will be placed in R1 at the end of the proof).

If e(R) ≤ ε2m2, split each SFi into five copies of SF /5, denoting the collection of copies thus obtained

by H1, . . . ,H5k′ . Otherwise, using Lemma 12, we will define H1, . . . ,H5k′ to be a collection of graphs

consisting of the union of SFi and a matching in R. We construct this collection as follows. Apply

Vizing’s theorem and Lemma 8 to decompose R into almost equal matchings M1, . . . ,Mk′ . By removing

up to five edges from each Mi, we may assume that the Mi’s have the same size and are 5-divisible.

Denote the isomorphism class of the Mi’s by M , and notice that e(M) ≥ ε2m2/k′ − 5 ≥ m2/3. Next,

in order to apply Lemma 12 to obtain a decomposition of each Mi ∪ SFi, we verify (2). Recalling that

the number of components in SF is at most sm and each has size at most s, we see the right hand side

of (2) is upper bounded by
√
s3m = o(m2/3). Hence Lemma 12 implies that each graph Mi ∪ SFi can

be decomposed into five copies of M/5 + SF /5. Using this decomposition for each Mi ∪ SFi, i ∈ [k′],

denote the collection of copies of M/5 + SF /5 obtained by H1, . . . ,H5k′ .

Let R2 := G[L], so |V (R2)| ≤ sm by the calculation at the beginning of the proof. Let R1 be the

subgraph of G − G[L] spanned by the edges uncovered by H1, . . . ,Hk. Then R1 consists of the (at

most 5k′− k ≤ 4) graphs Hk+1, . . . ,H5k′ , which in total cover at most 4m2/k ≤ 4m/ε edges; any edges

we removed from ∪i SFi and ∪iMi for divisibility purposes; and all edges of R if e(R) ≤ ε2m2. For

the second contribution, since the components of SF are stars of size at most s, there are at most s

potential component sizes, each contributing at most s deleted edges. Hence we removed at most 4s2

edges from each SFi, so the total contribution to R1 is 4s2k′; and we removed at most 5k′ edges from

∪iMi. Altogether, e(R1) ≤ εm2. Therefore (H1, . . . ,Hk, R1, R2) is a decomposition of G satisfying the

required properties.

Next, we almost decompose the part with linearly many vertices above (namely R2 in Lemma 20) and

combine them with the isomorphic graphs obtained in the previous step, to decompose the whole graph

into isomorphic graphs with some nice properties and a remainder with few edges.

Lemma 21. Fix constants ε ∈ (0, 1
10) and r ∈ N, set c := 106, t :=

⌈
ε−12c6

⌉2
and suppose m is

sufficiently large. Let G be a graph satisfying ∆(G) ≤ cm and e(G) ≤ m2. Then for any k ∈ [εm,m]

there is a decomposition (H1, . . . ,Hk, R) of G such that: the Hi’s are isomorphic, r-divisible, and their

components have size at most t; and e(R) ≤ εm2.

Proof. Let t′ :=
√
t and s :=

⌈
5 ε−2c

⌉
, and notice that we have t′ ≥ ε−12c6 ≥ cs4ε−4. Moreover as

r, c, t, ε are fixed and m is large enough, m is larger than any fixed function of r, c, t, ε.

Apply Lemma 20 (with ε20 = ε2) to obtain a decomposition (SF1, . . . ,SFk, R1, R2), where the SFi’s are

isomorphic star forests whose stars have size at most s; e(R1) ≤ ε2m2; and |V (R2)| ≤ sm. Let SF be

the isomorphism class of the SFi’s.

If |V (R2)| ≤ t3/4
√
m, then e(R2) ≤ |V (R2)|2 ≤ t3/2m ≤ ε2m2. Let H be the subgraph of SF that

results from removing at most r − 1 stars of each size from SF, so that H is r-divisible. Let Hi be a

subgraph of SFi with Hi
∼= H, and R3 =

⋃
i SFi \Hi. Since there are at most s sizes of stars in SF and

the largest star has size s, e(R3) ≤ ks2r ≤ ms2r ≤ ε2m2. Then R = R1 ∪R2 ∪R3 consists of the edges

17



of G uncovered by H1, . . . ,Hk, and has size at most 3ε2m2 ≤ εm2. Hence, since H consists of stars of

size at most s ≤ t, the decomposition (H1, . . . ,Hk, R) satisfies the requirements of the lemma.

Thus for the remainder of the proof we assume |V (R2)| ≥ t3/4
√
m. In this case we will first apply

Lemma 14 to decompose R2 into Kt′,t′-forests. Then, by removing a few components from this decom-

position and from each SFi, we can combine each Kt′,t′-forest with a SFi to obtain a decomposition as

in the lemma.

We apply Lemma 14 (with G14 = R2, t14 = t′, k14 = k, n14 = |V (R2)| ∈ [t3/4
√
m, sm]) to decompose

R2 into k Kt′,t′-forests. This can be done because our k satisfies the conditions of the lemma. Indeed,

the lower bound on |V (R2)| implies |V (R2)|2

(t′)5/2
≥ t3/2m

t5/4
≥ m ≥ k and we also have k ≥ εm ≥ sm√

t′
≥ |V (R2)|√

t′
.

The lemma gives a decomposition (KF1, . . . ,KFk, R3) of R2 such that: the KFi’s are isomorphic Kt′,t′-

forests, and e(R3) ≤ 4|V (R2)|2√
t′

≤ 4s2m2
√
t′

≤ ε2m2 (using that c = 106 and t′ ≥ cs4ε−4). Let KF be the

isomorphism class of the KFi’s. By moving fewer than r components from each KFi to R3, we may

assume that KF is r-divisible; this increases the size of R3 by at most r(t′)2k = rtk ≤ rtm ≤ ε2m2, so

R3 has a total size at most 2ε2m2.

For x ∈ [s], let cx be the number of components of size x in SF. Notice that

|V (KF)| = 2t′
e(KF)

(t′)2
=

2e(KF)

t′
≤ 2m2

kt′
≤ 2m

εt′
≤ ε2m

s2
. (4)

If cx < ε2m/s2, set c′x := 0. Otherwise, take c′x to be the largest integer which is divisible by r and is

at most cx − ε2m/s2. Observe c′x ≥ cx − 2ε2m/s2, since for m sufficiently large, ε2m/s2 ≥ r and hence

there is a multiple of r in the interval [cx − 2ε2m/s2, cx − ε2m/s2]. Moreover, if cx ≥ ε2m/s2, from the

above and (4) it follows that cx − c′x ≥ |V (KF)|. Let SF′ be the star forest which has c′x components

of size x, for each x ∈ [s] (and has no stars larger than s), and let H = SF′ + KF. Observe that since

c′x is a multiple of r, SF′ is r-divisible, and so H is also r-divisible.

Notice that, for every i ∈ [k], the union SFi ∪KFi contains a copy of H. Indeed, for every x ∈ [s],

remove cx − c′x components of size x from SFi, so that all such components that intersect KFi are

removed; this is possible because cx− c′x is either the number of components of SFi of size x, or at least

as large as the number of vertices in KFi. Let Hi be a copy of H in SFi ∪KFi, for i ∈ [k], and let R be

the graph spanned by edges not covered by the Hi’s.

Then the Hi’s are isomorphic, r-divisible, and have components of size at most t, since in KFi each

component has size t = (t′)2 and in SFi they have size at most s ≤ t. The edges in R consist of: edges

of R1 ∪ R3, of which there are at most 3ε2m2; and edges in SFi−Hi. For the latter, notice that the

number of components of size x ∈ [s] we removed from SF is cx−c′x ≤ 2ε2ms−2, so the number of edges

of
⋃k

i=1(SFi−Hi) is at most k · s2 · 2ε2ms−2 = 2ε2mk ≤ 2ε2m2. Altogether, e(R) ≤ 5ε2m2 ≤ εm2.

Thus (H1, . . . ,Hk, R) satisfies the requirements of the lemma.

In the next lemma we further decompose the small remainder from the previous step into stars, obtaining

a decomposition into isomorphic graphs, an ascending sequence of stars, and a remainder of small

maximum degree, with the stars and isomorphic graphs interacting nicely.

To state the next lemma we need the following two definitions. We say that a matching M ⊆ G is

isolated if it touches no other edges of G. We say that an ordered pair of graphs (Hi, Hi+1) is ascending

if Hi
∼= Hi+1 or Hi

∼= Hi+1 \ e for some edge e in Hi+1. We say that a sequence of graphs (H1, . . . ,Ht)
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is ascending if (Hi, Hi+1) is ascending for each i ∈ [t − 1]. In particular, all graphs in an ascending

sequence can be isomorphic.

Lemma 22. Let ε ∈ (0, 1
10), c := 106, m be large and let k ∈ [εm,m]. Suppose that G is a graph

with ∆(G) ≤ cm and 0.2m2 ≤ e(G) ≤ m2. Then there is a decomposition (H1, . . . ,Hk, S1, . . . , Sk, R)

of G, such that: H1, . . . ,Hk are isomorphic, 2-divisible, and contain isolated matchings of size at least

m/200c; (S1, . . . , Sk) is an ascending sequence of stars with e(Si) = 0 for i ∈ [k − εm]; R satisfies

e(R) ≤ εm2 and ∆(R) ≤ εm; and Hi, Si are vertex-disjoint for each i ∈ [k].

Proof. Let t :=
⌈
ε−48c6

⌉2
and k′ := ⌈k/20⌉. By choosing m sufficiently large we can assume that it

is larger than any fixed function of c, t, ε. By Vizing’s theorem, G can be decomposed into cm + 1

matchings, which we may assume are almost equal by Lemma 8. Then, by removing at most 40 edges

from each such matching, there are edge-disjoint isomorphic 40-divisible matchings M1, . . . ,Mk′ of size

at least e(G)−40(cm+1)
cm+1 ≥ m/10c.

Let G′ = G −
⋃
Mi, and note ∆(G′) ≤ cm. Apply Lemma 21 (with ε21 = ε4, r21 = 40, m21 = m,

k21 = k′) to obtain a decomposition (H1, . . . ,Hk′ , R1) of G′, where the Hi’s are isomorphic, 40-divisible,

their components have size at most t, and e(R1) ≤ ε4m2. Let H and M be the isomorphism classes of

Hi and Mi, respectively.

Next we will use Lemma 12 to decompose M∪H. Let K1, . . . ,KL be an enumeration of the components

of H. Then
∑

i |Ki|2 ≤ t ·
∑

i |Ki| = t |V (H)|, and |V (H)| ≤ e(H) ≤ e(G′)/k′ ≤ 20ε−1m, so the right

hand side of (2) is bounded by O(
√
m). On the other hand, e(M)/5 ≥ m/50c, so the left hand side

of (2) is Ω(m), and hence Lemma 12 applies and gives a decomposition of M ∪ H into five copies

of H ′ = M/5 + H/5. Let H ′
1, . . . ,H

′
5k′

∼= H ′ be the subgraphs of H1 ∪ M1, . . . ,Hk′ ∪ Mk′ resulting

from applying this decomposition to each Hi ∪Mi. Observe that H ′ is 8-divisible (since H and M are

40-divisible), and it contains an isolated matching of size at least e(M)/5 ≥ m/50c.

Next we decompose R1 into an ascending sequence of stars. Let S1, . . . , Sr be a maximal sequence of

edge-disjoint stars in R1 with e(Si) = 2i, for i ∈ [r]. Then ε4m2 ≥ e(R1) ≥
∑r

i=1 e(Si) = r(r+1) which

gives r ≤ ε2m. Let R2 = R1 \
⋃
Si, noting that ∆(R2) ≤ 2r + 1 ≤ 3ε2m.

Finally, apply Lemma 11 to Si, H
′
i, for each i ∈ [r]. This yields a decomposition (H1

i , . . . ,H
4
i , S

1
i , . . . , S

4
i )

of Si ∪ H ′
i where e(S1

i ) = i, e(Sj
i ) ≤ i for j ∈ [4]; Hj

i is isomorphic to H ′/4, and thus is 2-divisible

and has an isolated matching of size at least m/200c; and the graphs Hj
i , S

j
i are vertex-disjoint. For

i ∈ [r + 1, 5k′] let (H1
i , . . . ,H

4
i ) be a decomposition of H ′

i into copies of H ′/4 and let Sj
i = ∅ for j ∈ [4]

and i ∈ [r + 1, 5k′].

Relabelling, we obtain a decomposition (H1, . . . ,H20k′ , S1, . . . , S20k′) of G \R2, such that: the Si’s are

stars of size at most r, with at least one of them being a star of size exactly i for every i ∈ [r], and all

but at most 4r ≤ εm of the stars are empty; the Hi’s are isomorphic, 2-divisible and contain isolated

matchings of size at least m/200c; and Hi, Si are vertex-disjoint for i ∈ [20k′]. Remove 20k′ − k ≤ 20

pairs Hi, Si with Si empty and possibly relabel, to obtain a sequence (H1, . . . ,Hk, S1, . . . , Sk) with the

same properties, assuming additionally that e(S1) ≤ . . . ≤ e(Sk).

Let R = G \
⋃

i∈[k](Si ∪Hi). Then R is the union of R2 and up to 20 copies of Hi. We have e(Hi) ≤
m2/k ≤ m/ε. Thus e(R) ≤ e(R2) + 20m/ε ≤ e(R1) + 20m/ε ≤ εm2, and ∆(R) ≤ ∆(R2) + 20t ≤ εm,

using that each one of the removed Hi has components of size at most t.

By carefully combining the graphs in the decomposition given by Lemma 22, the next lemma gives an

approximate ascending decomposition of every graph with linear maximum degree.
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Lemma 23. Fix c = 106 and δ ≤ 1/5000c. Let ε > 0 be sufficiently smaller than δ, and m be large

enough. Set b = ⌊δm⌋. Suppose that G is a graph with ∆(G) ≤ cm and m2(1/2−ε) ≤ e(G) ≤ m2(1/2+

ε). Then, there is a decomposition (Hb+1, . . . ,Hm, R) of G, such that: the sequence (Hb+1, . . . ,Hm) is

ascending; Hi is a matching for i ≤ m/2000c; e(Hb+1) ≤ b+ b2/m; e(Hm) ≥ m+ 1; and ∆(R) ≤ b/10.

Additionally, for any t ∈ [b + 1,m], we can ensure that e(Ht) = e(Ht+1).

Proof. Let ℓ ∈ {⌊εm⌋ , ⌊εm⌋ + 1} be such that m− b− ℓ is even, and write k = m−b−ℓ
2 . Pick numbers

t1 ∈ [k − 1] and t2 ∈ [ℓ] so that t− b ∈ {t1, k, 2k − t1, 2k, 2k + t2} (this is possible because 1 ≤ t− b ≤
m − b = 2k + ℓ). We will find a sequence of graphs as in the lemma so that Hi

∼= Hi+1 for all i with

i− b ∈ {t1, k, 2k − t1, 2k, 2k + t2}, so in particular Ht
∼= Ht+1.

By Lemma 22 (with k22 = k + ℓ and ε22 = ε2) there is a decomposition of G

(H1, . . . ,Hk+ℓ, S1, . . . , Sk+ℓ, R)

such that: the Hi’s are isomorphic, 2-divisible, and contain isolated matchings of size at least m/500c;

the Si’s form an ascending sequence of stars, with e(Si) = 0 for i ∈ [k + 1] (since ℓ − ε2m ≥ 1 and

thus k + ℓ − ε2m ≥ k + 1); Si and Hi are vertex-disjoint for each i; and R satisfies e(R) ≤ ε2m2 and

∆(R) ≤ ε2m. Let H be the isomorphism class of the Hi’s.

If e(Sk+t2+1) ̸= e(Sk+t2), move an edge from each of Sk+t2+1, . . . , Sk+ℓ to R (so now e(Sk+t2+1) =

e(Sk+t2), e(R) ≤ 2εm2, and ∆(R) ≤ 2εm).

Let h = e(H)/2, noting that this is an integer (since H is 2-divisible), and set a = h− k − b.

Claim 23.1. (1/3) · b2/m ≤ a ≤ (2/3) · b2/m.

Proof. Write O(ε) to denote an expression which is in the interval [−Aε,Aε], where A is a constant that

does not depend on c, δ, ε,m. Then b = m · (δ+O(ε)), k = m
2 (1−δ+O(ε)), ℓ = O(εm), e(R) = O(εm2)

and
∑k+ℓ

i=1 e(Si) ≤ ℓ2 = O(εm2) (because e(Sk+1) = 0 and Si is ascending). Thus,

a =
e(G) − e(R) −

∑
e(Si)

2(k + ℓ)
− k − b

=
e(G) − e(R) −

∑
e(Si) − 2k2 − 2kℓ− 2bk − 2bℓ

2(k + ℓ)

=

(
1
2 − 1

2(1 − 2δ + δ2) − (δ − δ2) + O(ε)
)
m2

(1 − δ + O(ε))m

=

(
δ2

2
+ O(ε)

)(
1 + δ + O(δ2)

)
m

=
δ2m

2
+ O(δ3m) =

b2

2m
+ O(δ3m).

In particular, (1/3) · b2/m ≤ a ≤ (2/3) · b2/m.

Order E(H) as e(1), . . . , e(2h) so that {e(1), . . . , e(m/1000c)} is an isolated matching and the prefix

{e(1), . . . , e(h)} is isomorphic to the suffix {e(h + 1), . . . , e(2h)} (this is possible since H is 2-divisible
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and contains a matching of size m/500c). Let ei(j) be the copy of e(j) in Hi. For i ∈ [k], set

A+
i = {ei(1), . . . , ei(a + b + i + 1)}

A−
i = {ei(1), . . . , ei(a + b + i)}

B+
i = {ei(a + b + i + 2), . . . , ei(2h)}

B−
i = {ei(a + b + i + 1), . . . , ei(2h)},

and, for i ∈ [k + 1, k + ℓ], define

Ci = {ei(a + b + 3), . . . , ei(2h)} ∪ Si.

Observe that A+
i and A−

i are matchings for i ∈ [m/2000c], since a + b + m/2000c + 1 ≤ m/1000c and

e(1), . . . , e(m/1000c) is a matching. Moreover, note that A+
i
∼= A+

i+1 \ {ei+1(a + b + i + 2)}, showing

that the sequence (A+
1 , . . . , A

+
k ) is ascending. Similarly, the sequences (A−

1 , . . . , A
−
k ), (B+

k , . . . , B
+
1 ),

and (B−
k , . . . , B

−
1 ) are all ascending. The sequence (Ck+1, . . . , Ck+ℓ) is also ascending because the Si’s

are ascending. Additionally, note that: A+
i

∼= A−
i+1 and B+

i
∼= B−

i+1 for i ∈ [k − 1]; A−
k

∼= B−
k (since

a + b + k = h); and B+
1

∼= Ck+1 (using e(Sk+1) = 0). Also, since e(Sk+t2) = e(Sk+t2+1), we have

Ck+t2
∼= Ck+t2+1. Altogether, this shows that the following sequence is ascending.

A+
1 , . . . , A

+
t1
, A−

t1+1, . . . , A
−
k , B

−
k , . . . , B

−
t1+1, B

+
t1
, . . . , B+

1 , Ck+1, . . . , Ck+ℓ.

Letting Fb+i be the ith graph in this sequence, we get a sequence Fb+1, . . . , Fm which is ascending

with Fb+i+1
∼= Fb+i for i ∈ {t1, k, 2k − t1, 2k, 2k + t2}, where Fb+2k+t2

∼= Fb+2k+t2+1 follows from

Ck+t2
∼= Ck+t2+1. See Figure 1 for an illustration of this sequence.

Since A+
i , A

−
i are matchings for i ∈ [m/2000c] we have that Fb+i is a matching for i ≤ m/2000c.

We have e(Fb+1) = a + b + 2 ≤ b + b2/m, by Claim 23.1. Since Fb+1, . . . , Fm is ascending and

e(Fb+i) = e(Fb+i+1) for at most 5 + ℓ values of i (at worst, they are not strictly ascending for i ∈
{t1, k, 2k − t1, 2k, 2k + t2} ∪ [k + 1, k + ℓ]), we have that

e(Fm) ≥ e(Fb+1) + m− b− 1 − (5 + ℓ) = (a + b + 2) + m− b− ℓ− 6 = m + a− ℓ− 4 ≥ m + 1,

using that a = Θ(δ2m) (by Claim 23.1), ℓ = O(εm) and that ε is sufficiently small compared to δ.

Write R′ = R ∪
⋃k+ℓ

i=k+1{ei(1), . . . , ei(a + b + 2)}. Then ∆(R′) ≤ ∆(R) + ℓ ≤ 4εm ≤ b/10 (using that

{ei(1), . . . , ei(a + b + 2)} is a matching for every i). Noting that {A−
i , B

−
i } and {A+

i , B
+
i } are decom-

positions of Hi, it follows that (Fb+1, . . . , Fm, R′) is a decomposition of G, satisfying the requirements

of the lemma.

For the proof of Lemma 6 we will need the following simple observation.

Observation 24. Let (Hi, Hi+1) be ascending and Mi ⊆ Hi,Mi+1 ⊆ Hi+1 be isolated matchings.

Suppose we have one of

� e(Hi+1 \Mi+1) = e(Hi \Mi) + 1.

� e(Hi+1 \Mi+1) = e(Hi \Mi) and Hi+1
∼= Hi.

Then (Hi \Mi, Hi+1 \Mi+1) is ascending.
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ASDpicture-eps-converted-to.pdf

Figure 1: An illustration of how the graph G is partitioned into (Fb+1, . . . , Fm, R′). Here
all the edges of G are pictured in the way we get them from Lemma 22 at the start of the
proof — either as edges ei(j) of Hi, the stars Si, or the remainder R. The isomorphic graphs
Hi are arranged in a rectangle so that any subset of edges ei(j) in row i is isomorphic to the
corresponding subset on any other row. The coloured areas represent the final partition
(Fb, . . . , Fm, R′) which ends up satisfying the lemma.
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Proof. Suppose Hi+1
∼= Hi. If the first condition holds, we must have |Mi| = |Mi+1| + 1. Hence, since

Mi,Mi+1 do not intersect any other edges of Hi, Hi+1 respectively, (Hi \Mi, Hi+1 \Mi+1) is ascending.

If the second condition holds then |Mi| = |Mi+1| so Hi+1 \Mi+1
∼= Hi \Mi.

Suppose (Hi, Hi+1) is ascending with e(Hi+1) = e(Hi) + 1. Then only the first condition can hold, and

it implies that |Mi| = |Mi+1|. Hence, since Mi,Mi+1 are isolated, we have that (Hi \Mi, Hi+1 \Mi+1)

is ascending.

Having finished all the necessary preparations, we are now ready to prove Lemma 6. This lemma is

stated in Section 2.2, where we use it to prove the main result of this paper, Theorem 2. It says that

for c = 106 and m sufficiently large, if G is a graph satisfying e(G) ∈ (
(
m
2

)
,
(
m+1
2

)
] and ∆(G) ≤ cm,

then G has an ascending subgraph decomposition.

Proof of Lemma 6. Let δ = 10−7c−1 = 10−13, let ε be sufficiently smaller than δ so that Lemma 23

applies, and let b = ⌊δm⌋. Let t = e(G) −
(
m
2

)
, noting that 1 ≤ t ≤ m. Write

ei =

{
i i ∈ [t]

i− 1 i ∈ [t + 1,m].

Apply Lemma 23 to get an ascending sequence (Hb+1, . . . ,Hm) such that Hi is a matching for i ∈
[b + 1,m/2000c]; e(Hb+1) ≤ b + b2/m; e(Hm) ≥ m + 1; the graph R := G \

⋃
Hi has maximum degree

at most b/10; and, if t ∈ [b + 1,m], we moreover require the decomposition is such that Ht
∼= Ht+1.

Set xi := e(Hi) − ei, i ∈ [b + 1,m]. We claim that 0 < xi ≤ 2b2/m for all i ∈ [b + 1,m]. Indeed, if we

ever had e(Hi) ≤ ei, then we would have e(Hi) ≤ i and, since the sequence is ascending, we would also

have e(Hm) ≤ m, a contradiction. For the upper bound, using that Hb+1, . . . ,Hm is ascending and the

definition of ei, we get

xi − xb+1 = e(Hi) − e(Hb+1) − (ei − eb+1) ≤ i− (b + 1) −
(
(i− 1) − (b + 1)

)
= 1,

showing that xi ≤ xb+1 + 1 = e(Hb+1) − eb+1 + 1 ≤ (b + b2/m) − b + 1 ≤ 2b2/m. Write a = maxxi (so

1 ≤ a ≤ 2b2/m).

Randomly pick an isolated matching Mi ⊆ Hi of size xi, making the choices independently for i ∈
[b + 1,m]. There is always room to pick such a matching since for i ≤ m/2000c, Hi is a matching of

size e(Hi) ≥ i ≥ b ≥ 2b2/m ≥ a, while for i > m/2000c the graph Hi contains an isolated matching of

size m/2000c ≥ 2b2/m ≥ a. This also shows that there are at least i choices for each edge of Mi for

i ≤ m/2000c, and there are at least m/2000c choices for each edge for i > m/2000c. Thus,

P
[
v ∈ V (Mi)

]
≤

{
a
i for i ≤ m/2000c

2000ca
m for i > m/2000c.
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Letting F =
⋃

iMi, we have

E[dF (v)] ≤
∑

b+1≤ i≤m/2000c

a

i
+

∑
m/2000c<i≤m

2000ca

m

≤ a

∫ m/2000c

x=b

1

x
dx + 2000ca

= a ln
( m

2000cb

)
+ 2000ca

≤ a ln(m/b) + 2000ca ≤ b/100,

using ln(m/b) ≤ m/1600b ≤ b/800a and 2000ca ≤ 4000cb2/m ≤ b/200 since b/m ≤ δ = 10−7c−1. Since

the number of Hi is m − b, by Chernoff’s bound (Theorem 7), for each vertex v we have P
[
dF (v) ≥

b/50
]
≤ e−2(b/100)2/(m−b) ≤ e−δ2m/10000. Taking the union bound over all (non-isolated) vertices v in G

(of which there are at most 2e(G) ≤ 2m2), we deduce that, with positive probability, for all vertices v,

dF (v) ≤ b/50. Hence there are matchings Mb+1, . . . ,Mm so that ∆(F ) ≤ b/50.

By definition of xi,Mi we have e(Hi\Mi) = ei for i ∈ [b+1,m], and hence e(F∪R) = e1+· · ·+eb =
(
b+1
2

)
(using that e(G) =

∑m
i=1 ei). We also have ∆(F ∪ R) ≤ b/5. Therefore, by Lemma 9, F ∪ R has an

ASD into matchings (M1, . . . ,Mb) with e(Mi) = ei. Now (M1, . . . ,Mb, Hb+1 \Mb+1, . . . ,Hm \Mm) is

an ascending decomposition of G: first note that for each i ≤ b, we have e(Mi) = ei and for i ≥ b + 1

we have e(Hi \Mi) = ei. Next, notice that the graphs M1, . . . ,Mb, Hb+1 \Mb+1 are matchings, and so

this sequence is ascending. Finally, it follows from Observation 24 that Hb+1 \Mb+1, . . . ,Hm \Mm is

ascending: indeed, for i ̸= t, the first condition of Observation 24 applies to (Hi \Mi, Hi+1 \Mi+1), and

for i = t, if t ≥ b + 1 the second condition applies, since Ht
∼= Ht+1. For t ≤ b, we have Mt

∼= Mt+1.

This completes the proof of the lemma.

5 Conclusion

We proved the main conjecture of [1] by showing that each graph has an ascending subgraph decompo-

sition consisting of star forests and subgraphs of Kt,t’s. It would be interesting to understand whether

the latter graphs are necessary or just an artefact of our proof. Faudree, Gyárfás, and Schelp have

conjectured that ascending decomposition purely using star forests should always exist.

Conjecture 25 (Faudree, Gyárfás, and Schelp [7]). Every graph G with
(
m+1
2

)
edges has an ascending

subgraph decomposition H1, . . . ,Hm, where each Hi is a star forest.

The techniques introduced in this paper are likely to be useful for approaching this conjecture (for

large m). However, we think that new ingredients would be needed too — mainly because one of

our key intermediate results (Lemma 21) is not true when one restricts to star-forest decompositions.

Indeed, the essence of Lemma 21 is that every graph with
(
m
2

)
edges can be nearly-decomposed into

εm isomorphic subgraphs (for ε−1 ≪ m). But the complete graph Km cannot be nearly-decomposed

into εm isomorphic star forests for ε < 1/2 (just because any star forest in Km has at most m − 1

edges). Thus it seems necessary to deviate from our proof strategy if one wants to prove Conjecture 25

(at least when G is very dense).
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It is possible that even stronger generalizations of the ascending subgraph decomposition conjecture

are true. Another feature of our proof of Theorem 2 is that it produced a decomposition into graph

Hi which are all the disjoint union of one potentially large star and a lot of connected components

of bounded size. If these small components could be made to have size 1, then we would obtain a

strengthening of Conjecture 25.

Problem 26. Does every sufficiently large graph G with
(
m+1
2

)
edges have an ascending subgraph

decomposition H1, . . . ,Hm, where each Hi is a disjoint union of a star and a matching?

Igor Balla suggested the following variant of our problem: for which sequences a1 ≤ . . . ≤ am does every

graph on a1 + . . . + am edges have a decomposition (H1, . . . ,Hm) with e(Hi) = ai and Hi isomorphic

to a subgraph of Hi+1? Our methods might work if ai + am−i is the same for all i.

Recall that one of the central open problems in the area of graph decompositions is the Gyárfás tree

packing conjecture: if T1, . . . , Tn−1 is any sequence of trees with e(Ti) = i, then we can decompose Kn

into copies of T1, . . . , Tn−1. This is only known when ∆(T ′
i ) ≤ cn

logn [3]. Nati Linial asked whether this

becomes easier if we assume that the sequence of trees T1, . . . , Tn−1 is ascending.

Finally, clearly for a star forest to have a star ASD, the ith smallest component needs to have size

at least i. This shows that our condition in Theorem 4 is tight up to constant factors. It would be

interesting to determine the precise constants that are necessary.
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