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Abstract

Let f (r)(n; s, k) be the maximum number of edges in an n-vertex r-uniform hypergraph not containing
a subhypergraph with k edges on at most s vertices. Recently, Delcourt and Postle, building on work of
Glock, Joos, Kim, Kühn, Lichev and Pikhurko, proved that the limit limn→∞ n−2f (3)(n; k+ 2, k) exists
for all k ≥ 2, solving an old problem of Brown, Erdős and Sós (1973). Meanwhile, Shangguan and Tamo
asked the more general question of determining if the limit limn→∞ n−tf (r)(n; k(r − t) + t, k) exists for
all r > t ≥ 2 and k ≥ 2.

Here we make progress on their question. For every even k, we determine the value of the limit when r
is sufficiently large with respect to k and t. Moreover, we show that the limit exists for k ∈ {5, 7} and
all r > t ≥ 2.

2020 Mathematics Subject Classification: 05C65, 05C35.

1 Introduction

An (s, k)-configuration in an r-uniform hypergraph (henceforth r-graph) is a collection of k edges spanning
at most s vertices. Brown, Erdős and Sós [1] started the investigation of the function f (r)(n; s, k), defined as
the maximum number of edges in an n-vertex r-graph not containing an (s, k)-configuration. In particular,
they showed that f (r)(n; s, k) = Ω(n(rk−s)/(k−1)) for all s > r ≥ 2 and k ≥ 2. Suppose now that the
exponent t := (rk − s)/(k − 1) is an integer, so s = k(r − t) + t. Observe that s is the number of vertices
spanned by a k-edge r-graph where the edges can be ordered so that all but the first edge share exactly t
vertices with the previous edges. In particular, any set of vertices of size t which is contained in k distinct
edges creates a (k(r− t)+ t, k)-configuration. Therefore f (r)(n; k(r− t)+ t, k) = O(nt) and, with the above
result of Brown, Erdős and Sós, we have

f (r)(n; k(r − t) + t, k) = Θ(nt) .

A major open problem is the following conjecture, which was proposed by Shangguan and Tamo [8] and
generalises an old conjecture of Brown, Erdős and Sós [1] (corresponding to r = 3 and t = 2).

Conjecture 1.1. For any positive integers r, k, t, the limit

π(r, t, k) := lim
n→∞

n−tf (r)(n; k(r − t) + t, k)

exists.
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We can assume k ≥ 2 and t ∈ [r − 1], as otherwise Conjecture 1.1 is trivial. Moreover, when t = 1, it is
easy to establish that the limit exists and that π(r, 1, k) = k−1

(k−1)(r−1)+1 , as already observed in [4]. Indeed,
the extremal constructions are vertex-disjoint unions of loose trees with k−1 edges, while the upper bound
follows from the fact any collection of k edges, which can be ordered so that all but the first edge share
at least one vertex with the previous ones, is a (k(r − 1) + 1, k)-configuration. Therefore we can in fact
assume k ≥ 2 and t ∈ [2, r − 1], and we will do so in the rest of the paper. Recently, significant progress
has been made towards Conjecture 1.1 and we now summarise the main developments.

We start by discussing the results concerning the original conjecture of Brown, Erdős and Sós, that is
Conjecture 1.1 for r = 3 and t = 2, i.e. the existence of π(3, 2, k). Brown, Erdős and Sós studied the
case k = 2 and showed [1] that the limit is π(3, 2, 2) = 1/6. More than 40 years later, Glock [3] proved
the conjecture for k = 3 and determined that π(3, 2, 3) = 1/5. Very recently, Glock, Joos, Kim, Kühn,
Lichev and Pikhurko [4] proved the conjecture for k = 4 and determined that π(3, 2, 4) = 7/36. In the
concluding remarks, they also claim that their methods can be adapted to show that π(3, 2, k) = 1/5 for
k ∈ {5, 7}. Finally, Delcourt and Postle [2] proved the Brown–Erdős–Sós conjecture in full, i.e. they showed
that π(3, 2, k) exists for all k ≥ 2, although their method does not provide an explicit value for the limit.

Shanguann and Tamo [8] adapted the methods in [3] to any uniformity and showed that π(r, 2, 3) =
1/(r2 − r − 1), and Shanguann [7] adapted [2] to any uniformity and showed that π(r, 2, k) exists (but
provided no explicit value).

Concerning the general conjecture, the case k = 2 follows from the work of Rödl [6] on the existence

of asymptotic Steiner systems, and we have π(r, t, 2) = 1
t!

(
r
t

)−1
. Glock, Joos, Kim, Kühn, Lichev and

Pikhurko [4] settled the cases k = 3 and k = 4 by showing that π(r, t, 3) = 2
t!

(
2
(
r
t

)
− 1

)−1
for every r ≥ 2

and π(r, t, 4) = 1
t!

(
r
t

)−1
for every r ≥ 4 (note that the case r = 3 (and t = 2) is covered by one of the results

mentioned above and does not follow the same pattern).

Our first result provides the exact value of the limit when k is even and r is sufficiently large in terms of
k and t.

Theorem 1.2. Let k be an even positive integer and t ≥ 2 an integer. Then, for every integer r satisfying
r ≥ t+ (k3 · t!)1/t, we have that lim

n→∞
n−tf (r)(n; k(r − t) + t, k) = 1

t!

(
r
t

)−1
.

We remark that, as mentioned above, this was already known for k = 2 [6] and k = 4 [4] (and all r).
Moreover, it is interesting to observe that the behaviour for odd k is potentially different. For example,
from [4], it holds that π(r, t, 3) = 2

t!

(
2
(
r
t

)
− 1

)−1
. Therefore, we now focus on the case of k being odd.

Firstly, we completely settle Conjecture 1.1 for k = 5.

Theorem 1.3. Let r, t be integers satisfying r > t ≥ 2. Then the limit lim
n→∞

n−tf (r)(n; 5(r − t) + t, 5)

exists.

Finally, we settle Conjecture 1.1 for k = 7. (Our proof does not work when r = 3 and t = 2, but this case
has been resolved for all k in [2].)

Theorem 1.4. Let r, t be integers satisfying r > t ≥ 2 and (r, t) ̸= (3, 2). Then the limit lim
n→∞

n−tf (r)(n; 7(r−
t) + t, 7) exists.

More about the case of k being odd can be found in the concluding remarks.

Remark 1.5. Shortly after this paper appeared on arXiv, Glock, Kim, Lichev, Pikhurko and Sun [5]
determined the value of π(r, t, k) for t = 2, k ∈ {5, 6, 7} and all r ≥ 3: they showed that for k ∈ {5, 7}, it
holds that π(r, 2, k) = 1/(r2 − r − 1) (observe this is the same value as for k = 3), while for k = 6 it holds
that π(3, 2, 6) = 61/330 and π(r, 2, 6) = 1/(r2 − r) for r ≥ 4 (observe this extends Theorem 1.2 when t = 2
and k = 6).
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Organisation. Section 2 introduces the relevant notation and collects some preliminary results, including
our key proposition (Proposition 2.4) needed for the proofs of Theorems 1.3 and 1.4, which are proved in
Section 4 and Section 5, respectively. Section 3 provides the proof of Theorem 1.2 and finally Section 6
contains some concluding remarks.

Notation. Given an r-graph F , we often think of F as the edge set E(F). In particular, by |F| we mean
the number of edges in F , and by e ∈ F we mean that e is an edge in F . Since the values of r and t
will always be clear from the context, we introduce the following terminology. A k-configuration denotes
a (k(r − t) + t, k)-configuration, while a k−-configuration denotes a (k(r − t) + t − 1, k)-configuration.
Moreover, we say that a hypergraph is k-free (resp. k−-free) if it does not contain any k-configuration
(resp. k−-configuration).

2 Preliminaries

2.1 Lower bounds

In order to build k-free r-graphs with many edges, the strategy of Glock, Joos, Kim, Kühn, Lichev and
Pikhurko [4] consisted of packing many copies of a carefully chosen k-free r-graph of constant size, while
making sure not to create any k-configurations using edges from different copies. Before stating their main
technical result, we introduce some definitions.

Recall that the t-shadow of a hypergraph F , denoted ∂tF , is the t-graph on V (F) whose edges are the
t-subsets of edges in F .

Definition 2.1. Given an r-graph F and a t-graph J , we say that J is a supporting t-graph of F if
V (J) = V (F) and J contains the t-shadow of F . For such F and J , we define the non-edge girth of (F , J)
to be the smallest g ≥ 1 for which there exists a g-configuration in F whose vertex set contains a non-edge
of J . Equivalently, it is the largest g ≥ 1 such that for every ℓ-configuration S in F with ℓ < g, all t-subsets
of V (S) are edges of J . If no such g exists, we set the non-edge girth of (F , J) to be infinity.

Here is the main technical result in [4].

Theorem 2.2 (Theorem 3.1 in [4]). Fix k ≥ 2, r ≥ 3 and t ∈ [2, r − 1]. Let F be an r-graph which is
k-free and ℓ−-free for all ℓ ∈ [2, k − 1]. Let J be a supporting t-graph of F such that the non-edge girth of
(F , J) is greater than k/2. Then,

lim inf
n→∞

n−tf (r)(n; k(r − t) + t, k) ≥ |F|
t! |J |

.

In particular, by choosing F to be a single r-uniform edge and J =
(
V (F)

t

)
, the hypotheses of Theorem 2.2

hold and we get the following corollary.

Corollary 2.3 (Corollary 3.2 in [4]). Fix k ≥ 2, r ≥ 3 and t ∈ [2, r − 1]. Then,

lim inf
n→∞

n−tf (r)(n; k(r − t) + t, k) ≥ 1

t!
(
r
t

) .
2.2 Density argument

The approach of Delcourt and Postle [2], while proving Conjecture 1.1 for r = 3, t = 2 and any k ≥ 2,
relies on the following reduction: they show that in any sufficiently dense k-free 3-graph, it is possible
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to find a subgraph with almost the same density which is additionally ℓ−-free for every ℓ ∈ [2, k − 1], i.e.
having ℓ−-configurations is ‘inefficient’ for the extremal k-free graph. Here we provide another density-type
argument, which we will use in the proof of Theorems 1.3 and 1.4. Before stating the result, we introduce
some notation. Given an r-graph F , define J(F) to be the t-graph with V (F) as vertex set and where a
t-subset T ⊆ V (F) is an edge of J(F) if and only if there exists an ℓ-configuration for some ℓ ∈ [⌊k/2⌋]
whose vertex set contains T . Observe that, since every edge is a 1-configuration, J(F) contains the t-
shadow of F . Therefore J(F) is a supporting t-graph of F (recall Definition 2.1). Moreover, its non-edge
girth is greater than ⌊k/2⌋.

Proposition 2.4. Suppose that for every ε > 0 and large enough n, for every k-free n-vertex r-graph F
with |F| ≥

((
r
t

)−1
+ ε

)(
n
t

)
there exist subhypergraphs F2 ⊆ F1 ⊆ F such that |F1| ≥ |F| − O(nt−1), F2 is

ℓ−-free for every ℓ ∈ [2, k − 1], and
|F2|

|J(F2)|
≥ |F1|

|J(F1)|
. (1)

Then the limit lim
n→∞

n−tf (r)(n; k(r − t) + t, k) exists.

Proof. Define α to satisfy α
t! = lim sup

n→∞
n−tf (r)(n; k(r− t) + t, k) and observe that, since Corollary 2.3 gives

that lim inf
n→∞

n−tf (r)(n; k(r − t) + t, k) ≥ 1
t!

(
r
t

)−1
, it holds that α ≥

(
r
t

)−1
. If we have equality, we are done.

Therefore, we can assume the inequality is strict and thus for small enough ε > 0 we have α >
(
r
t

)−1
+ ε.

Given the definition of α, for every n ∈ N, there exist m ≥ n and an m-vertex k-free r-graph F with
|F| ≥ (α− ε)

(
m
t

)
. Owing to the assumptions of the proposition, there exist subhypergraphs F2 ⊆ F1 ⊆ F

such that |F1| ≥ |F| − O(mt−1), F2 is ℓ−-free for every ℓ ∈ [2, k − 1], and |F2|
|J(F2)| ≥

|F1|
|J(F1)| . As observed

above, J(F2) is a supporting t-graph of F2 and its non-edge girth is greater than k/2. Therefore, by
Theorem 2.2, we have

lim inf
n→∞

n−tf (r)(n; k(r − t) + t, k) ≥ |F2|
t! · |J(F2)|

≥ |F1|
t! · |J(F1)|

≥
(α− ε)

(
m
t

)
−O(mt−1)

t! ·
(
m
t

) =
α− ε

t!
−O(m−1) ,

using that |J(F1)| ≤
(
m
t

)
for the last inequality. Since ε can be made arbitrarily small and m arbitrarily

large, the conclusion easily follows from

lim inf
n→∞

n−tf (r)(n; k(r − t) + t, k) ≥ α

t!
= lim sup

n→∞
n−tf (r)(n; k(r − t) + t, k) .

Remark 2.5. We remark that if F1 is an r-graph with |F1| ≥
(
r
t

)−1|J(F1)| and F2 ⊆ F1, then the condition

|J(F1)| − |J(F2)| ≥
(
r

t

)
(|F1| − |F2|) (2)

implies Condition (1). Indeed, writing x1 = |J(F1)|, y1 = |F1|, x2 = |J(F2)|, y2 = |F2| and α =
(
r
t

)
,

we have x1 ≤ αy1, x2 ≤ x1 and y2 ≤ y1 by assumption. Moreover, by (2), x2 ≤ x1 − α(y1 − y2) ≤ αy2.
Therefore, using (2) again, which is equivalent to αy1−x1 ≤ αy2−x2, together with x2 ≤ αy2 and x2 ≤ x1,
we have

α(x2y1 − x1y2) = x2(αy1 − x1) + x1x2 − αx1y2

≤ x2(αy2 − x2) + x1(x2 − αy2) = (x1 − x2)(x2 − αy2) ≤ 0.

This implies x1y2 ≥ x2y1, which in turn is equivalent to (1).
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2.3 A useful lemma

In order to apply the density argument of Proposition 2.4, for any given k-free n-vertex r-graph F , we need
to find a subhypergraph which is ℓ−-free for each ℓ ∈ [2, k − 1] and satisfies some additional properties. It
turns out that, for some values of ℓ, there is a simple argument which shows that F can be made ℓ−-free
by removing only O(nt−1) edges. This is established, together with additional properties, by the following
lemma.

Lemma 2.6. Let r, k and t be fixed positive integers. Let F be a k-free n-vertex r-graph. Then there exists
a subhypergraph F ′ of F such that the following holds.

(P1) F ′ is ℓ−-free for every ℓ ∈ [2, k] with ℓ|(k − 1) or ℓ|k;

(P2) there is no 3−-configuration in F ′ which contains a 2-configuration;

(P3) for every positive integers a and b with a + b = k, every a−-configuration and every b-configuration
of F ′ are edge-disjoint;

(P4) |F ′| ≥ |F| −O(nt−1).

Proof. We show that we can get a subhypergraph of F which satisfies (P1), (P2) and (P3) by removing
O(nt−1) edges, which in turn will imply (P4) as well.

Observe that, since F is k-free, F is also k−-free. Moreover we show that F can be made (k− 1)−-free by
removing O(nt−1) edges. Let S be a maximal collection of pairwise edge-disjoint (k−1)−-configurations of
F . If |S| >

(
n

t−1

)
, then there exists a set T ⊆ V (F) of size t− 1 which is contained in the (t− 1)-shadow of

two (k− 1)−-configurations S1 and S2 in S. Let e ∈ S2 be an edge such that T ⊆ e. Then S1 ∪ {e} is a k-
configuration in F , being a collection of k edges spanning at most [(k−1)(r−t)+t−1]+(r−|T |) = k(r−t)+t
vertices, a contradiction to F being k-free. Therefore |S| ≤

(
n

t−1

)
and, by removing from F all edges of

each S ∈ S, we obtain a subhypergraph F0 ⊆ F which is (k − 1)−-free and satisfies |F0| ≥ |F| −O(nt−1).

Let 2 ≤ ℓ < k − 1 with ℓ|(k − 1) (resp. ℓ|k). Let j > 1 be the positive integer such that ℓ · j = k − 1
(resp. ℓ · j = k). Let Sℓ be a maximal collection of pairwise edge-disjoint ℓ−-configurations in F0. If
|Sℓ| > (j − 1) ·

(
n

t−1

)
, then there exists a set T ⊆ V (F) of size t − 1 which is contained in the vertex set

of j distinct ℓ−-configurations S1, . . . , Sj in Sℓ. Then S1 ∪ · · · ∪ Sj is a (k − 1)−-configuration of F0, being
a collection of ℓ · j = k − 1 edges spanning at most j[ℓ(r − t) + t − 1] − (j − 1)|T | = jℓ(r − t) + t − 1 =
(k − 1)(r − t) + t− 1 vertices (resp. a k−-configuration). This is a contradiction to F0 being (k − 1)−-free
(resp. k−-free). Therefore |Sℓ| = O(nt−1) for all relevant ℓ.

If k ≡ 0 or 1 (mod 3), then (P1) would trivially imply (P2), as F ′ would not contain any 3−-configurations,
and we set S ′ := ∅. If that is not the case, namely if k ≡ 2 (mod 3), define S ′ to be a maximal collection
of pairwise edge-disjoint 3−-configurations containing a 2-configuration. We claim that |S ′| ≤ k−2

3 ·
(

n
t−1

)
.

Indeed, otherwise, there is a (t−1)-subset T ⊆ V (F) and (k−2)/3+1 = (k+1)/3 many 3−-configurations
S1, . . . , S(k+1)/3 ∈ S ′, where Si contains a 2-configuration S′

i satisfying T ⊆ V (S′
i). Then S1∪. . .∪S(k−2)/3∪

S′
(k+1)/3 is a k-configuration, being a collection of k edges spanning at most ((k− 2)/3) · [3(r− t)+ t− 1]+

[2(r−t)+t]−((k−2)/3) ·(t−1) = k(r−t)+t, a contradiction to F0 being k-free. Therefore |S ′| = O(nt−1).

Let a and b be positive integers with a + b = k. Let Ha be the collection of edges contained in a−-
configurations of F0 and let Sa,b be a maximal collection of pairwise edge-disjoint b-configurations of F0

containing an edge of Ha. If |Sa,b| > a·
(

n
t−1

)
, then there exists a set T ⊆ V (F) of size t−1 and a+1 distinct

b-configurations S1, . . . , Sa+1 in Sa,b such that there exists ei ∈ Si ∩Ha with T ⊆ ei for every i ∈ [a + 1].
By definition of Ha, there exists f2, . . . , fa ∈ F0 such that S′ := {e1, f2, . . . , fa} is an a−-configuration and,
without loss of generality, we assume that Sa+1 and S′ are edge-disjoint. Then Sa+1∪S′ is a k-configuration
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of F2, being a collection of b+a = k edges spanning at most [b(r−t)+t]+[a(r−t)+t−1]−|T | = k(r−t)+t,
a contradiction to F0 being k-free. Therefore |Sa,b| = O(nt−1).

Let F ′ be the subhypergraph of F0 which is obtained by removing all the edges of each S ∈ Sℓ for every
2 ≤ ℓ < k− 1 with ℓ|(k− 1) or ℓ|k, all the edges of each S ∈ S ′, and all the edges of each S ∈ Sa,b for every
positive integers a and b with a+ b = k. Then F ′ satisfies (P1), (P2), (P3) and (P4).

We remark that Proposition 2.4 and Lemma 2.6 offer short proofs that Conjecture 1.1 holds for k = 2
and k = 3. Indeed, the case k = 2 is immediate. For k = 3, given a 3-free r-graph F , Lemma 2.6
gives a subhypergraph F ′ ⊆ F which is 2−-free and satisfies |F ′| ≥ |F| − O(nt−1). We can then apply
Proposition 2.4 with F1 = F2 = F ′.

3 Proof of Theorem 1.2 (Conjecture 1.1 for k even)

In this section, we prove Theorem 1.2, which asserts that limn→∞ n−tf (r)(n; k(r− t)+ t, k) = 1
t!

(
r
t

)−1
, for k

even and r sufficiently large in terms of t and k. We do that by showing that lim infn→∞ n−tf (r)(n; k(r−t)+
t, k) ≥ 1

t! (rt)
, which follows directly from Corollary 2.3, and that lim supn→∞ n−tf (r)(n; k(r−t)+t, k) ≤ 1

t! (rt)
,

which follows from Lemma 2.6 and the inequality and claims provided below.

Claim 3.1. Suppose that r, t, k are integers satisfying t, k ≥ 2 and r ≥ t+ (k3 · t!)1/t. Then(
2r − t

t

)
−
[
2

(
r

t

)
− 1

]
− (k − 3) ≥ (k − 2)3.

Proof. Notice that(
2r − t

t

)
=

1

t!
·
t−1∏
i=0

(2r − t− i) =
1

t!
· (2r − 2t+ 1)(2r − 2t+ 2) ·

t−3∏
i=0

(r − i+ r − t)

≥ 1

t!
· 2 · (r − t+ 1)(r − t+ 2) ·

[
t−3∏
i=0

(r − i) +

t−3∏
i=0

(r − t)

]

≥ 2

(
r

t

)
+

2

t!
(r − t)t ,

where in the second line we used that 2 ≤ t ≤ r − 1. This in turn gives(
2r − t

t

)
− 2

(
r

t

)
≥ 2

t!
· (r − t)t ≥ k3 ≥ (k − 2)3 + (k − 3) ,

where the second inequality follows from r ≥ t+ (k3 · t!)1/t.

Claim 3.2. Let F be a k-free r-graph and e ∈ F . Then the number of 2-configurations of F containing e
is at most k − 2.

Proof. If there were k− 1 distinct 2-configurations {e, ei} for i ∈ [k− 1], then S := {e, e1, . . . , ek−1} would
be a k-configuration of F , being a collection of k edges spanning at most r + (k − 1)(r − t) = k(r − t) + t
vertices, a contradiction to F being k-free.

Claim 3.3. Let k be an even integer, F a k-free r-graph and T ⊆ V (F) with |T | = t. Then the number of
2-configurations whose vertex set contains T is at most (k − 2)2.
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Proof. Let S be a maximal collection of pairwise edge-disjoint 2-configurations of F whose vertex set
contains T . We have |S| ≤ (k − 2)/2, as otherwise there would exist distinct 2-configurations S1, . . . , Sk/2

in S and S1 ∪ · · · ∪ Sk/2 would give a k-configuration of F , being a collection of k edges spanning at most
(2r−t)k/2−(k/2−1)|T | = k(r−t)+t vertices. By maximality of S, any 2-configuration of F whose vertex
set contains T , must contain an edge which belongs to some S ∈ S. There are 2|S| ≤ k − 2 such edges
and, for each of them, by Claim 3.2, the number of 2-configurations of F containing this edge is at most
k − 2. Therefore the number of 2-configurations of F whose vertex set contains T is at most (k − 2)2.

Given a hypergraph F , we say that a t-set T of V (F) is covered exactly i times, if T is contained in exactly
i edges of F . We denote by Ji(F) the set of t-subsets of V (F) covered exactly i times, and by J≥i(F) the
set of t-subsets of V (F) covered at least i times.

Claim 3.4. Let k be a positive even integer and F be an r-graph which is k-free, 2−-free, and has no
3−-configurations containing a 2-configuration. Write J0 := J0(F) and J≥2 := J≥2(F). Then

(k − 2)2|J0| ≥
{(

2r − t

t

)
−
[
2

(
r

t

)
− 1

]
− (k − 3)

}
· |J≥2| .

Proof. We use a double counting argument on the set

Q :=

{
(S, T ) :

S is a 2-configuration of F ,
T ⊆ V (S), |T | = t and T ∈ J0

}
.

Fix T ⊆ V (F) with |T | = t. By Claim 3.3, the number of 2-configurations of F whose vertex set contains
T is at most (k − 2)2. We conclude that

|Q| ≤ (k − 2)2|J0| . (3)

Now fix a 2-configuration S := {f1, f2} and observe that, since F is 2−-free, S spans precisely 2r − t
vertices, so f1 and f2 share precisely t vertices. We now estimate the number of t-sets T ⊆ V (S) with
T ∈ J0. Since T ⊆ V (S), either T is fully contained in f1 or in f2, or intersects both f1 \ f2 and f2 \ f1.

If T is fully contained in f1, then it does not belong to J0, as it is covered at least once (by the edge f1).
Clearly, the same argument applies to any T which is fully contained in f2. Moreover, the number of such
t-sets is 2

(
r
t

)
− 1.

Now we consider those T intersecting both f1\f2 and f2\f1. If T ̸∈ J0, then there exists e ∈ F with T ⊆ e,
and clearly e ̸= f1, f2. Notice that, |e ∩ V (S)| ≤ t, by the assumption that there are no 3−-configurations
containing a 2-configuration. As T ⊆ e ∩ V (S), we have that e ∩ V (S) = T . It follows that among the
t-sets of V (S) intersecting both f1 \ f2 and f2 \ f1, all but at most k − 3 belong to J0. Indeed, otherwise,
there would exist pairwise distinct t-sets T1, . . . , Tk−2 ⊆ V (S) and pairwise distinct edges e1, . . . , ek−2 with
Ti ⊆ ei for each i ∈ [k − 2]. However, {e1, . . . , ek−2, f1, f2} would be a k-configuration, being a collection
of k edges spanning at most (k − 2)(r − t) + 2r − t = k(r − t) + t vertices.

Therefore, for a given 2-configuration S, the number of t-sets T ⊆ V (S) with T ∈ J0 is at least(
2r − t

t

)
−
[
2

(
r

t

)
− 1

]
− (k − 3) , (4)

where the first term stands for the number of t-sets of V (S), while the rest accounts for the arguments
above.

Finally, observe that every T ∈ J≥2 gives rise to a 2-configuration {f1, f2} with T = f1 ∩ f2 (we have
T ⊆ f1 ∩ f2 by definition, with equality because F is 2−-free), and these 2-configurations are distinct for
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different sets T . This shows that the number of 2-configurations of F is at least |J≥2|. Using (4), we
conclude that

|Q| ≥
{(

2r − t

t

)
−
[
2

(
r

t

)
− 1

]
− (k − 3)

}
· |J≥2| . (5)

The claim follows from (3) and (5).

We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. Let k be an even integer, t ≥ 2 an integer and let r be an integer satisfying r ≥
t+ (k3 · t!)1/t. From Corollary 2.3 we get

lim inf
n→∞

n−tf (r)(n; k(r − t) + t, k) ≥ 1

t!
(
r
t

) . (6)

Let F be a k-free n-vertex r-graph. By Lemma 2.6, there exists a subhypergraph F ′ of F which is 2−-free,
has no 3−-configurations containing a 2-configuration and satisfies |F ′| ≥ |F| − O(nt−1). Set Ji := Ji(F ′)
and J≥i := J≥i(F ′) and observe that applications of Claim 3.4 and Claim 3.1 give

(k − 2)2|J0| ≥
{(

2r − t

t

)
−

[
2

(
r

t

)
− 1

]
− (k − 3)

}
· |J≥2| ≥ (k − 2)3|J≥2| .

Therefore, |J0| ≥ (k − 2) · |J≥2|. Now consider the following set

P := {(e, T ) : e ∈ F ′, T ⊆ e with |T | = t} .

Then |P| = |F ′| ·
(
r
t

)
and

|P| =
∑
i≥1

i · |Ji| ≤ |J1|+ (k − 1) · |J≥2|

= |J≥0|+ (k − 2) · |J≥2| − |J0| ≤
(
n

t

)
,

where in the first inequality we used that a t-set covered at least k times gives a k-configuration and thus,
since F ′ is k-free, we have J≥k = ∅, while in the last inequality we used |J≥0| =

(
n
t

)
and |J0| ≥ (k−2) · |J≥2|.

We conclude that

|F| ≤ |F ′|+O(nt−1) = |P| ·
(
r

t

)−1

+O(nt−1) ≤
(
n

t

)
·
(
r

t

)−1

+O(nt−1) ,

which allows us to establish that

lim sup
n→∞

n−tf (r)(n; k(r − t) + t, k) ≤ 1

t!
(
r
t

) . (7)

The theorem follows from (6) and (7).

4 Proof of Theorem 1.3 (Conjecture 1.1 for k = 5)

In this section we prove Theorem 1.3, asserting that the limit limn→∞ n−tf (r)(n; 5(r − t) + 5) exists,
for 2 ≤ t < r. Our proof uses our density argument (Proposition 2.4). We recall that J(F) is the t-
graph on V (F) whose edges are t-subsets of ℓ-configurations in F with ℓ ≤ ⌊k/2⌋ (this is defined above
Proposition 2.4).
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Proof of Theorem 1.3. Let ε > 0 and F be a 5-free n-vertex r-graph with |F| ≥
((

r
t

)−1
+ε

)(
n
t

)
, and suppose

that n is large. By Lemma 2.6, there is a subhypergraph F1 ⊆ F which is 2−-free, 4−-free and 5-free,
satisfies

|F1| ≥ |F| −O(nt−1) ≥
(
r

t

)−1(n
t

)
≥

(
r

t

)−1

|J(F1)|, (8)

and where any 2-configuration and any 3−-configuration are edge-disjoint.

Claim 4.1. Let G ⊆ F1 and suppose that S is a 3−-configuration in G. Then the following holds with
G′ := G \ S.

|J(G)| − |J(G′)| ≥
(
r

t

)(
|G| − |G′|

)
.

Proof. Observe that, by definition of J(S), we have that T ∈ J(S) if and only there exists an edge e ∈ S
with T ⊆ e or there exists a 2-configuration S′ in S whose vertex set contains T . Since in G any 2-
configuration and any 3−-configuration are edge-disjoint, we can rule out the second option. Moreover, a
set of size t cannot be in more than one edge of S as, otherwise, S would contain a 2-configuration, which
cannot happen for the same reason. Since S has three edges, we conclude that |J(S)| = 3

(
r
t

)
.

Let T ∈ J(S). Then clearly T ∈ J(G), and we aim to show that T ̸∈ J(G′). For that, note that T ∈ J(G′) if
and only if there exists an edge e ∈ G′ with T ⊆ e or there exists a 2-configuration S′ of G′ whose vertex set
contains T . The first option cannot happen as, otherwise, S ∪ {e} would be a 4−-configuration of G, being
a collection of four edges spanning at most (3r− 2t− 1) + r− t = 4(r− t) + t− 1 vertices, a contradiction
to F1 being 4−-free. Similarly, we can rule out the second option as, otherwise, using that S and S′ are
edge-disjoint, S ∪ S′ would be a 5−-configuration of G, being a collection of five edges spanning at most
(3r − 2t− 1) + (2r − t)− t = 5(r − t) + t− 1 vertices, a contradiction to F1 being 5−-free.

Therefore |J(G)| − |J(G′)| ≥ |J(S)| = 3
(
r
t

)
and the claim follows.

By applying Claim 4.1 repeatedly, we can find a subhypergraph F2 ⊆ F1, which is 3−-free and satisfies

|J(F1)| − |J(F2)| ≥
(
r

t

)
(|F1| − |F2|) .

By Remark 2.5 and (8), it follows that

|F2|
|J(F2)|

≥ |F1|
|J(F1)|

.

Notice that F2 is ℓ−-free for ℓ ∈ {2, 3, 4} and 5-free. Thus Proposition 2.4 implies that the limit
limn→∞ n−tf (r)(n; 5(r − t) + t, 5) exists.

5 Proof of Theorem 1.4 (Conjecture 1.1 for k = 7)

This section is concerned with the proof of Theorem 1.4, which asserts that the limit limn→∞ n−tf (r)(n; 7(r−
t) + t, 7) exists for r > t ≥ 2 and (r, t) ̸= (3, 2). We use our density argument (Proposition 2.4), together
with the following two inequalities.

Claim 5.1. Let r, t be integers such that 3 ≤ t < r or t = 2 and r ≥ 4. Then(
3r − 2t

t

)
− 4 ≥ 3

(
r

t

)
.

9



Proof. The claimed inequality can be checked directly for t = 2, so suppose that t ≥ 3.(
3r − 2t

t

)
=

1

t!
·
t−1∏
i=0

(3r − 2t− i)

=
1

t!
· (3r − 3t+ 1)(3r − 3t+ 2)(3r − 3t+ 3) ·

t−4∏
i=0

(r − i+ 2r − 2t)

≥ 1

t!
· 4(r − t+ 1)(r − t+ 2)(r − t+ 3) ·

t−4∏
i=0

(r − i)

= 4

(
r

t

)
≥ 3

(
r

t

)
+ 4 .

Here in the first inequality we used the inequality (3x + 1)(3x + 2)(3x + 3) ≥ 4(x + 1)(x + 2)(x + 3) for
x ≥ 1, which can be checked directly. In the last inequality we used that

(
r
t

)
≥

(
t+1
t

)
= t+ 1 ≥ 4.

Claim 5.2. Let r, t be integers such that 3 ≤ t < r or t = 2 and r ≥ 4. Then(
2r − t

t

)
≥ 2

(
r

t

)
+ 2.

Proof. Let A,B,C be pairwise disjoint sets of sizes r − t, r − t, t, respectively. Then
(
2r−t
t

)
is the number

of t-subsets of A∪B ∪C. This is at least the number of t-subsets of either A∪C or B ∪C, of which there
are 2

(
r
t

)
− 1, plus the number of t-subsets of A∪B ∪C consisting of one vertex from each of A and B and

t− 2 vertices from C, of which there are (r− t)2
(

t
t−2

)
≥ 3, using that either t ≥ 3 or r− t ≥ 2. Altogether,

we have that
(
2r−t
t

)
≥ 2

(
r
t

)
− 1 + 3 = 2

(
r
t

)
+ 2, as required.

We are now ready to prove Theorem 1.4.

Proof of Theorem 1.4. Let ε > 0 and F be a 7-free n-vertex r-graph with |F| ≥
((

r
t

)−1
+ε

)(
n
t

)
, and suppose

that n is large.

Apply Lemma 2.6 to get a subhypergraph F1 ⊆ F which is 2−-free, 3−-free, 6−-free and 7-free, satisfies

|F1| ≥ |F| −O(nt−1) ≥
(
r

t

)−1(n
t

)
≥

(
r

t

)−1

|J(F1)|, (9)

and where any 2-configuration and any 5−-configuration are edge-disjoint, and any 3-configuration and any
4−-configuration are edge-disjoint. Now we prove some structural claims on subhypergraphs of F1.

Claim 5.3. Let G ⊆ F1 and suppose that S is a 3-configuration in G contained in a 4-configuration in G.
Then the following holds with G′ := G \ S.

|J(G)| − |J(G′)| ≥
(
r

t

)(
|G| − |G′|

)
.

Proof. Write S := {e1, e2, e3} and let e4 ∈ G be such that {e1, e2, e3, e4} is a 4-configuration. Let T ′ :=
V (S)∩e4 and observe that |T ′| = t. Indeed, |T ′| ≥ t follows from the fact that S is a 3-configuration but not
a 3−-configuration, implying that |V (S)| = 3r− 2t, and S ∪{e4} is a 4-configuration, while |T ′| ≤ t follows
from the fact that otherwise S ∪ {e4} would be a 4−-configuration, a contradiction to any 3-configuration
and any 4−-configuration of F1 being edge-disjoint.
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We now lower bound |J(G)| − |J(G′)|. Let T ⊆ V (S) satisfy |T | = t. Since S is a 3-configuration, we
have T ∈ J(G). For T to be in J(G′) there must be an ℓ-configuration in G′ with ℓ ∈ [3] whose vertex set
contains T . We now prove the following assertions, to help us bound the number of times each of these
options can happen.

(i) excluding T ′, no t-subset of V (S) is contained in the vertex set of a 3-configuration of G′;

(ii) at most one t-subset of V (S) is contained in the vertex set of a 2-configuration of G′;

(iii) excluding T ′, at most two t-subsets of V (S) are contained in an edge of G′.

We show (i) as follows. Any 3-configuration S′ in G′ satisfies |V (S)∩ V (S′)| ≤ t as otherwise S ∪ S′ would
be a 6−-configuration. Therefore if a t-subset T ̸= T ′ of V (S) is contained in a 3-configuration S′ in G′,
then e4 ̸∈ S′ and S ∪ S′ ∪ {e4} is a 7-configuration of G, a contradiction.

For (ii) we argue as follows. First observe that any 2-configuration S′ in G′ satisfies |V (S) ∩ V (S′)| ≤ t
as otherwise S ∪ S′ would be a 5−-configuration of G, which is a contradiction as any 5−-configuration
and any 2-configuration of G are edge-disjoint. Now suppose there are two distinct t-subsets T1 and T2

of V (S) and two 2-configurations S1 and S2 in G′ with Ti ⊆ V (Si) for i ∈ [2]. Observe that S1 ̸= S2 as
any 2-configuration in G′ intersects V (S) in no more than t vertices, as argued above. If S1 and S2 were
edge-disjoint, then S1 ∪ S2 ∪ S would be a 7-configuration of G, a contradiction. If S1 and S2 were not
edge-disjoint, then S1 ∪ S2 would be a 3-configuration intersecting V (S) in more than t vertices, but then
S1 ∪ S2 ∪ S would be a 6−-configuration of G, a contradiction.

Finally, we prove (iii). Any edge not in S intersects V (S) in at most t vertices, as 3-configurations and
4−-configurations of G are edge-disjoint. Suppose there were three distinct t-subsets T1, T2 and T3 of V (S),
all distinct from T ′, and three (distinct) edges f1, f2 and f3 not in S with Ti ⊆ fi for i ∈ [3]. Then
e4 ̸∈ {f1, f2, f3} and S ∪ {e4, f1, f2, f3} would be a 7-configuration of G, a contradiction.

Recall that |V (S)| = 3r − 2t, so there are
(
3r−2t

t

)
subsets of V (S) of size t. Taking (i), (ii) and (iii) into

account, and using Claim 5.1, we get

|J(G)| − |J(G′)| ≥
(
3r − 2t

t

)
− 1− 3 ≥ 3

(
r

t

)
=

(
r

t

)
(|G| − |G′|) ,

as claimed.

By repeatedly applying Claim 5.3, we get a subhypergraph F2 ⊆ F1 satisfying

|J(F1)| − |J(F2)| ≥
(
r

t

)
(|F1| − |F2|) , (10)

which has no 3-configuration contained in a 4-configuration.

Claim 5.4. Let G ⊆ F2. Suppose that S is a 4−-configuration in G. Then there exists a non-empty subset
S′ ⊆ S, such that the following holds with G′ := G \ S′.

|J(G)| − |J(G′)| ≥
(
r

t

)(
|G| − |G′|

)
. (11)

Proof. We start by observing that, for e, e′ ∈ G, if e ∈ S and {e, e′} is a 2-configuration, then e′ ∈ S.
Indeed, otherwise, the 5−-configuration S ∪{e′} and the 2-configuration {e, e′} would not be edge-disjoint,
a contradiction. Therefore, either S contains a 2-configuration or the edges of S are not involved in any
2-configuration of G. Since S contains no 3-configurations (by every 4−-configuration being edge-disjoint of
all 3-configurations in G), we have the following three cases: S contains no 2-configurations; S contains a
single 2-configuration; and S can be partitioned into two 2-configurations. We consider each case separately.
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Case 1. S contains no 2-configurations. Let e be an edge of S, and set S ′ := {e} and G′ := G \ {e}.
We claim that J(G) \ J(G′) contains all t-subsets of V (S′), which would prove (11) in this case. Since any
such t-subset belongs to J(G), this follows once we show that

(i) no t-subset of e is contained in the vertex set of a 3-configuration of G′;

(ii) no t-subset of e is contained in the vertex set of a 2-configuration of G′;

(iii) no t-subset of e is contained in an edge of G′.

Fact (i) holds since, by assumption, any 3-configuration is edge-disjoint of S and thus, if it shares t vertices
with e, its union with S would give a 7−-configuration, a contradiction. For (ii), recall that if there was a
t-subset of e contained in a 2-configuration S′′ then e ̸∈ S′′ and e would belong to both the 3-configuration
S′′ ∪ {e} and the 4−-configuration S, a contradiction. Finally, (iii) holds as otherwise e would belong to a
2-configuration of G, a contradiction to the assumption that S contains no 2-configurations and its edges
are thus not involved in 2-configurations in G.

Case 2. S contains a single 2-configuration S′. Set G′ := G \ S′. Let T ⊆ V (S′) satisfy |T | = t.
Since S′ is a 2-configuration, we have T ∈ J(G). For T to be in J(G′), there must be an ℓ-configuration
in G′ with ℓ ∈ [3] whose vertex set contains T . We prove the following assertions, to help us bound the
number of times this can happen.

(i) no t-subset of V (S′) is contained in the vertex set of a 3-configuration of G′;

(ii) no t-subset of V (S′) is contained in the vertex set of a 2-configuration of G′;

(iii) no t-subset of V (S′) is contained in an edge of G′.

Indeed, (i) can be proved as in the previous case. For (ii), if S′′ is a 2-configuration of G′ which intersects
V (S′) in (at least) t vertices then, by the assumption on S, the configurations S and S′′ are edge-disjoint,
but then S ∪S′′ is a 6−-configuration in G, a contradiction. Finally, (iii) holds since e ∈ G′ intersects V (S′)
in at most t−1 vertices, as otherwise S and S′∪{e} are 4−- and 3-configurations that are not edge-disjoint.

By (i), (ii), (iii) and Claim 5.2, we have

|J(G)| − |J(G′)| ≥
(
2r − t

t

)
≥ 2

(
r

t

)
=

(
r

t

)
·
(
|G| − |G′|

)
.

Case 3. S can be partitioned into two 2-configurations S1, S2. Set S′ := S and G′ := G \ S′. Let
J be the collection of t-sets which are subsets of either V (S1) or V (S2). Note that if T is in the t-shadow
of S1 then T is not a subset of V (S2) (otherwise, S would contain a 3-configuration). Thus,

|J | ≥ |∂tS1|+
(
|V (S2)|

t

)
= 2

(
r

t

)
− 1 +

(
2r − t

t

)
≥ 4

(
r

t

)
, (12)

using Claim 5.2. Notice that J ⊆ J(G), as its elements are t-subsets of vertex sets of 2-configurations. As
usual, we claim that

(i) no t-set in J is contained in the vertex set of a 3-configuration of G′;

(ii) no t-set in J is contained in the vertex set of a 2-configuration of G′;

(iii) no t-set in J is contained in an edge of G′.
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Assertion (i) can be proved as in the first case. For (ii), if S′′ is a 2-configuration in G′ whose vertex set
contains a t-set in J , then S ∪ S′′ is a 6−-configuration in G, a contradiction. Finally, for (iii), if e is an
edge containing a t-set in J then S ∪ {e} contains a 3-configuration, a contradiction to the disjointness of
4−- and 3-configurations.

It follows from (i), (ii), (iii) and (12) that

|J(G)| − |J(G′)| ≥ |J | ≥ 4

(
r

t

)
=

(
r

t

)(
|G| − |G′|

)
.

By repeatedly applying Claim 5.4, we get a subhypergraph F3 ⊆ F2 which is 4−-free and satisfies

|J(F2)| − |J(F3)| ≥
(
r

t

)
(|F2| − |F3|) . (13)

Claim 5.5. Let G ⊆ F3 and suppose there exists a 5−-configuration S of G. Then the following holds with
G′ := G \ S.

|J(G)| − |J(G′)| ≥
(
r

t

)(
|G| − |G′|

)
.

Proof. Let J be the t-shadow of S. Then J ⊆ J(G) and |J | = 5
(
r
t

)
, as a set of size t cannot be in more

than one edge of S (otherwise the 5−-configuration S would contain a 2-configuration, a contradiction).

Next we show that if T ∈ J , then T ̸∈ J(G′); for that it is enough to prove that T is not contained in
any ℓ-configuration of G′ with ℓ ∈ [3]. For ℓ = 1, this follows from the fact that any 2-configuration and
any 5−-configuration of G are edge-disjoint. Similarly, for ℓ = 2 this holds since any 2-configuration is
edge-disjoint of S and thus, if it shares t vertices with S, its union with S would give a 7−-configuration,
a contradiction. Finally, for ℓ = 3, we use that, from Claim 5.3, a 3-configuration cannot be contained in
any 4-configuration of G. Therefore, we get

|J(G)| − |J(G′)| ≥ |J | = 5

(
r

t

)
=

(
r

t

)(
|G| − |G′|

)
.

By repeatedly applying Claim 5.4, we get a subhypergraph F4 ⊆ F3 which is 5−-free and satisfies

|J(F3)| − |J(F4)| ≥
(
r

t

)
(|F3| − |F4|) . (14)

By summing up (10), (13) and (14), we get

|J(F1)| − |J(F4)| ≥
(
r

t

)
(|F1| − |F4|) .

Thus, using Remark 2.5 and (9),
|F4|

|J(F4)|
≥ |F1|

|J(F1)|
.

Notice that F4 is ℓ
−-free for ℓ ∈ {2, 3, 4, 5, 6} and 7-free. Thus, by Proposition 2.4, the limit limn→∞ n−tf (r)(n; 7(r−

t) + t, 7) exists.
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6 Conclusion

Recall that we defined π(r, t, k) := limn→∞ n−tf (r)(n; k(r − t) + t, k) (if the limit exists). Theorem 1.2

establishes that π(r, t, k) = 1
t!

(
r
t

)−1
when k is even and r ≥ t + (k3 · t!)1/t. It would be interesting to

determine, for fixed even k, what is the smallest r such that π(r, t, k) = 1
t!

(
r
t

)−1
for all 2 ≤ t ≤ r − 1. We

remark that the smallest such r is 2 for k = 2 and 4 for k = 4, as proved in [6] and [4], respectively.

For general odd k we were not able to prove that the limit π(r, t, k) exists, even when r is large. Nevertheless,
arguments reminiscent of Theorem 1.2 yield that if k is odd, t ≥ 2 and r is sufficiently large with respect
to k and t, then lim supn→∞ n−tf (r)(n; k(r − t) + t, k) ≤ 1

t! ·
2

2(rt)−1
. We briefly sketch the proof idea.

A t-tight component is a collection of edges that can be ordered as {e1, . . . , em} so that ei+1 shares at least
t vertices with one of e1, . . . , ei, for each i ∈ [m−1]. Given any k-free n-vertex r-graph F , we let, for i ∈ [2],
Fi be the set of the edges of F which belong to components of size i, and F3 := F \ (F1 ∪F2). For i ∈ [2],
define Gi to be the t-shadow of Fi, and define G3 to be the collection of t-sets T such that T ̸∈ G1 ∪ G2

and there is a unique component in F3 that contains a 2-configuration whose vertex set contains T . With
α := 1

2 ·
(
2
(
r
t

)
− 1

)
, it is not hard to see that |Gi| ≥ α|Fi| for i ∈ [3]. Therefore, since the sets F1,F2,F3

partition F , it follows that |F| = |F1| + |F2| + |F3| ≤ 1
α (|G1|+ |G2|+ |G3|) ≤ 1

α

(
n
t

)
, which implies the

desired result.

We suspect this upper bound might be optimal, as this is the case for k = 3 (see [4]).

Remark 6.1. The recent work [5] mentioned in Remark 1.5 shows that, for k = 6, the smallest r such

that π(r, t, 6) = 1
t!

(
r
t

)−1
for all 2 ≤ t ≤ r − 1 is r = 4. Moreover, it shows that the upper bound discussed

above is optimal for k ∈ {5, 7}.
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