
Finding Monotone Patterns in Sublinear Time,1

Adaptively2

Omri Ben-Eliezer #3

Massachusetts Institute of Technology, USA4

Shoham Letzter #5

University College London, United Kingdom6

Erik Waingarten #7

Stanford University, USA8

Abstract9

We investigate adaptive sublinear algorithms for finding monotone patterns in sequential data. Given10

fixed 2 ≤ k ∈ N and ε > 0, consider the problem of finding a length-k increasing subsequence11

in a sequence f : [n] → R, provided that f is ε-far from free of such subsequences. It was shown12

by Ben-Eliezer et al. [FOCS 2019] that the non-adaptive query complexity of the above task is13

Θ((log n)⌊log2 k⌋). In this work, we break the non-adaptive lower bound, presenting an adaptive14

algorithm for this problem which makes O(log n) queries. This is optimal, matching the classical15

Ω(log n) adaptive lower bound by Fischer [Inf. Comp. 2004] for monotonicity testing (which cor-16

responds to the case k = 2). Equivalently, our result implies that testing whether a sequence17

decomposes into k monotone subsequences can be done with O(log n) queries.18

2012 ACM Subject Classification Theory of computation → Streaming, sublinear and near linear19

time algorithms20

Keywords and phrases property testing, monotone patterns, monotone decomposition, adaptivity21

Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.2322

Related Version The full version of this work is hosted on arXiv: 1911.01169.23

Funding Shoham Letzter : Research supported by Dr. Max Rössler, the Walter Haefner Foundation24

and by the ETH Zurich Foundation.25

Erik Waingarten: This work is supported by the National Science Foundation under Award No.26

2002201 and Moses Charikar’s Simons Investigator award.27

1 Introduction28

Pattern avoidance and detection in sequential data is a central problem in theoretical29

computer science and combinatorics [57], dating back to the seminal work of Knuth [38]30

(from a computer science perspective), and Simion and Schmidt [55] (from a combinatorial31

perspective). Studying the computational problem within the framework of sublinear32

algorithms, Newman, Rabinovich, Rajendraprasad, and Sohler [44, 45] considered the problem33

of property testing for forbidden order patterns in a sequence, where one of the central34

special cases they considered was that of monotone patterns. The property testing problem35

of detecting monotone patterns generalizes classical monotonicity testing in sequences, and36

is tightly connected to the longest increasing subsequence (LIS) problem [46].37

For an integer k ∈ N and a sequence f : [n] → R, a length-k monotone subsequence of38

f is a tuple of k indices, (i1, . . . , ik) ∈ [n]k, such that i1 < · · · < ik and f(i1) < · · · < f(ik).39

More generally, for a permutation π : [k] → [k], a π-pattern of f is given by a tuple of k40

indices i1 < · · · < ik such that f(ij1) < f(ij2) whenever j1, j2 ∈ [k] satisfy π(j1) < π(j2). A41

sequence f is π-free if there are no subsequences of f with order pattern π. For a fixed k ∈ N42

and a pattern π of length k, the goal is to test whether a function f : [n] → R is π-free or43

© Omri Ben-Eliezer, Shoham Letzter, and Erik Waingarten;
licensed under Creative Commons License CC-BY 4.0

42nd Conference on Very Important Topics (CVIT 2016).
Editors: John Q. Open and Joan R. Access; Article No. 23; pp. 23:1–23:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:omrib@mit.edu
mailto:s.letzter@ucl.ac.uk
mailto:eaw@cs.columbia.edu
https://doi.org/10.4230/LIPIcs.CVIT.2016.23
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 Finding Monotone Patterns in Sublinear Time, Adaptively

ε-far from π-free (that is, any π-free function g differs from f on at least εn inputs). The44

algorithmic task proposed in [45] and studied in this paper is as follows.45

For 2 ≤ k ∈ N and ε > 0, design a randomized algorithm that, given query access to46

a function f : [n] → R, distinguishes with probability at least 9/10 between the case47

that f is free of length-k monotone subsequences and the case that it is ε-far from free48

of length-k monotone subsequences.49

The above algorithmic formulation is equivalent to the following property testing problem50

(with one-sided error). For a given 2 ≤ k ∈ N and f : [n] → R, test whether there exists51

a decomposition of f into fewer than k non-increasing subsequences, or f is ε-far from52

having such a decomposition. The equivalence of the two formulations is a consequence53

of Dilworth’s theorem [22]. One direction is trivial: if there exists a length-k increasing54

subsequence (i1, . . . , ik) ∈ [n]k, then any partition of f into fewer than k subsequences must55

contain two indices ij and ij′ within the same subsequence, hence, the subsequences are not56

non-increasing. The other direction follows from considering the poset ([n], ≺f), where i ≺f j57

iff i ≤ j and f(i) ≥ f(j); every anti-chain of ≺f is an increasing subsequence of f , and every58

chain of ≺f is a non-increasing subsequence. If there are no length-k increasing subsequences,59

the maximum anti-chain of ≺f has size at most k − 1, and by Dilworth’s theorem, there is a60

partition of ([n], ≺f) into at most k − 1 chains, i.e., non-increasing subsequences.161

This paper gives an algorithm with optimal dependence in n for the above problems. We62

state the main theorem next, and discuss connections to monotonicity testing and to the63

longest increasing subsequence (LIS) problem shortly after.64

▶ Theorem 1. Fix k ∈ N and ε > 0. There exists an algorithm that, given query access to a
function f : [n] → R which is ε-far from free of length-k monotone subsequences, outputs a
length-k monotone subsequence of f with probability 9/10, with query complexity and running
time of (

kk · (log(1/ε))k · 1
ε

· log(1/δ)
)O(k)

· log n.

Thus, for fixed k and ε, the query complexity and running time are of order O(log n). The65

above result can be stated analogously in the language of monotone decompositions.66

▶ Corollary 2. Fix k ∈ N and ε > 0. There is an algorithm with query complexity and67

running time O(log n) for ε-testing whether a sequence f : [n] → R is decomposable into k68

monotone subsequences.69

The algorithm underlying Theorem 1 is adaptive2 and solves the testing problem with70

one-sided error, since a length-k monotone subsequence is evidence for not being free of such71

subsequences. The algorithm improves on a recent result of Ben-Eliezer, Canonne, Letzter72

and Waingarten [7] who gave a non-adaptive algorithm for finding length-k monotone patterns73

with query complexity Ok,ε((log n)⌊log2 k⌋), which in itself improved upon a Ok,ε((log n)O(k2))74

upper bound by [45]. The focus of [7] was on non-adaptive algorithms, and they gave a75

1 A similar equivalence, between being decomposable into k increasing (or decreasing) subsequences and
not containing non-increasing (or non-decreasing, respectively) patterns of length k + 1 holds as well.
We note that all results stated here in terms of “strong” monotonicity, e.g., being increasing, will also
hold for their “weak” monotonicity analogue, e.g., being non-decreasing.

2 An algorithm is non-adaptive if its queries do not depend on the answers to previous queries, or,
equivalently, if all queries to the function can be made in parallel. Otherwise, if the queries of an
algorithm may depend on the outputs of previous queries, then the algorithm is adaptive.

O. Ben-Eliezer, S. Letzter, and E. Waingarten 23:3

lower bound of Ω
(
(log n)⌊log2 k⌋)

queries for non-adaptive algorithms achieving one-sided76

error. Hence, Theorem 1 implies a natural separation between the power of adaptive and77

non-adaptive algorithms for finding monotone subsequences.78

Theorem 1 is optimal, even among two-sided error algorithms. In the case k = 2,79

corresponding to monotonicity testing, there is a Ω(log n/ε) lower bound (as long as, say,80

ε > n−0.99) for both non-adaptive and adaptive algorithms [25, 27, 15], even with two-81

sided error. A simple reduction suggested in [45] shows that the same lower bound (up82

to a multiplicative factor depending on k) holds for any fixed k ≥ 2. Thus, an appealing83

consequence of Theorem 1 is that the natural generalization of monotonicity testing, which84

considers forbidden monotone patterns of fixed length longer than 2, does not affect the85

dependence on n in the query complexity by more than a constant factor. Interestingly, [27]86

shows that for any adaptive algorithm for monotonicity testing on f : [n] → R there is a87

non-adaptive algorithm which is at least as good in terms of query complexity (even if we88

only restrict ourselves to one-sided error algorithms). That is, adaptivity does not help at all89

for k = 2. In contrast, the separation between our O(log n) adaptive upper bound and the90

Ω
(
(log n)⌊log2 k⌋)

non-adaptive lower bound of [7] means this is no longer true for k ≥ 4.91

While our work settles the dependence in n in the query complexity of adaptive monotone92

pattern testing, and [7] settles the non-adaptive dependence in n, the following interesting93

question remains wide open.94

▶ Question 3. What is the optimal dependence of the query complexity in k and ε for the95

monotone subsequence testing problem discussed in this paper?96

Thus far, all known (adaptive and non-adaptive) results on this problem have a kO(k2) type97

dependence in k in the query complexity; see Theorem 3.1 in [45] and Lemma 3.2 in [7]. The98

best known dependence in ε is of the form (1/ε)log2 k+O(1) for fixed k [7].99

On the role of adaptivity in order pattern detection100

Harnessing adaptivity to improve algorithmic performance is a notoriously difficult problem in101

many branches of property testing, typically requiring a good structural understanding of the102

task at hand. In the context of testing for forbidden order patterns, non-adaptive algorithms103

are quite weak: the non-adaptive query complexity is Ω(n1/2) for all non-monotone order104

patterns [45], and as high as n1−1/(k−Θ(1)) for almost all patterns of length k [6]. A recent105

(and independent) work of [47] gave new adaptive algorithms for general patterns with query106

complexity no(1) for fixed constant ε > 0 and k ∈ N, showing that for non-monotone patterns,107

too, adaptive algorithms may significantly improve upon non-adaptive ones. We note that108

the query complexity obtained in [47] is not polylogarithmic in n, and so their result is109

incomparable to ours. Their proof techniques are also very different from ours: at the core of110

their proof is a sophisticated sparsification framework, which makes use of a beautiful result111

of Marcus and Tardos [40] on pattern-avoidance in matrices.112

Connections to the Longest Increasing Subsequence (LIS) problem113

As an immediate consequence, Theorem 1 gives an optimal testing algorithm for the longest114

increasing subsequence (LIS) problem in a certain regime. The classical LIS problem115

asks to determine, given a sequence f : [n] → R, the maximum k for which f contains a116

length-k increasing subsequence. It is very closely related to other fundamental algorithmic117

problems in sequences, such as computing the edit distance, Ulam distance, or distance118

from monotonicity (for example, the latter equals n minus the LIS length), and has been119

CVIT 2016

23:4 Finding Monotone Patterns in Sublinear Time, Adaptively

thoroughly investigated from the perspective of classical algorithms [29, 50], sublinear-time120

algorithms [49, 1, 54, 52, 46, 42, 2], streaming algorithms [34, 56, 30, 53, 24, 43], dynamic121

algorithms [18, 31, 39, 41] and massively parallel computation [36, 12]. In the property122

testing regime, the corresponding decision task is to distinguish between the case where f123

has LIS length at most k (where k is given as part of the input) and the case that f is ε-far124

from having such a LIS length. Theorem 1 in combination with the aforementioned Ω(log n)125

lower bounds (which readily carry over to this setting) yield a tight bound on the query126

complexity of testing whether the LIS length is a constant.127

▶ Corollary 4. Fix 2 ≤ k ∈ N and ε > 0. The query complexity of ε-testing whether128

f : [n] → R has LIS length at most k is Θ(log n).129

1.1 Related Work130

Considering general permutations π of length k and exact computation, [35] showed how131

to find a π-pattern in a sequence f in time 2O(k2 log k)n, later improved by [28] to 2O(k2)n.132

In the regime k = Ω(log n), an algorithm of [8] running in time nk/4+o(k) provides the133

state-of-the-art. The analogous counting problem has also been actively studied, see [26] and134

the references within.135

For approximate computation of general patterns π, the works of [45, 6] investigate the136

query complexity of property testing for forbidden order patterns. When π is of length 2,137

the problem considered is equivalent to testing monotonicity, one of the most widely-studied138

problems in property testing, with works spanning the past two decades. Over the years,139

variants of monotonicity testing over various partially ordered sets have been considered,140

including the line [n] [25, 27, 3, 48, 5], the Boolean hypercube {0, 1}d [23, 10, 13, 14, 20, 19,141

37, 4, 16, 21, 17], and the hypergrid [n]d [11, 15, 9]. We refer the reader to [32, Chapter 4]142

for more on monotonicity testing, and a general overview of the field of property testing143

(introduced in [51, 33]).144

1.2 Main Ideas and Techniques145

We now describe some intuition behind the proof of Theorem 1. We note that the algorithm146

considers several cases and combines ideas from [45] and [7] with new structural and al-147

gorithmic components. In this overview, technical details established in [45] and [7] are noted148

but excluded; the purpose is to highlight the challenges and novel ideas arising specifically149

from this work. (See the Appendix in the full-version of the work for a short technical150

overview of these previous results.)151

Fix k ∈ N and ε > 0, and suppose that f : [n] → R is ε-far from (12 . . . k)-free, that is,152

ε-far from free of length-k increasing subsequences. Notice that f must contain a collection153

C of at least εn/k pairwise-disjoint increasing subsequences of length k; indeed, otherwise,154

greedily eliminating these subsequences gives a (12 . . . k)-free function differing in strictly155

fewer than εn inputs.156

For simplicity in this overview, assume that k is even and that all εn/k length-k increasing
subsequences of f in C, (x1, x2, . . . , xk) ∈ [n]k, satisfy that |xk/2+1 − xk/2| ≥ |xi+1 − xi|
for all i ∈ [k − 1] (the non-adaptive lower bound of Ωε((log n)⌊log2 k⌋) holds even in this
restricted case) – intuitively, the largest “gap” in successive indices is between the k/2-th
and (k/2 + 1)-th position. A goal, common to [45, 7] and this work, is to recursively
find a (12 . . . k/2)-pattern of indices (i1, . . . , ik/2) ∈ [n]k/2, as well as (12 . . . k/2)-pattern of
indices (ik/2+1, . . . , ik) ∈ [n]k/2 that can be combined into one (12 . . . k)-pattern. Toward

O. Ben-Eliezer, S. Letzter, and E. Waingarten 23:5

R

[n]

x1

y1

x2

y2

y3

x3

x4

y4

ℓ

Figure 1 A sequence f : [n] → R with two disjoint monotone subsequences of length 4, and an
index ℓ ∈ [n]. The sequences are x = (x1, x2, x3, x4) and y = (y1, y2, y3, y4). Note that both x and y

have the largest gap between consecutive elements at index 2, i.e., |x3 − x2| and |y3 − y2| are the
largest gaps between consecutive indices in x and y. Furthermore, ℓ cuts both x and y with slack.

this recursive approach, we say that an index ℓ ∈ [n] cuts (x1, . . . , xk) with slack if

xk/2 +
xk/2+1 − xk/2

3 ≤ ℓ ≤ xk/2+1 −
xk/2+1 − xk/2

3 ,

or, informally, if ℓ lies “roughly in the middle” between xk/2 and xk/2+1 – which, by the above
assumption, form the largest gap among consecutive indices of the increasing subsequence
(see Figure 1). The index ℓ ∈ [n] allows us to recurse on an interval before ℓ, as well as an
interval after ℓ. Additionally, the width of (x1, . . . , xk) is set to be ⌊log(xk/2+1 − xk/2)⌋. We
consider the subset of C consisting of length-k monotone subsequences of width w which are
cut by ℓ with slack,

Cℓ,w = {(x1, . . . , xk) ∈ C : width(x1, . . . , xk) = w, ℓ cuts (x1, . . . , xk) with slack},

and note that if (x1, . . . , xk) ∈ Cℓ,w, then x1, . . . , xk/2 ∈ [ℓ − k · 2w, ℓ] and xk/2+1, . . . , xk ∈
[ℓ, ℓ + k · 2w], since |xk/2+1 − xk/2| was maximal. Motivated by this observation, the density
of width-w copies in C around ℓ is measured by

τC(ℓ, w) = 1
2w

· |Cℓ,w|,

and the total density (over all widths) of C around ℓ is measured by

τC(ℓ) =
log n∑
w=1

τC(ℓ, w).

The algorithms (ours and those in [45, 7]) proceed in a recursive manner. Each step157

considers an index ℓ ∈ [n] where the total density τC(ℓ) is high, namely at least Ωk(ε), as158

well as a width w where τC(ℓ, w) is high. At a very high level, the algorithm can recurse on159

the sub-intervals [ℓ − k · 2w, ℓ] and [ℓ, ℓ + k · 2w], where the lower bound on τC(ℓ, w) implies160

sufficiently many increasing subsequences exist in each interval. If we choose the index ℓ161

and width w correctly, we have reduced the problem of finding a (12 . . . k)-pattern to finding162

two (12 . . . k/2)-patterns in subsequences of size k · 2w to the left and right of ℓ which are163

themselves Ωε,k(1)-far from free of (12 . . . , k/2)-patterns.164

While ℓ may be chosen randomly, choosing the correct width w becomes analytically165

trickier, and is the step where the algorithms differ. The number of possible widths w is166

Θ(log n) (since these are powers of 2 between 1 and n), and a non-adaptive algorithm cannot167

know what a correct choice of w is. The non-adaptive algorithms consider all Θ(log n) options168

and recursively apply the algorithm for each width, thereby losing a Θ(log n) factor in the169

CVIT 2016

23:6 Finding Monotone Patterns in Sublinear Time, Adaptively

query complexity at each recursive step. The main challenge of [45, 7] is obtaining the “best”170

lower bound on τC(ℓ, w) for some w ∈ [log n] and determining the number of recursive steps171

necessary. The fact that a non-adaptive algorithm must explore Ω(log n) widths is inevitable,172

and what the non-adapive lower bound in [7] formalizes.173

With adaptivity, the hope is that an algorithm considering an index ℓ ∈ [n] with174

τC(ℓ) = Ωk(ε) can choose one width w satisfying τC(ℓ, w) = Ωk(ε), and recurse only on that175

width. The algorithm may devote Θk,ε(log n) queries to consider all Θ(log n) possible widths,176

and the benefit is that recursing on a single width incurs a Θk,ε(log n) additive loss in the177

query complexity, as opposed to the Θk,ε(log n) multiplicative loss incurred by [45, 7]. We178

describe how we accomplish this next.179

First, there is a simple Ok,ε(log n)-query procedure which can choose a width ŵ where180

ŵ ≥ w. For example, for every possible width w0, the algorithm queries Ok,ε(1) randomly181

sampled indices from [ℓ − k · 2w0 , ℓ] and [ℓ, ℓ + k · 2w0]. Then, let ŵ be the largest w0 where182

some increasing pair is found. The fact that the unknown w ∈ [log n] satisfies τC(ℓ, w) ≥ Ωk(ε)183

implies that with high constant probability, there exists two (x1, . . . , xk), (y1, . . . , yk) ∈ Cℓ,w184

where indices x1 and yk are sampled and by an observation from [45], with high enough185

probability, f(x1) ≤ f(yk) (see the appendix in the full-version for a more thorough discussion186

on this point). This, in turn, implies ŵ ≥ w.187

If the simple procedure happened to choose ŵ which is not much larger than w, then188

we may recurse on ŵ, similarly to [45, 7]; we call this the fitting case. The problem is that189

ŵ may be too large, a case we refer to as overshooting. Consider the execution selecting a190

width ŵ which is too large, in particular, the “correct” width w satisfies w ≪ ŵ. Intuitively,191

the problem is the following: the promise that τC(ℓ, w) ≥ Ωk(ε) ensures that the subsequence192

[ℓ − k · 2w, ℓ + k · 2w] is sufficiently dense with (12 . . . k)-patterns; however, when ŵ is193

much larger, the subsequence [ℓ − k · 2ŵ, ℓ + k · 2ŵ] is much larger than the subsequence194

[ℓ − k · 2w, ℓ + k · 2w]; hence, the length-k increasing subsequences in [ℓ − k · 2w, ℓ + k · 2w]195

constitute a tiny (at most Ok(2w−ŵ)) fraction of the interval [ℓ − k · 2ŵ, ℓ + k · 2ŵ] the196

algorithm would recurse on.197

Due to the density τC(ℓ, ŵ) being potentially very small, at this point, it is not clear198

how to proceed with our wrong (too large) choice of ŵ as the width to recurse on. To199

overcome this, we prove a robust structural theorem, drawing a much more favorable picture200

as to which widths are good for recursion. The robust structural theorem asserts the201

following. For sufficiently many possible ℓ ∈ [n] and widths w where τC(ℓ, w) ≥ Ωk(ε), every202

interval J containing [ℓ − k · 2w, ℓ + k · 2w] has Ωk(ε|J |) pairwise-disjoint length-k increasing203

subsequences. At a high level, the prior structural results ensured that [ℓ − k · 2w, ℓ + k · 2w]204

is dense with (12 . . . k)-patterns cut by ℓ; our robust version ensures that any interval J205

containing [ℓ − k · 2w, ℓ + k · 2w] remains dense with (12 . . . k)-patterns. In particular, the206

choice of interval is robust to picking a width ŵ which is larger than w. These length-k207

increasing subsequences are not cut with slack by ℓ, a condition which was crucial for [45, 7];208

however, the algorithm’s choice of ŵ means it found an increasing pair at distance Θk(2ŵ).209

We exploit this with an adaptive algorithm in a somewhat surprising manner, which we210

expand on now.211

New algorithm when overshooting212

Let ℓ ∈ [n] be an index with τC(ℓ) ≥ Ωk(ε), and let w be the unknown width where213

τC(ℓ, w) ≥ Ωk(ε) with the above-mentioned robustness property. Suppose that the widest214

increasing pair (x, y) found by the algorithm (which sets ŵ ≈ log2 |y − x|), satisfies ŵ ≫ w.215

Even though the algorithm has “committed” to a width ŵ which is too large, we will216

O. Ben-Eliezer, S. Letzter, and E. Waingarten 23:7

algorithmically exploit the fact that (x, y) is an increasing pair lying very far apart, and217

containing the interval [ℓ − k · 2w, ℓ + k · 2w]. Specifically, since (x, y) are very far away, the218

algorithm may fit k − 2 intervals J1, . . . , Jk−2 between x and y which lie adjacent to each219

other, satisfying the following conditions:220

J1 contains the interval [ℓ − k · 2w, ℓ + k · 2w].221

Ji+1 lies immediately after Ji, for any i ∈ [k − 3].222

|Ji+1| ≥ |Ji| · αk,ε for all i ∈ [k − 3], and a large fixed constant αk,ε > 1.223

A consequence of the robust structural theorem, and the fact that J1, . . . , Jk−2 have224

exponentially increasing lengths is that each Ji contains a collection Ti of Ωk(ε|Ji|) disjoint225

length-k increasing subsequences. For each i ∈ [k − 2], define two sets Ai and Bi as follows.226

Let Ai be the collection of prefixes (a1, . . . , ai+1) of Ti with f(ai+1) < f(y), and let Bi be the227

collection of suffixes (ai+1, . . . , ak) of Ti with f(ai+1) ≥ f(y). As |Ti| = |Ai| + |Bi|, one of Ai228

and Bi is large (i.e. has size at least Ωk(ε|Ji|)). This seemingly innocent combinatorial idea229

can be exploited non-trivially to find an increasing subsequence of length k. Specifically, the230

algorithm to handle overshooting aims to (recursively) find shorter increasing subsequences231

in J1, . . . , Jk−2, with the hope of combining them together into an increasing subsequence232

of length k. Concretely, for any i ∈ [k − 2], we make two recursive calls of our algorithm233

on Ji: one for an (i + 1)-increasing subsequence in Ji, with values smaller than f(y),3 and234

a second one for a (k − i)-increasing subsequence in Ji whose values are at least f(y). By235

induction, the first recursive call succeeds with good probability if |Ai| is large, while the236

second call succeeds with good probability if |Bi| is large. Since for any i either |Ai| or |Bi|237

must be large, at least one of the following must hold.238

B1 is large. In this case we are likely to find a length-(k − 1) monotone pattern in J1 with239

values at least f(y) > f(x), which combines with x to form a length-k monotone pattern.240

Ak−2 is large. Here we are likely to find a length-(k − 1) monotone pattern in Jk−2 whose241

values lie below f(y), which combines with y to form a length-k monotone pattern.242

There exists i ∈ [k − 3] where both Ai and Bi+1 are large. Here we will find, with243

good probability, a length-(i + 1) monotone pattern in Ji with values below f(y), and a244

length-(k − i − 1) monotone pattern in Ji+1 with values at or above f(y); together these245

two patterns combine to form a (12 . . . k)-pattern.246
In all cases, a k-increasing subsequence is found with good probability. See Figure 2 for an247

example. The benefit is that the algorithm spends Θk,ε(log n) queries to identify one fixed248

width ŵ ∈ [log n]. Then, there are 2(k − 2) recursive calls each aiming to find an increasing249

subsequence of length strictly less than k. The Θε,k(log n) loss in the query complexity is250

additive per recursive step; this leads to the Θε,k(log n) query complexity bound which was251

impossible in the non-adaptive algorithms of [45, 7], as these had to explore all possible252

widths ŵ ∈ [log n] in each recursive step.253

Organization254

The rest of the paper is organized as follows. Relevant notation can be found in Section255

1.3. Section 2 establishes the stronger structural result required for our adaptive algorithm.256

Section 3 contains the new algorithmic components and the formal statements regarding the257

correctness of our algorithm and its query complexity. The appendices in the full-version258

provide a brief description of the previous (non-adaptive) testing results on (12 . . . k)-freeness259

3 Technically speaking, our algorithm can be configured to only look for increasing subsequences whose
values lie in some range; we use this to make sure that shorter increasing subsequences obtained from
the recursive calls of the algorithm can eventually be concatenated into a valid length-k one.

CVIT 2016

23:8 Finding Monotone Patterns in Sublinear Time, Adaptively

R

[n]

x

y

J1 J2 J3

z1

z2

z3

z4

z5

v1

v2

v3

v4

v5

A1

B1

A2

B2

A3

B3

Figure 2 We consider the “overshooting case” for k = 5. Specifically, the algorithm considers an
index ℓ ∈ [n] with τC(ℓ) = Ωk(ε) and, for some unknown w ∈ [log n], τC(ℓ, w) = Ωk(ε). Furthermore,
in trying to identify a correct width ŵ, the algorithm samples an increasing pair (x, y) with
log2 |x − y| ≈ ŵ ≫ w. The algorithm will consider at least k − 2 geometrically increasing intervals
between x and y; these are displayed as J1, J2, and J3; by virtue of the robust structural theorem,
each Ji contains Ωk(ε|Ji|) disjoint length-k monotone subsequences. Ai contains those length-k
monotone subsequences where the (i+1)-th index is above f(y) and Bi contains those whose (i+1)-th
index is below f(y). As an example, (z1, z2, z3, z4, z5) ∈ B4 and (v1, v2, v3, v4, v5) ∈ A4. The crucial
properties are: (i) for all i ∈ [k − 2] any (12 . . . i)-pattern in Ai and any (12 . . . (k − i))-pattern
in Bi+1 may be combined into a (12 . . . k)-pattern, (ii) any (12 . . . (k − 1))-pattern in B1 may be
combined with x since f(y) > f(x), and (iii) any (12 . . . (k − 1))-pattern in A4 may be combined
with y. The reasoning may proceed as follows: if |B1| is large, we find a (12 . . . (k − 1))-pattern and
combine it with x; so, assume |B1| is small, which implies |A1| must be large. If |B2| is large, then
a (12)-pattern from A1 and a (12 . . . (k − 2))-pattern from B2 may be combined; so assume |B2| is
small which implies |A2| is large, Eventually, we deduce that we may assume |Ak−2| is large,
and a (12 . . . (k − 1))-pattern in Ak−2 may be combined with y.

from [45, 7], as well as the remaining proofs, relegated from the main body due to space260

constraints.261

1.3 Notation262

All logarithms considered are base 2. We consider functions f : I → R, where I ⊆ [n],263

as the inputs and main objects of study. An interval in [n] is a set I ⊆ [n] of the form264

I = {a, a + 1, . . . , b}. At many places throughout the paper, we think of augmenting the265

image with a special character ∗ to consider f : I → R∪ {∗}. The character ∗ can be thought266

of as a masking operation: In many cases, we will only be interested in entries x of f so267

that f(x) lies in some prescribed (known in advance) range of values R ⊆ R, so that entries268

outside this range will be marked by ∗. Whenever the algorithm queries f(x) and observes ∗,269

it will interpret this as an incomparable value (with respect to ordering) in R. As a result,270

∗-values will never be part of monotone subsequences. We note that augmenting the image271

with ∗ was unnecessary in [45, 7] because they only considered non-adaptive algorithms.272

We say that for a fixed f : I → R ∪ {∗}, the set T is a collection of disjoint monotone273

subsequences of length k if it consists of tuples (i1, . . . , ik) ∈ Ik, where i1 < · · · < ik and274

f(i1) < · · · < f(ik) (in particular, f(i1), . . . , f(ik) ̸= ∗), and furthermore, for any two tuples275

(i1, . . . , ik) and (i′
1, . . . , i′

k), their intersection (as sets) is empty. We also denote E(T) as the276

union of indices in k-tuples of T , i.e., E(T) = ∪(i1,...,ik)∈T {i1, . . . , ik}. Finally, we let poly(·)277

denote a large enough polynomial whose degree is (bounded by) a universal constant.278

O. Ben-Eliezer, S. Letzter, and E. Waingarten 23:9

2 Stronger Structural Dichotomy279

In this section, we prove a robust structural dichotomy for functions f : [n] → R that are ε-far280

from (12 . . . k)-free, which strengthens the dichotomy proved in [7]. In their paper, it is shown281

that any f which is ε-far from (12 . . . k)-free satisfies at least one of two conditions: either f282

contains many growing suffixes, or it can be decomposed into splittable intervals. In Section283

2.1, we define and describe these notions and state the original (non-robust) structural result284

from [7]. Then, in Section 2.2, we establish a substantially stronger structural dichotomy,285

better suited for our purposes. The proof of the stronger dichotomy combines the original286

one as a black-box with additional combinatorial ideas.287

2.1 The Non-Robust Structural Decomposition288

For completeness, we first introduce the non-robust structural result from [7]. As the formal289

definitions are somewhat complicated, we start with an informal description of the growing290

suffixes and splittable intervals conditions. For the purpose of this discussion, let C be any291

collection of Θk,ε(n) disjoint (12 . . . k)-copies in f . We use the notation from Section 1.2.292

Growing suffixes: there exist Ωk,ε(n) values of ℓ ∈ [n] where τC(ℓ) ≥ Θk(ε) and293

τC(ℓ, w) ≪ τC(ℓ) for every w ∈ [log n]. In words, many ℓ ∈ [n] are such that the sum of294

local densities, τC(ℓ), of (12 . . . k)-patterns in intervals of growing widths is not too small,295

and furthermore, the densities are not concentrated on any small set of widths w. Any296

such ℓ is said to be the starting point of a growing suffix.297

Splittable intervals (non-robust): there exist c ∈ [k − 1] and a collection of pairwise-298

disjoint intervals I1, . . . , Is ⊂ [n] with
∑s

i=1 |Ii| = Θk,ε(n), so that each Ii contains a299

dense collection of disjoint (12 . . . k)-patterns of a particular structure. Specifically, each300

such interval Ii can be partitioned into three disjoint intervals Li, Mi, Ri (in this order),301

each of size Ωk(|Ii|), where Ii fully contains Ωk,ε(|Ii|) disjoint copies of (12 . . . k)-patterns,302

in which the first c entries lie in Li, the last k − c entries lie in Ri (none of these entries303

lies in Mi), and every such c entry lies below every c + 1 entry.304
Informally, the non-robust structural dichotomy from [7] asserts that any f that is ε-305

far from (12 . . . k)-free either satisfies the growing suffixes condition, or the non-robust306

splittable intervals condition (or both). These two notions are formally defined next; the307

precise definition for growing suffixes is slightly more complicated than described above (but308

understanding it is not essential for this work, as the growing suffixes procedure from [7]309

will eventually only be used as a black box). For what follows, for an index ℓ ∈ [n] define310

ηℓ = ⌈log2(n − ℓ)⌉, and for any t ∈ [ηℓ] set St(ℓ) = [a + 2t−1, a + 2t) ∩ [n]. Note that the311

intervals S1, . . . , Sηℓ
are a partition of (ℓ, n] into intervals of geometrically increasing length312

(except for maybe the last one). Finally, the tuple S(ℓ) = (St(ℓ))t∈[ηℓ] is called the growing313

suffix starting at ℓ.314

▶ Definition 5 (Growing suffixes (see [7], Definition 2.4)). Let α, β ∈ [0, 1]. We say that an315

index ℓ ∈ [n] starts an (α, β)-growing suffix if, when considering the collection of intervals316

S(ℓ) = {St(ℓ) : t ∈ [ηℓ]}, for each t ∈ [ηℓ] there is a subset Dt(ℓ) ⊆ St(ℓ) of indices such that317

the following properties hold.318

1. We have |Dt(ℓ)|/|St(ℓ)| ≤ α for all t ∈ [ηℓ], and
∑ηℓ

t=1 |Dt(ℓ)|/|St(ℓ)| ≥ β.319

2. For every t, t′ ∈ [ηa] where t < t′, if a ∈ Dt(ℓ) and a′ ∈ Dt′(ℓ), then f(a) < f(a′).320

The second definition, also from [7], describes the (non-robust) splittable intervals setting.321

CVIT 2016

23:10 Finding Monotone Patterns in Sublinear Time, Adaptively

▶ Definition 6 (Splittable intervals (see [7], Definition 2.5)). Let α, β ∈ (0, 1] and c ∈ [k − 1].322

Let I ⊆ [n] be an interval, let T ⊆ Ik be a set of disjoint, length-k monotone subsequences of323

f lying in I, and define324

T (L) = {(i1, . . . , ic) ∈ Ic : (i1, . . . , ic) is a prefix of a k-tuple in T}, and325

T (R) = {(j1, . . . , jk−c) ∈ Ik−c : (j1, . . . , jk−c) is a suffix of a k-tuple in T}.326
327

We say that the pair (I, T) is (c, α, β)-splittable if |T |/|I| ≥ β; f(ic) < f(j1) for every328

(i1, . . . , ic) ∈ T (L) and (j1, . . . , jk−c) ∈ T (R); and there is a partition of I into three consecutive329

intervals L, M, R ⊆ I (that appear in this order, from left to right) of size at least α|I|,330

satisfying T (L) ⊆ Lc and T (R) ⊆ Rk−c.331

A collection of disjoint interval-tuple pairs (I1, T1), . . . , (Is, Ts) is called a (c, α, β)-332

splittable collection of T if each (Ij , Tj) is (c, α, β)-splittable and the sets (Tj : j ∈ [s])333

partition T .334

The following theorem presents the growing suffixes versus (non-robust) splittable intervals335

dichotomy, which is among the main structural results of [7]. We remark that in their paper,336

the theorem is stated with respect to two parameters, k, k0; for our purpose it suffices to set337

k0 = k. Also, here we allow f to take the value ∗, which is not the case in [7]. Nevertheless,338

as their proof takes into account only the elements of a given family T 0 of disjoint length-k339

increasing subsequences, which in particular are non-∗ elements, the same proof works here.340

▶ Theorem 7 ([7], Theorem 2.2). Let k, n ∈ N, ε ∈ (0, 1), and C > 0, and let I ⊆ [n] be an341

interval. Let f : I → R ∪ {∗} be a function and let T 0 ⊆ Ik be a set of at least ε|I| disjoint342

monotone subsequences of f of length k. Then there exist α ∈ (0, 1) and p > 0 satisfying343

α ≥ Ω(ε/k5) and p ≤ poly(k log(1/ε)) such that at least one of the following conditions holds.344

1. Growing suffixes: There exists a set H ⊆ [n], of indices that start an (α, Ckα)-growing345

suffix, satisfying α|H| ≥ (ε/p)n.346

2. Splittable intervals (non-robust): There exist a positive integer c < k, a set T of347

disjoint length-k monotone subsequences satisfying E(T) ⊆ E(T 0), and a (c, 1/(6k), α)-348

splittable collection of T consisting of disjoint interval-tuple pairs (I1, T1), . . . , (Is, Ts),349

such that α
∑s

h=1 |Ih| ≥ |T 0|/p.350

2.2 Robustifying the Structural Result351

We are now ready to establish the robust structural foundations – specifically, a growing352

suffixes versus robust splittable intervals dichotomy – lying at the heart of our adaptive353

algorithm. The next lemma will eventually imply that the splittable intervals condition can354

be robustified by merely throwing away a subset of “bad” splittable intervals.355

▶ Lemma 8. Let α ∈ (0, 1) and let I ⊂ N be an interval. Suppose that I1, . . . , Is ⊂ I are356

disjoint intervals such that
∑s

h=1 |Ih| ≥ α|I|. Then there exists a set G ⊂ [s] such that357 ∑
h∈G |Ih| ≥ (α/4)|I|, and for every interval J ⊂ I that contains an interval Ih with h ∈ G,358 ∑
h∈[s] : Ih⊂J |Ih| ≥ (α/4)|J |.359

The full proof appears in the Appendix of the full verion. The idea is to consider a360

minimal subset J of the collection of all “problematic” intervals J which do not satisfy361

the conditions of the lemma. For each J ∈ J , less than an α/4-fraction of J is covered362

by intervals from I = {I1, . . . , Is}. Conversely, as we show, the minimality of J entails363

that any element in I is covered by at most three intervals from J . The combination of364

these conditions implies that, if we remove from I all intervals Ij contained in some interval365

O. Ben-Eliezer, S. Letzter, and E. Waingarten 23:11

J ∈ J , then at the end of the process
∑

Ij∈I |Ij | = Ω(α|I|), and no “problematic” choices of366

J survive. Thus, the set of surviving intervals from I satisfy the conditions of the lemma.367

The robust version of the structural dichotomy is stated below; for the proof, combining368

the basic structural dichotomy with the last lemma, see the appendices of the full-version.369

▶ Theorem 9 (Robust structural theorem). Let k, n ∈ N, ε ∈ (0, 1), and C > 0, and let370

I ⊆ [n] be an interval. Let f : I → R ∪ {∗} be an array and let T 0 ⊆ Ik be a set of at least371

ε|I| disjoint length-k monotone subsequences of f . Then there exist α ∈ (0, 1) and p > 0 with372

α ≥ Ω(ε/k5) and p ≤ poly(k log(1/ε)) such that at least one of the following holds.373

1. Growing suffixes: There exists a set H ⊆ [n], of indices that start an (α, Ckα)-growing374

suffix, satisfying α|H| ≥ (ε/p)n.375

2. Robust splittable intervals: There exist an integer c with 1 ≤ c < k, a set T , with
E(T) ⊆ E(T 0), of disjoint length-k monotone subsequences, and a (c, 1/(6k), α)-splittable
collection of T , consisting of disjoint interval-tuple pairs (I1, T1), . . . , (Is, Ts), such that

α

s∑
h=1

|Ih| ≥ ε

p
· |I|.

Moreover, if J ⊂ I is an interval where J ⊃ Ih for some h ∈ [s], then J contains at least376

(ε/p)|J | disjoint (12 . . . k)-patterns from T 0.377

3 The Algorithm378

In this section we prove the existence of a randomized algorithm, Find-Monotonek(f, ε, δ),379

that receives as input a function f : I → R∪{∗} (where I ⊂ N is an interval), and parameters380

ε, δ ∈ (0, 1), and satisfies the following: if f contains ε|I| disjoint (12 . . . k)-patterns, then381

the algorithm outputs such a pattern with probability at least 1 − δ. The running time382

is Ok,ε(log n). The algorithm is described in Figure 5 below. It uses three subroutines:383

Sample-Suffix, Find-Within-Interval, and Find-Good-Split, the first of which is given384

in [7], and the latter two are described below, in Figures 3 and 4. The majority of the section385

is devoted to the proof that Find-Monotone indeed outputs a (12 . . . k)-pattern with high386

probability as claimed. Specifically, we shall prove the following theorem.387

▶ Theorem 10. Let k ∈ N. The randomized algorithm Find-Monotonek(f, ε, δ), described in388

Figure 5, satisfies the following. Given a function f : I → R∪{∗} and parameters ε, δ ∈ (0, 1),389

if f contains at least ε|I| disjoint (12 . . . k)-patterns, then Find-Monotonek(f, ε, δ) outputs a390

(12 . . . k)-pattern of f with probability at least 1 − δ.391

Our proof proceeds by induction on k. It relies on Lemmas 12, 13, 14, the former is taken392

from [7] whereas the proofs of the latter two assume that Theorem 10 holds for smaller k.393

We first state and prove these lemmas, and then we prove Theorem 10.394

To complete the picture, in the following lemma we provide an upper bound on the query395

complexity and running time of Find-Monotone. For the proof, see the appendices of the396

full version.397

▶ Lemma 11. Let f : I → R ∪ {∗}, where I is an interval of length at most n. The query
complexity and running time of Find-Monotonek(f, ε, δ) are at most(

kk · (log(1/ε))k · 1
ε

· log(1/δ)
)O(k)

· log n.

CVIT 2016

23:12 Finding Monotone Patterns in Sublinear Time, Adaptively

3.1 The Sample-Suffix Sub-Routine398

We restate Lemma 3.1 from [7] which gives the Sample-Suffixk subroutine, with a few399

adaptations to fit our needs.400

▶ Lemma 12 ([7]). Fix k ∈ N and let C > 0 be a large enough constant. There exists a401

non-adaptive and randomized algorithm, Sample-Suffixk(f, ε, δ) which takes three inputs:402

query access to a function f : I → R∪{∗}, where I ⊂ N is an interval, a parameter ε ∈ (0, 1),403

and an error probability bound δ ∈ (0, 1). Suppose there exists α ∈ (0, 1), and a set H ⊆ I of404

(α, Ckα)-growing suffixes of f satisfying α|H| ≥ ε|I|. Then, Sample-Suffixk(f, ε, δ) finds a405

length-k monotone subsequence of f with probability at least 1 − δ. The query complexity of406

Sample-Suffixk(f, ε, δ) is at most log(1/δ) · polylog(1/ε) · 1
ε · log n.407

For additional technical remarks about Lemma 12 and Sample-Suffix, see the appendices408

of the full versions.409

3.2 Handling Overshooting: The Find-Within-Interval Sub-Routine410

In this section, we describe the Find-Within-Interval subroutine, addressing the over-411

shooting case as explained in Section 1.2. As the algorithm may appear unintuitive, let us

Subroutine Find-Within-Intervalk(f, ε, δ, x, y, J).

Input: Query access to a function f : I → R∪ {∗}, parameters ε, δ ∈ (0, 1), two inputs
x, y ∈ I where x < y and f(x) < f(y), and J = (J1, . . . , Jk−2) which is a collection of
disjoint intervals appearing in order inside [x, y].
Output: a sequence i1 < . . . < ik with f(i1) < . . . < f(ik), or fail.
1. For every κ ∈ [k − 2], let fκ, f ′

κ : Jκ → R ∪ {∗} be given by:

fκ(i) =
{

f(i) f(i) < f(y)
∗ o.w. and f ′

κ(i) =
{

f(i) f(i) ≥ f(y)
∗ o.w. (1)

2. Call Find-Monotoneκ+1(fκ, ε/2, δ/(2k)) for every κ ∈ [k − 2].
3. Call Find-Monotonek−κ(f ′

κ, ε/2, δ/(2k)) for every κ ∈ [k − 2].
4. Consider the set of all indices that are output in Lines 2 and 3, together with x

and y. If S contains a length-k increasing subsequence among these indices, output
it. Otherwise, output fail.

Figure 3 Description of the Find-Within-Interval subroutine.

412

remind the reader of the setup in which this subroutine is relevant (see also Section 1.2). By413

Theorem 9, either the growing suffixes condition or the splittable intervals condition hold.414

The former case is handled by Lemma 12, so we assume that the latter holds. Now assume415

that we sampled an element x which is the first element of a length-c increasing subsequence416

from a set Li as described in Definition 6. We then sample, uniformly at random, elements417

y from [x, x + 2t]. The splittable intervals condition implies that we will find, with high418

probability, an element y which is the last element of a length-(k − c) increasing subsequence419

from Ri. In particular, f(y) > f(x). However, even if we did indeed sample such y, we420

may have sampled many other values of y′ with f(y′) > f(x), and we do not know of a421

way of determining which of these values is the “correct” one. Instead, we take y0 to be the422

O. Ben-Eliezer, S. Letzter, and E. Waingarten 23:13

largest sampled y′ such that f(y′) > f(x). The case where y0 is close to y is taken care of423

by Lemma 13, so we assume that y0 is much larger than y.424

We now have elements x and y0, and all that we know is that they contain a large portion425

of an interval Ii from the splittable intervals condition. It is not hard to see (this is shown in426

the proof of Theorem 10) that [x, y0] can be partitioned into k − 2 intervals J1, . . . , Jk−2,427

each of which contains many disjoint length-k increasing subsequences. To continue, out428

only hope is use the induction hypothesis to find shorter increasing subsequences in the429

intervals. For example, if there are many disjoint length-(k − 1) increasing subsequences in430

J1 that lie above x, then one such subsequence is likely to be detected by a recursive call431

to the main algorithm, and together with x it will form a length-k increasing subsequence.432

If there are few such length-(k − 1) subsequences, this means that there are many disjoint433

length-2 increasing subsequences in J1 that lie below x (because for every length-k increasing434

subsequence, either its (k − 1)-suffix lies above x, or its 2-prefix lies above x). We can435

then use a recursive call to detect such a sequence, and hope to complete it to a length-k436

subsequence using a length-(k − 2) subsequnece from J2 that lies above x. Continuing with437

this logic, it follows that with high probability we can find an increasing subsequence of438

length k using x and J1, Ji and Ji+1 for some i, or Jk−2 and y0.439

▶ Lemma 13. Consider the randomized algorithm, Find-Within-Intervalk(f, ε, δ, x, y, J),440

described in Figure 3, which takes six inputs:441

Query access to a function f : I → R ∪ {∗},442

Two parameters ε, δ ∈ (0, 1),443

Two points x, y ∈ I where x < y and f(x) < f(y), and444

A collection J = (J1, . . . , Jk−2) of k − 2 disjoint intervals that appear in order (i.e., Jκ445

comes before Jκ+1) within the interval [x, y],446

and outputs either a length-k increasing subsequence of f , or fail.447

Suppose that for every κ ∈ [k−2], the function f |Jκ
: Jκ → R∪{∗}, contains ε|Jκ| disjoint448

(12 . . . k)-patterns. Then, assuming that Theorem 10 holds for every k′ with 1 ≤ k′ < k, the449

procedure Find-Within-Intervalk(f, ε, δ, x, y, J) outputs a length-k monotone subsequence450

of f with probability at least 1 − δ.451

The full proof appears in the appendices of the full version.452

3.3 Handling the Fitting Case: The Find-Good-Split Sub-Routine453

In this section, we describe the Find-Good-Split subroutine, which corresponds to the454

fitting case from Section 1.2. The proof of the lemma below appears in the appendices of the455

full version.456

▶ Lemma 14. Consider the randomized algorithm Find-Good-Splitk(f, ε, δ, c, ξ), described457

in Figure 4, which takes as input five parameters: (i) query access to a function f : I → R∪{∗};458

(ii) two parameters ε, δ ∈ (0, 1); (iii) an integer c ∈ [k − 1]; and (iv) a parameter ξ ∈ (0, 1];459

and outputs either a length-k increasing subsequence or fail.460

Suppose that there exists an interval-tuple pair (I ′, T) which is (c, 1/(6k), ε)-splittable and461

|I ′|/|I| ≥ ξ. Then, the algorithms Find-Good-Splitk(f, ε, δ, c, ξ) finds a (12 . . . k)-pattern462

of f with probability 1 − δ.463

3.4 The Main Algorithm464

Consider the description of the main algorithm in Figure 5. The proof uses Lemma 12,465

Lemma 13, and Lemma 14.466

CVIT 2016

23:14 Finding Monotone Patterns in Sublinear Time, Adaptively

Subroutine Find-Good-Splitk(f, ε, δ, c, ξ).

Input: Query access to a function f : I → R ∪ {∗}, parameters ε, δ ∈ (0, 1), and
c ∈ [k − 1]. We let c1 > 1 be a large enough (absolute) constant.
Output: a sequence i1 < . . . < ik with f(i1) < . . . < f(ik), or fail.
1. Repeat the following procedure t = c1k/(εξ2) · log(1/δ) times:

a. Sample w, z ∼ I, and consider the functions fz,w : I ∩ (−∞, z) → R ∪ {∗} and
f ′

z,w : I ∩ [z, ∞) → R ∪ {∗} given by

fz,w(i) =
{

f(i) f(i) < f(w)
∗ o.w. and f ′

z,w(i) =
{

f(i) f(i) ≥ f(w)
∗ o.w. . (2)

b. Run Find-Monotonec(fz,w, εξ/3, δ/3) and Find-Monotonek−c(f ′
z,w, εξ/3, δ/3).

2. If both runs of Line 1b are successful for some iteration and some w, z and c,
then we output the combination of their outputs which forms a length-k increasing
subsequence of f ; otherwise, output fail.

Figure 4 Description of the Find-Good-Split subroutine.

Proof of Theorem 10. The proof is by induction on k. For the base case of k = 1, recall467

that f has at least ε|I| non-∗ values. Thus, with probability at least 1 − δ, a non-∗ value is468

observed after sampling x ∼ I at least (1/ε) · log(1/δ) times. It follows that with probability469

at least 1 − δ, Line 2a of our main algorithm, given in Figure 5, samples x ̸= ∗ in one of its470

iterations. We next proceed to the inductive Step: namely, we prove Theorem 10 for k ≥ 2,471

under the assumption that it holds for every k′ with 1 ≤ k′ < k.472

Let p = P (k log(1/ε)) (recall that P (·) is a polynomial of sufficiently large (constant)473

degree). Apply Theorem 9 to f .474

Suppose, first, that (1) of Theorem 9 holds. So, there exists a set H ⊂ [n] of indices that475

start an (α, Ckα)-growing suffix, with α|H| ≥ (ε/p)n, for some α ∈ (0, 1). By Lemma 12,476

the call for Sample-Suffixk(f, ε/p, δ) in Line 1 outputs a length-k monotone subsequence477

of f with probability at least 1 − δ.478

Now suppose that (2) of Theorem 9 holds, and let (I1, T1), . . . , (Is, Ts) be a (c, 1/(6k), α)-479

splittable collection for some α ≥ Ω(ε/k5) and c ∈ [k − 1], satisfying the robust splittable480

intervals condition and, moreover, that any J ⊂ I with J ⊃ Ih for some h ∈ [s] contains481

(ε/p)|J | disjoint (12 . . . k)-patterns. Let Event be the event that, for a particular iteration of482

Lines 2a and 2b, x is the 1-entry of some k-tuple from Th, for some h ∈ [s], and yt is the483

(c + 1)-entry of some (possibly other) k-tuple in Th, where t is such that |Ih| ≤ 2t < 2|Ih|.484

▷ Claim 15. Pr[Event] ≥ εα/(2p).485

Proof. For each h ∈ [s], let Ah and Bh be the collections of 1- and (c + 1)-entries of patterns
in Th. Then

s∑
h=1

|Ah| =
s∑

h=1
|Th| ≥ α

s∑
h=1

|Ih| ≥ ε

p
· |I|.

The first inequality follows from the assumption that (Ih, Th) is (c, 1/(6k), α)-splittable, and486

the second inequality follows from the assumption that the robust splittable condition of487

Theorem 9 holds.488

O. Ben-Eliezer, S. Letzter, and E. Waingarten 23:15

Subroutine Find-Monotonek(f, ε, δ).

Input: Query access to a function f : I → R ∪ {∗}, parameters ε, δ ∈ (0, 1). We let
c1, c2, c3 > 0 be large enough constants, and let p = P (k log(1/ε)), where P : R→ R

is a polynomial of large enough (constant) degree.
Output: a sequence i1 < . . . < ik with f(i1) < . . . < f(ik), or fail.
1. Run Sample-Suffixk(f, ε/p, δ).
2. Repeat the following for c1 log(1/δ) · p · k5/ε2 many iterations:

a. Sample x ∼ I uniformly at random. If f(x) = ∗, proceed to the next iteration.
Otherwise, if k = 1 output x and proceed to Step 3, and if k ≥ 2 proceed to the
next step.

b. For each t ∈ [log n], sample yt ∼ [x + 2t/(12k), x + 2t] uniformly at random. If
there exists at least one t where f(yt) > f(x), set

y = max {yt : t ∈ [log n] and f(yt) > f(x)} , (3)

let t∗ ∈ [log n] be the index for which yt∗ = y, and continue to the next line.
Otherwise, i.e. if f(yt) ̸> f(x) for every t, continue to the next iteration.

c. If k = 2, output (x, y) and proceed to Step 3. If k > 2, continue to the next line.
d. Here k ≥ 3. Set ℓ = 4p/ε and perform the following.

i. Consider the collection J of k − 2 intervals J1, . . . , Jk−2 appearing in order
within [x, y], given by setting, for every i ∈ [k − 2],

Ji =
[
x + 2t∗

12k
· ℓ−(k−1−i), x + 2t∗

12k
· ℓ−(k−2−i)

)
, (4)

and run Find-Within-Intervalk(f, ε/2p, δ/2, x, y, J).
ii. For each t′ ∈ [t∗ − 3k log ℓ, t∗] do the following.

Consider the interval Jt′ = [x − 2t′
, x + 2t′], and the restricted function

gt′ : Jt′ → R ∪ {∗} given by gt′ = f |Jt′ . For every c0 ∈ [k − 1], run
Find-Good-Splitk(gt′ , ε/(c2k5), δ/2, c0, 1/4).

3. If a length-k monotone subsequence of f is found, output it. Otherwise, output fail.

Figure 5 Description of the Find-Monotone subroutine.

As a result, the probability over the draw of x ∼ I in Line 2a that x ∈ Ah is at least489

ε/p. Fix such an x, and consider t ∈ [log n] for which |Ih| ≤ 2t < 2|Ih|. Notice that490

Bh ⊂ [x + 2t/(12k), x + 2t] since 2t−1 ≤ |Ih| < 2t, and that the distance between any491

index of Ah and Bh is at least |Ih|/(6k) ≥ 2t/(12k) since (Ih, Th) is (c, 1/(6k), α)-splittable.492

Therefore, the probability over the draw of yt ∼ [x + 2t/(12k), x + 2t] that yt ∈ Bh is at493

least |Bh|/2t ≥ |Th|/(2|Ih|) ≥ α/2. ◀494

By the previous claim, since we have c1 · log(1/δ) · p · k5/ε2 iterations of Lines 2a and495

2b, with probability at least 1 − δ/2, Event holds in some iteration (using the lower bound496

α ≥ Ω(ε/k5) and the choice of c1 as a large constant).497

Consider the first execution of Line 2a and Line 2b where Event holds (assuming such498

CVIT 2016

23:16 Finding Monotone Patterns in Sublinear Time, Adaptively

an execution exists). Let h ∈ [s] and t ∈ [log n] be the corresponding parameters, i.e., h499

and t are set so x is the first index of a k-tuple in Th, yt is the (c + 1)-th index in another500

k-tuple in Th, and |Ih| ≤ 2t < 2|Ih|. We consider this iteration of Line 2, and assume that501

Event holds with these parameters for the rest of the proof. Notice that y, as defined in (3),502

satisfies y ≥ yt (as f(y) > f(x)) and hence t∗ ≥ t.503

Note that if k = 2, the pair (x, y), which is a (12)-pattern in f , is output in Line 2c, so504

the proof is complete in this case. From now on, we assume that k ≥ 3. We break up the505

analysis into two cases: t∗ ≥ t + 3k log ℓ and t∗ < t + 3k log ℓ.506

Suppose t∗ ≥ t + 3k log ℓ. We now observe a few facts about the collection J specified in507

(4). First, notice that J1, . . . , Jk−2 appear in order from left-to-right, and they lie in [x, y] (as508

y = yt∗ ∈ [x + 2t∗
/(12k), 2t∗]). Second, in the next claim we show that for every i ∈ [k − 2],509

the interval Ji contains (ε/2p)|Ji| disjoint (12 . . . k)-patterns.510

▷ Claim 16. Ji contains (ε/2p)|Ji| disjoint (12 . . . k)-patterns.511

Proof. Let J ′
i be the interval given by J ′

i = Ih ∪
[
x, x + 2t∗

12k · ℓ−(k−2−i)
]

. Observe that

|J ′
i \ Ji| ≤ 2t + 2t∗

12k
· ℓ−(k−1−i) ≤ 2t∗

6k
· ℓ−(k−1−i) = 2

ℓ
· 2t∗

12k
· ℓ−(k−2−i) ≥ 2

ℓ
· |J ′

i | = ε

2p
· |J ′

i |,

where for the second inequality we used the bound t∗ − t ≥ 3k log ℓ ≥ log(12) + log k +
(k − 2) log ℓ, and that ℓ = 4p/ε. By Theorem 9, J ′

i contains at least (ε/p)|J ′
i | disjoint

(12 . . . k)-patterns in f . Hence, the number of disjoint (12 . . . k)-patterns in Ji is at least:
ε

p
· |J ′

i | − |J ′
i \ Ji| ≥ ε

2p
· |J ′

i | ≥ ε

2p
· |Ji|,

as required. ◀512

By Lemma 13, Line 2(d)i outputs a (12 . . . k)-pattern in f with probability at least 1−δ/2.513

By a union bound, we obtain the desired result.514

Suppose, on the other hand, that t∗ ≤ t + 3k log ℓ. In this case, as 2t−1 ≤ |Ih| ≤ 2t∗ (by515

choice of t), for one of the values of t′ considered in Line 2(d)ii we have 2t′−1 ≤ |Ih| < 2t′ ; fix516

this t′. The interval Jt′ , defined in Line 2(d)ii, hence satisfies |Ih|/|Jt′ | ≥ 1/4. As a result, and517

since Ih ⊂ Jt′ (because t ≤ t∗), the function g : J → R ∪ {∗} contains an interval-tuple pair518

(Ih, Th) which is (c, 1/(6k), α)-splittable. By Lemma 14, once Line 2(d)ii considers c0 = c,519

the sub-routine Find-Good-Splitk(g, ε/(c2k5), δ/2, c, 1/4) will output a (12 . . . k)-pattern520

of gt′ (which is also a (12 . . . k)-pattern of f) with probability at least 1 − δ/2. Hence, we521

obtain the result by a union bound. ◀522

References523

1 Nir Ailon, Bernard Chazelle, Seshadhri Comandur, and Ding Liu. Estimating the distance to524

a monotone function. Random Structures and Algorithms, 31(3):371–383, 2007.525

2 Alexandr Andoni, Negev Shekel Nosatzki, Sandip Sinha, and Clifford Stein. Estimating the526

longest increasing subsequence in nearly optimal time. arXiv preprint arXiv:2112.05106, 2021.527

3 Aleksandrs Belovs. Adaptive Lower Bound for Testing Monotonicity on the Line. In Ap-528

proximation, Randomization and Combinatorial Optimization. Algorithms and Techniques529

(APPROX/RANDOM), pages 31:1–31:10, 2018.530

4 Aleksandrs Belovs and Eric Blais. Quantum algorithm for monotonicity testing on the531

hypercube. Theory of Computing, 11(16):403–412, 2015.532

5 Omri Ben-Eliezer. Testing local properties of arrays. In Proceedings of the 10th Conference on533

Innovations in Theoretical Computer Science (ITCS), pages 11:1–11:20, 2019.534

O. Ben-Eliezer, S. Letzter, and E. Waingarten 23:17

6 Omri Ben-Eliezer and Clément L. Canonne. Improved bounds for testing forbidden order535

patterns. In Proceedings of the 29th ACM-SIAM Symposium on Discrete Algorithms (SODA),536

pages 2093–2112, 2018.537

7 Omri Ben-Eliezer, Clément L. Canonne, Shoham Letzter, and Erik Waingarten. Finding538

monotone patterns in sublinear time. In Proceedings of the 60th Annual IEEE Symposium on539

Foundations of Computer Science (FOCS), pages 1469–1494. 2019.540

8 Benjamin Aram Berendsohn, László Kozma, and Dániel Marx. Finding and Counting Permuta-541

tions via CSPs. In 14th International Symposium on Parameterized and Exact Computation542

(IPEC 2019), volume 148 of Leibniz International Proceedings in Informatics (LIPIcs), pages543

1:1–1:16. 2019.544

9 Hadley Black, Deeparnab Chakrabarty, and C. Seshadhri. A o(d) · polylogn monotonicity545

tester for boolean functions over the hypergrid [n]d. In Proceedings of the 29th ACM-SIAM546

Symposium on Discrete Algorithms (SODA), pages 2133–2151, 2018.547

10 Eric Blais, Joshua Brody, and Kevin Matulef. Property testing lower bounds via communication548

complexity. Computational Complexity, 21(2):311–358, 2012.549

11 Eric Blais, Sofya Raskhodnikova, and Grigory Yaroslavtsev. Lower bounds for testing properties550

of functions over hypergrid domains. In Proceedings of the 29th Conference on Computational551

Complexity (CCC), pages 309–320, 2014.552

12 Mahdi Boroujeni and Saeed Seddighin. Improved MPC algorithms for edit distance and ulam553

distance. In The 31st ACM Symposium on Parallelism in Algorithms and Architectures, pages554

31–40, 2019.555

13 Jop Briët, Sourav Chakraborty, David García-Soriano, and Arie Matsliah. Monotonicity556

testing and shortest-path routing on the cube. Combinatorica, 32(1):35–53, 2012.557

14 Deeparnab Chakrabarty and C. Seshadhri. Optimal bounds for monotonicity and Lipschitz558

testing over hypercubes and hypergrids. In Proceedings of the 45th ACM Symposium on the559

Theory of Computing (STOC), pages 419–428, 2013.560

15 Deeparnab Chakrabarty and C. Seshadhri. An optimal lower bound for monotonicity testing561

over hypergrids. Theory of Computing, 10(17):453–464, 2014.562

16 Deeparnab Chakrabarty and C. Seshadhri. An o(n) monotonicity tester for boolean functions563

over the hypercube. SIAM Journal on Computing, 45(2):461–472, 2016.564

17 Deeparnab Chakrabarty and C Seshadhri. Adaptive boolean monotonicity testing in total565

influence time. In Proceedings of the 10th Conference on Innovations in Theoretical Computer566

Science (ITCS), pages 20:1–20:7, 2019.567

18 Alex Chen, Timothy Chu, and Nathan Pinsker. The dynamic longest increasing subsequence568

problem. arXiv preprint arXiv:1309.7724, 2013.569

19 Xi Chen, Anindya De, Rocco A. Servedio, and Li-Yang Tan. Boolean function monotonicity570

testing requires (almost) n1/2 non-adaptive queries. In Proceedings of the 47th ACM Symposium571

on the Theory of Computing (STOC), pages 519–528, 2015.572

20 Xi Chen, Rocco A. Servedio, and Li-Yang Tan. New algorithms and lower bounds for573

monotonicity testing. In Proceedings of the 55th Annual IEEE Symposium on Foundations of574

Computer Science (FOCS), pages 285–295, 2014.575

21 Xi Chen, Erik Waingarten, and Jinyu Xie. Beyond Talagrand functions: new lower bounds576

for testing monotonicity and unateness. In Proceedings of the 49th ACM Symposium on the577

Theory of Computing (STOC), pages 523–536, 2017.578

22 Robert P. Dilworth. A decomposition theorem for partially ordered sets. Annals of Mathematics,579

51(1):161–166, 1950.580

23 Yevgeniy Dodis, Oded Goldreich, Eric Lehman, Sofya Raskhodnikova, Dana Ron, and Alex581

Samorodnitsky. Improved testing algorithms for monotonicity. In Approximation, Randomiz-582

ation and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM),583

pages 97–108, 1999.584

24 Funda Ergün and Hossein Jowhari. On the monotonicity of a data stream. Combinatorica,585

35(6):641–653, 2015.586

CVIT 2016

23:18 Finding Monotone Patterns in Sublinear Time, Adaptively

25 Funda Ergün, Sampath Kannan, S. Ravi Kumar, Ronitt Rubinfeld, and Mahesh Vishwanthan.587

Spot-checkers. Journal of Computer and System Sciences, 60(3):717–751, 2000.588

26 Chaim Even-Zohar and Calvin Leng. Counting small permutation patterns. In Proceedings of589

the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 2288–2302, 2021.590

27 Eldar Fischer. On the strength of comparisons in property testing. Information and Computa-591

tion, 189(1):107–116, 2004.592

28 Jacob Fox. Stanley–Wilf limits are typically exponential. arXiv:1310-8378, 2013.593

29 Michael L. Fredman. On computing the length of longest increasing subsequences. Discrete594

Mathematics, 11(1):29–35, 1975.595

30 Anna Gál and Parikshit Gopalan. Lower bounds on streaming algorithms for approximating596

the length of the longest increasing subsequence. SICOMP, 39(8):3463–3479, 2010. Short597

version in FOCS’07.598

31 Paweł Gawrychowski and Wojciech Janczewski. Fully dynamic approximation of LIS in599

polylogarithmic time. In Proceedings of the 53rd ACM Symposium on the Theory of Computing600

(STOC), pages 654–667, 2021.601

32 Oded Goldreich. Introduction to property testing. Cambridge University Press, 2017.602

33 Oded Goldreich, Shafi Goldwasser, and Dana Ron. Property testing and its connection to603

learning and approximation. Journal of the ACM, 45(4):653–750, 1998.604

34 Parikshit Gopalan, T. S. Jayram, Robert Krauthgamer, and Ravi Kumar. Estimating the605

sortedness of a data stream. In Proceedings of the 18th ACM-SIAM Symposium on Discrete606

Algorithms (SODA), pages 318–327, 2007.607

35 Sylvain Guillemot and Dániel Marx. Finding small patterns in permutations in linear time.608

In Proceedings of the 25th ACM-SIAM Symposium on Discrete Algorithms (SODA), pages609

82–101, 2014.610

36 Sungjin Im, Benjamin Moseley, and Xiaorui Sun. Efficient massively parallel methods for611

dynamic programming. In Proceedings of the 49th ACM Symposium on the Theory of Computing612

(STOC), pages 798–811, 2017.613

37 Subhash Khot, Dor Minzer, and Muli Safra. On monotonicity testing and boolean isoperimetric614

type theorems. In Proceedings of the 56th Annual IEEE Symposium on Foundations of615

Computer Science (FOCS), pages 52–58, 2015.616

38 Donald E. Knuth. The Art of Computer Programming, Volume I: Fundamental Algorithms.617

Addison-Wesley, 1968.618

39 Tomasz Kociumaka and Saeed Seddighin. Improved dynamic algorithms for longest increasing619

subsequence. In 53rd Annual ACM SIGACT Symposium on Theory of Computing (STOC),620

pages 640–653, 2021.621

40 Adam Marcus and Gábor Tardos. Excluded permutation matrices and the Stanley–Wilf622

conjecture. Journal of Combinatorial Theory, Series A, 107:153–160, 2004.623

41 Michael Mitzenmacher and Saeed Seddighin. Dynamic algorithms for LIS and distance to624

monotonicity. In Proceedings of the 52nd ACM Symposium on the Theory of Computing625

(STOC), pages 671–684, 2020.626

42 Michael Mitzenmacher and Saeed Seddighin. Improved sublinear time algorithm for longest627

increasing subsequence. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete628

Algorithms (SODA), pages 1934–1947, 2021.629

43 Timothy Naumovitz and Michael E. Saks. A polylogarithmic space deterministic streaming630

algorithm for approximating distance to monotonicity. In Proceedings of the 26th ACM-SIAM631

Symposium on Discrete Algorithms (SODA), pages 1252–1262, 2015.632

44 Ilan Newman, Yuri Rabinovich, Deepak Rajendraprasad, and Christian Sohler. Testing for633

forbidden order patterns in an array. In Proceedings of the 28th ACM-SIAM Symposium on634

Discrete Algorithms (SODA), pages 1582–1597, 2017.635

45 Ilan Newman, Yuri Rabinovich, Deepak Rajendraprasad, and Christian Sohler. Testing for636

forbidden order patterns in an array. Random Structures and Algorithms, 55:402–426, 2019.637

Extended abstract in SODA 2017 [44].638

O. Ben-Eliezer, S. Letzter, and E. Waingarten 23:19

46 Ilan Newman and Nithin Varma. New sublinear algorithms and lower bounds for LIS estimation.639

In 48th International Colloquium on Automata, Languages, and Programming (ICALP), pages640

100:1–100:20, 2021.641

47 Ilan Newman and Nitin Varma. Strongly sublinear algorithms for testing pattern freeness.642

arXiv preprint arXiv:2106.04856, 2021. To appear in ICALP 2022.643

48 Ramesh Krishnan S. Pallavoor, Sofya Raskhodnikova, and Nithin M. Varma. Parameterized644

property testing of functions. ACM Transactions on Computation Theory, 9(4):17:1–17:19,645

2018.646

49 Michal Parnas, Dana Ron, and Ronitt Rubinfeld. Tolerant property testing and distance647

approximation. Journal of Computer and System Sciences, 72(6):1012–1042, 2006.648

50 Prakash Ramanan. Tight ω(n log n) lower bound for finding a longest increasing subsequence.649

International Journal of Computer Mathematics, 65(3–4):161–164, 1997.650

51 Ronitt Rubinfeld and Madhu Sudan. Robust characterization of polynomials with applications651

to program testing. SIAM Journal on Computing, 25(2):252–271, 1996.652

52 Aviad Rubinstein, Saeed Seddighin, Zhao Song, and Xiaorui Sun. Approximation algorithms653

for LCS and LIS with truly improved running times. In Proceedings of the 60th Annual IEEE654

Symposium on Foundations of Computer Science (FOCS), pages 1121–1145. 2019.655

53 Michael Saks and C. Seshadhri. Space efficient streaming algorithms for the distance to656

monotonicity and asymmetric edit distance. In Proceedings of the 24th ACM-SIAM Symposium657

on Discrete Algorithms (SODA), pages 1698–1709, 2013.658

54 Michael E. Saks and C. Seshadhri. Estimating the longest increasing sequence in polylogar-659

ithmic time. SIAM J. Comput., 46(2):774–823, 2017. Short version in FOCS 2010.660

55 Rodica Simion and Frank W. Schmidt. Restricted permutations. European Journal of661

Combinatorics, 6(4):383 – 406, 1985.662

56 Xiaoming Sun and David P. Woodruff. The communication and streaming complexity of663

computing the longest common and increasing subsequences. In Proceedings of the 18th664

ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 336–345, 2007.665

57 Vincent Vatter. Permutation classes. In Handbook of Enumerative Combinatorics, pages666

777–858. Chapman and Hall/CRC, 2015.667

CVIT 2016

	1 Introduction
	1.1 Related Work
	1.2 Main Ideas and Techniques
	1.3 Notation

	2 Stronger Structural Dichotomy
	2.1 The Non-Robust Structural Decomposition
	2.2 Robustifying the Structural Result

	3 The Algorithm
	3.1 The Sample-Suffix Sub-Routine
	3.2 Handling Overshooting: The Find-Within-Interval Sub-Routine
	3.3 Handling the Fitting Case: The Find-Good-Split Sub-Routine
	3.4 The Main Algorithm

