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Abstract

We prove that there exists a constant c > 0 such that the vertices of every strongly c · kt-connected

tournament can be partitioned into t parts, each of which induces a strongly k-connected tournament.

This is clearly tight up to a constant factor, and it confirms a conjecture of Kühn, Osthus and Townsend

(2016).

1 Introduction

A classical result of Hajnal [2] and Thomassen [7] asserts that for every integer k ≥ 1 there exists an integer

K such that the vertices of every K-connected graph can be partitioned into two sets inducing k-connected

subgraphs. There is now a whole area of combinatorial problems concerned with questions of this type;

namely, to understand whether for a certain (di)graph property any (di)graph which strongly satisfies that

property has a partition into many parts where each part still has the property. In this paper, we consider

the analogue of Hajnal and Thomassen’s results for tournaments.

A digraph D is said to be strongly connected if for every u, v ∈ V (D) there is a directed path from u to v,

and it is strongly k-connected if |D| ≥ k + 1 and D \ Z is strongly connected for every subset Z ⊆ V (D) of

size at most k. Recall that a tournament is an orientation of a complete graph. Thomassen asked (see [6])

if for every sequence k1, . . . , kt of positive integers there exists K such that if T is a strongly K-connected

tournament then there is a partition {V1, . . . , Vt} of V (T ) such that T [Vi] is ki-connected for every i ∈ [t].

Denote the minimum such K by ft(k1, . . . , kt) (and put ft(k1, . . . , kt) :=∞ if there is no such K).

It is easy to see that ft(k, 1, . . . , 1) ≤ k + 3t − 3. Chen, Gould and Li [1] proved that every strongly t-

connected tournament on at least 8t vertices can be partitioned into t strongly connected tournaments (this

is clearly optimal, apart from the assumption on the number of vertices). The existence of f2(2, 2) remained

∗Mathematical Institute, University of Oxford, Andrew Wiles Building, Radcliffe Observatory Quarter, Woodstock Road,

Oxford, UK. Email: girao@maths.ox.ac.uk. Research supported by EPSRC grant EP/V007327/1.
†Department of Mathematics, University College London, Gower Street, London WC1E 6BT, UK. Email:

s.letzter@ucl.ac.uk. Research supported by the Royal Society.

1



open until the work of Kühn, Osthus and Townsend [5] who proved that ft(k1, . . . , kt) is finite for all positive

integers k1, . . . , kt. Specifically, they showed ft(k, . . . , k) = O(k7t4) and conjectured ft(k, . . . , k) = O(kt)

(which would be tight up to the implicit constant factor). More recently, Kang and Kim [3] proved a better

upper bound on ft(k, . . . , k) showing that any tournament on n vertices which is O(k4t)-strongly connected

can be partitioned into t strongly connected tournaments where each part has a prescribed size provided all

sizes are Ω(n). Our main result proves the conjecture of Kühn, Osthus and Townsend.

Theorem 1.1. There exists a constant c > 01 such that for every positive integers k and t, if T is a

strongly c ·kt-connected tournament, then there is a partition {V1, . . . , Vt} of V (T ) such that T [Vi] is strongly

k-connected for i ∈ [t].

We give an overview of the proof in Section 2, state a few simple probabilistic tools in Section 3, and dive

into the proof of Theorem 1.1 in Section 4. We conclude the paper in Section 5 with some open problems.

Throughout the paper, when we say a tournament is k-connected we mean that it is strongly k-connected,

and by a path we mean a directed path. We will omit floor and ceiling signs whenever it does not affect the

argument.

2 Overview of proof

Let c be a large constant, and let G be a c · kt-connected tournament. We start the proof by finding Ω(kt)

pairwise disjoint ‘gadgets’ U(α), with special sets S+(α), S−(α) ⊆ U(α), such that the following properties

hold: for every u ∈ S−(α) and v ∈ S+(α), there is a directed path in U(α) from u to v; most vertices in

G have an out-neighbour in all but at most kt sets S−(α); and similarly for in-neighbours in S+(α) (see

Section 4.1). We note that similar gadgets are constructed in [5]. One new ingredient allows us to obtain

the following additional property: there is a vertex s+(α) ∈ S+(α) such that almost every in-neighbour of

s+(α) is also an in-neighbour of u, for all but O(1) vertices u ∈ U(α); and there exists s−(α) ∈ S−(α) with

the analogous property for out-neighbours.

To sketch the remainder of the proof, let us pretend that all vertices have out-neighbours in all but at most

kt sets S−(α) and in-neighbours in all but at most kt sets S+(α). We now proceed in four steps.

In the first step (given in Section 4.2) we remove some of the gadgets, deterministically and randomly, so

that every vertex u in a surviving gadget U(α) has Ω(kt) out- and in-neighbours that are either in U(α)

or are not in a surviving gadget. Here it is crucial to have the latter property regarding s+(α) and s−(α),

because effectively this means that we need to guarantee that u satisfies the above property for O(1) vertices

u in U(α), even if U(α) itself is large.

In the second step (see Section 4.3) we find Θ(t) disjoint groups of Θ(k) gadgets, such that every vertex u in

one of these gadgets U(α) has Ω(kt) out- and in-neighbours (either in U(α) or outside of these gadgets), each

of which has an out-neighbour in S−(β) for all but at most t gadgets in U(α)’s group, and an in-neighbour in

1It probably suffices to take c = 10100.
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S+(β) for all but at most t gadgets in the same group. To achieve this, we randomly partition the collection

of gadgets from the previous step into Θ(t) parts, and then remove some of the parts and some of the gadgets.

The third step (see Section 4.4) finds t disjoint k-connected sets, each containing at least 10k gadgets. To

do this, we first randomly assign each of the vertices not covered by the gadgets described in the previous

paragraph into one of the groups of gadgets, and show that with positive probability, many of these augmented

groups of gadgets contain a k-connected set.

Finally, in Section 4.5, we assign each uncovered vertex u to a k-connected set U found in the previous

paragraph which has at least k in- and out-neighbours of u. (The assumption that each group contains at

least 10k gadgets helps here.)

Recall, though, that this proof sketch assumed that every vertex has an out-neighbour in all but at most kt

sets S−(α) and similarly for in-neighbours. This need not be the case, however, and that complicates each

of the above four steps. Let V +
good be the set of vertices that have out-neighbours in all but at most kt sets

S−(α), and define V −good similarly. In the first step, instead of aiming for Ω(kt) out-neighbours not covered

by gadgets, we aim for either Ω(kt) out-neighbours in V +
good ∩ V

−
good, or Ω(kt) out-neighbours in V +

good, each

of which has Ω(kt) in-neighbours in V +
good ∩ V

−
good, etc. We make similar adjustments in other steps.

3 Notation and preliminaries

In this section we state a few probabilistic results. The following is a corollary of Hoeffding’s inequality.

Proposition 3.1. Let η1, η2 satisfy η1 > 4η2 > 0 and suppose that m1, . . . ,mr ∈ [0, η2`] satisfy m1 +

. . . + mr ≥ η1`. If X1, . . . , Xr are independent random variables such that Xj takes values 0 and mj and

P[Xj = mj ] ≥ 1/2, then

P[X1 + . . .+Xr ≥ η2`] ≥ 1− exp(−η1/8η2).

Proof. Write X := X1 + . . .+Xr. By Hoeffding’s inequality,

P(X ≤ η2`) ≤ P
(
E[X]−X ≥ η1`

2
− η2`

)
≤ P

(
E[X]−X ≥ η1`

4

)
≤ exp

(
− 2(η1`)

2

16
∑
i∈[r]m

2
i

)

≤ exp

(
− (η1`)

2

8 · η1`η2`
· (η2`)2

)
= exp

(
− η1

8η2

)
.

The next proposition is a simple probabilistic observation that we will use many times.

Proposition 3.2. Let X1, . . . , Xr be independent 0, 1-random variables. Suppose that P[Xi] ≥ 1 − η2 for

every i ∈ [r]. Then

P[X1 + . . .+Xr ≥ (1− η)r] ≥ 1− η.
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Proof. Write X := X1 + . . .+Xr. By assumption, E[X] ≥ (1− η2)r and X ≤ r. Write p := P[X ≥ (1− η)r].

Then E[X] ≤ p · r+ (1− p) · (1− η)r = (1− η(1− p))r. It follows that (1− η2)r ≤ (1− η(1− p))r, implying

η(1− p) ≤ η2, i.e. p ≥ 1− η, as claimed.

To conclude the section, we state Chernoff’s bounds, which we will use extensively.

Lemma 3.3. Let X be the sum of independent random variables taking values in {0, 1}, and write µ := E[X].

Then the following holds for δ ∈ [0, 1].

P[X ≤ (1− δ)µ] ≤ exp(−δ2µ/2)

P[X ≥ (1 + δ)µ] ≤ exp(−δ2µ/3).

4 The proof

In this section we prove our main theorem, Theorem 1.1.

Proof of Theorem 1.1. Observe that it suffices to prove the existence of a suitable constant c such that for

large enough k and every t ≥ 2, the vertices of every c · kt-connected tournament can be partitioned into c

sets which induce k-connected tournaments. Throughout our proof we indeed assume that k is large enough.

Pick constants ρ, σ1, σ2, σ3, τ0, τ1, τ2, τ3 as follows.

ρ = 104 σ1 = 1060 σ2 = 104 σ3 = 10.

k � τ1 � τ2 � τ3 � ρ, σ1, σ2, σ3.
(1)

Let T be a τ1kt-connected tournament with vertex set V . Our aim is to find a partition {V1, . . . , Vt} of V

such that T [Vi] is k-connected for every i ∈ [t]. This will be done in five steps.

4.1 Building gadgets

The first step in our proof is the construction of σ1kt gadgets, which are the sets U(α) obtained by the

following proposition. The construction of the gadgets is done similarly to [5] (see page 6), with several

differences. First, the size of the sets S−(α) and S+(α) (corresponding to Ai and Bi in [5]) is much smaller

than in [5]. Second, we construct σ1kt gadgets, which is quite a lot more gadgets than we need (10kt) for

the partition, to allow for some flexibility (in later steps we will discard some of the gadgets, randomly

and deterministically). Third, a minimality assumption on the paths P (α) which join the sets S−(α) and

S+(α) (see the three paragraphs before Figure 1) allows us to find a small set X(α) as in (G4). Finally,

to compensate for the smaller size of S−(α) and S+(α) we need to consider sets V −bad and V +
bad, which are

relatively small sets of exceptional vertices. The third point is probably the most crucial new ingredient

here.
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Proposition 4.1. There exist sets of vertices S+(α), S−(α) ⊆ S(α) ⊆ U(α) ⊆ V and X(α) ⊆ V , indexed

by a set A1 of size σ1kt, and vertices s+(α), s−(α) ∈ S(α), satisfying the following properties.

(G1) The sets U(α), with α ∈ A1, are pairwise disjoint.

(G2) |S(α)| ≤ ρ and |X(α)| ≤ ρσ1kt, for α ∈ A1.

(G3) For every α ∈ A1, u ∈ S−(α) and v ∈ S+(α), there is a path in T [U(α)] from u to v.

(G4) Every in-neighbour of s+(α) in U(α) \X(α) is also an in-neighbour of every vertex in U(α) \S(α), for

α ∈ A1. Analogously for s−(α) with respect to out-neighbours.

Let Vokay = V \
⋃
α S(α), let V +

bad be the set of vertices in Vokay that have no out-neighbours in at least kt

sets S−(α), and let V −bad be the set of vertices in Vokay that have no in-neighbours in at least kt sets S+(α).

(G5) Every u ∈ Vokay satisfies d+(u) ≥ 1012 · |V +
bad| and d−(u) ≥ 1012 · |V −bad|.

Proof. Let A+ be the set of σ1kt vertices in V with largest out-degrees (breaking ties arbitrarily), and let

A− be the set of σ1kt vertices in V with largest in-degrees (note that |T | > 2σ1kt, so we may assume that

A+ and A− are disjoint). We define sets S+(a), for a ∈ A+, and sets S−(a), for a ∈ A−, as follows.

Let a1, . . . , a|A+| be an arbitrary ordering of the vertices in A+. Having defined S+(a1), . . . , S+(ai−1), let

U+
i := V \ (A+ ∪ A− ∪ S+(a1) ∪ . . . ∪ S+(ai−1)), so U+

i is the set of vertices that are currently unused.

Pick a sequence ui,0, . . . , ui,mi as follows. Set ui,0 := ai. Having defined ui,0, . . . , ui,j−1, let U+
i,j be the set

of vertices in U+
i \ {ui,1, . . . , ui,j−1} that do not have an in-neighbour in {ui,0, . . . , ui,j−1}, and take ui,j to

be the vertex of maximum out-degree in T [U+
i,j ]; if U+

i,j is empty or if j > ρ/10, set mi := j − 1 and define

S+(ai) := {ui,0, . . . , ui,mi
}. We have thus defined sets S+(a) for a ∈ A+.

Note that |U+
i,1| ≤ d−(ai) and ui,j has out-degree at least (|U+

i,j | − 1)/2 in Ui,j , for i ∈ [|A+|] and j ∈ [mi]

(using that T is a tournament). It follows that |U+
i,j | ≤ 2−(j−1) ·d−(ai), implying that the number of vertices

in U+
i+1 that have no in-neighbours in S+(ai) is at most

d−(ai)

2ρ/10
≤ max
a∈A+

d−(a)

2ρ/10
≤ max
a∈A+

d−(a)

1012 · σ1
, (2)

using that ρ = 104, σ1 = 1060 and 210 ≥ 103 (see (1)). Also observe that S+(a) is a set of size at most ρ/10

that induces a transitive tournament whose sink is a, for a ∈ A+.

We now pick sets S−(a), with a ∈ A−, similarly. Let a1, . . . , a|A−| be an ordering of the vertices in A−.

Having defined S−(a1), . . . , S−(ai−1), define U−i to be the set of unused vertices, namely

U−i := V \

(( ⋃
a∈A+

S+(a)
)
∪A+ ∪A− ∪ S−(a1) ∪ . . . ∪ S−(ai−1)

)
.

Let vi,0, . . . , vi,mi
be chosen as follows. Take vi,0 := ai. Having defined vi,0, . . . , vi,j−1, let U−i,j be the set

of vertices in U−i \ {vi,1, . . . , vi,j−1} which do not have an out-neighbour in {vi,0, . . . , vi,j−1}. Take vi,j to
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be a vertex of maximum in-degree in T [U−i,j ]. If U−i,j is empty or j > ρ/10, define mi := j − 1 and put

S−(ai) := {vi,0, . . . , vi,mi}. As above, the number of vertices in U−i+1 that have no out-neighbour in S−(ai)

is at most the maximum of d+(a)/1012σ1 over a ∈ A−, and S−(a) is a set of size at most ρ/10 that induces

a transitive tournament whose source is a, for a ∈ A−.

Denote S :=
⋃
a∈A+ S+(a)∪

⋃
a∈A− S−(a); then |S| ≤ ρσ1kt. Because T is τ1kt-connected and τ1 ≥ ρσ1 (see

(1)), there is a collection P of σ1kt pairwise vertex-disjoint paths, each of which starts at the sink of S−(a)

for some a ∈ A− and ends at the source of S+(a′) for some a′ ∈ A+, and which do not contain any vertices

of S \ (A+ ∪A−). We will assume that P is minimal, meaning that for every collection P ′ of paths with the

above properties, the number of vertices covered by paths in P ′ is at least as large as the number of vertices

covered by paths in P.

To denote these paths and the corresponding pairing of sets S+(a) with sets S−(a′), let A1 be a set of

size σ1kt, which will serve as the set of indices, and for each α ∈ A1, let P (α) be one of the paths above,

let s−(α) be the start vertex of P (α) and let s+(α) be the last vertex in P (α). Let a+(α) ∈ A+ and

a−(α) ∈ A− be such that s−(α) ∈ S−(a−(α)) and s+(α) ∈ S+(a+(α)). We abuse notation slightly by

denoting S+(α) := S+(a+(α)) and S−(α) := S−(a−(α)).

Define U(α) := S+(α) ∪ S−(α) ∪ V (P (α)), and take S(α) to be the union of S+(α) ∪ S−(α) with the first

three and last three vertices in P (α) (see Figure 1 for an illustration of these sets and vertices s+(α), s−(α)).

For a subset A ⊆ A1, write U(A) :=
⋃
α∈A U(α).

S−(α)

S+(α)

S(α)

S(α)

P (α)

s−(α)

s+(α)

U(α)

Figure 1: The sets U(α), S+(α), S−(α), vertices s+(α), s−(α) and path P (α)

To complete the proof it now suffices to verify that properties (G1) to (G5) hold, with an appropriate choice

of X(α). Item (G1) follows directly from the choice of sets U(α). It is easy to see that (G2) holds; indeed,

|S(α)| ≤ |S+(α)|+ |S−(α)|+ 6 ≤ 2ρ/10 + 6 ≤ ρ. Next, to see that (G3) holds, let u ∈ S−(α) and v ∈ S+(α).

Then us−(α)P (α)s+(α)v is a path from u to v in T [U(α)]. Item (G4) follows from the following observation,

by taking X(α) to be the set of vertices u such that u is an in-neighbour of s+(α) but an out-neighbour

of some vertex in U(α) \ S(α) or u is an out-neighbour of s−(α) but an in-neighbour of some vertex in

U(α) \ S(α).
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Claim 4.2. Let α ∈ A1. Then all but at most ρσ1kt/2 out-neighbours of s−(α) are out-neighbours of all

vertices in U(α) \ S(α). Similarly, all but at most ρσ1kt/2 in-neighbours of s+(α) are in-neighbours of all

vertices in U(α) \ S(α).

Proof. Write s = s−(α), P = P (α) and let u ∈ U(α) \ S(α). Then u is a vertex in P (α) which is not one of

the first three vertices.

First note that all edges both of whose ends are in V (P ), and which are not edges of P , are directed

‘backwards’, namely if P = (x1 . . . xt) and if 1 ≤ i < j− 1 < t, then xjxi is a directed edge in T . This is due

to the minimality assumption on P; if instead xixj is an edge, then P can be replaced by (x1 . . . xixj . . . xt),

contradicting minimality (see the leftmost part of Figure 2). In particular, s has no out-neighbours in V (P )

other than the second vertex in P .

x1 = s

x2

x3

xt

xt−1

P

x1 = s

x2

x3

xt

xt−1

u

y

P

x1 = s

x2

x3

xt

xt−1

u

y1

y2

y3

PQ

Figure 2: Contradiction to minimality in the proof of Claim 4.2

It is easy to see that every out-neighbour of s which is not in U(A1) is also an out-neighbour of u. Indeed,

suppose to the contrary that y is an out-neighbour of s which is an in-neighbour of u. Then P can be replaced

by syuPu→ (where Pu→ is the subpath of P that starts at u and follows P to the end), contradicting the

minimality of P (see the middle part of Figure 2).

Finally, consider β ∈ A1 \ {α}, and write Q = P (β). We claim that all but the last two out-neighbours of

s in Q are out-neighbours of u. Indeed, otherwise there are three out-neighbours y1, y2, y3 of s in Q, that

appear in Q in this order, such that y1 is an in-neighbour of u. Replace the paths P and Q by the following

two path: Q→y1y1uPu→ and sy3Qy3→ (where Q→y is the subpath of Q that starts as in Q and ends at y,

etc.). The vertices of these new paths are in V (P ) ∪ V (Q), but avoid y2, contradicting the minimality of P
(see the rightmost figure in Figure 2).
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To summarise, the number of out-neighbours of s that are not out-neighbours of some vertex in U(α) \S(α)

is at most

1 + 2(|A1| − 1) +
∣∣∣ ⋃
β∈A1

S+(β)
∣∣∣+
∣∣∣ ⋃
β∈A1

S−(β))
∣∣∣ ≤ (2 + 2ρ/10)σ1kt ≤ ρσ1kt/2,

as claimed. An analogous argument can be used to prove the second part of the observation.

It remains to prove (G5). We form an auxiliary bipartite graph H, with parts A1 and W := V \
⋃
α S(α),

where αw (with α ∈ A1 and w ∈ W ) is an edge if w has no in-neighbours in S+(α). Write ∆− :=

maxa∈A+ d−(a). By (2), dH(α) ≤ ∆−

1012σ1
. It follows that e(H) ≤ |A1| · ∆−

1012σ1
≤ kt∆−

1012 . Recall that a vertex

w is in V −bad if w ∈ W and dH(w) ≥ kt, implying that |V −bad| ≤ e(H)/kt ≤ ∆−

1012 . As every vertex w in W

satisfies d−(w) ≥ ∆− (by choice of ∆− and A+), we have d−(w) ≥ 1012|V −bad|. A similar argument shows

that d+(w) ≥ 1012|V +
bad|, establishing (G5).

Let S(α), S+(α), S−(α), s+(α), s−(α), U(α), with α ∈ A1, be as in Proposition 4.1. For a subset A ⊆ A1,

define

S(A) :=
⋃
α∈A

S(α), U(A) :=
⋃
α∈A

U(α), W (A) := V \ U(α).

Let Vokay, V +
bad and V −bad be defined as in Proposition 4.1, namely,

Vokay = V \
⋃
α∈A1

S(α)

V +
bad = {u ∈ Vokay : u has no out-neighbours in S−(α) for at least kt indices α ∈ A1}

V −bad = {u ∈ Vokay : u has no in-neighbours in S+(α) for at least kt indices α ∈ A1}.

Define also

Vbad := V +
bad ∩ V

−
bad, V +

good := Vokay \ V +
bad, V −good := Vokay \ V −bad, Vgood := V +

good ∩ V
−
good.

Without loss of generality, we assume that |V −bad| ≥ |V
+
bad|. The following claim establishes additional

properties of the sets defined above. (Note the difference between (G7) and (G8), which is due to the

assumption |V −bad| ≥ |V
+
bad|.)

Claim 4.3. The following properties holds.

(G6) |Vgood| ≥ n/2.

(G7) Every vertex in Vokay has at least max{1011|V +
bad|, τ1kt/2} out-neighbours in V +

good.

(G8) Every vertex in Vokay has at least max{1011|V −bad|, τ1kt/2} in-neighbours in Vgood.

(G9) Every vertex in V has at least max{1011|V \ Vokay|, τ1kt/2} out- and in-neighbours in Vokay.
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Proof. To see (G6), note that (G4) implies that |V +
bad|, |V

−
bad| ≤ n/1012. Additionally, |V \ Vokay| ≤ ρσ1kt ≤

τ1kt/10 ≤ n/10 (using (G2), τ1 � ρ, σ1 and that T has minimum out- and in-degree at least τ1kt.) Altogether

we have |V \Vgood| = |Vbad|+ |V \Vokay| ≤ |V +
bad|+ |V

−
bad|+ |V \Vokay| ≤ n/2, with room to spare. It follows

that |Vgood| ≥ n/2, as claimed.

Note that by (G5) and because T has minimum out-degree at least τ1kt, every vertex in Vokay has at least

max{1012|V +
bad|, τ1kt} out-neighbours. Note also that |V \ V +

good| ≤ |S(A1)| + |V +
bad| ≤ ρσ1kt + |V +

bad| ≤
1
2 max{1012|V +

bad|, τ1kt} (using τ1 � ρ, σ1). Property (G7) follows.

A similar argument implies (G8). Indeed, by (G5) and the minimum degree assumption on T , every vertex

in Vokay has in-degree at least max{1012|V −bad|, τ1kt}. Thus |V \ Vgood| ≤ |S(A1)|+ |V +
bad|+ |V

−
bad| ≤ ρσ1kt+

2|V −bad| ≤
1
2 max{1012|V −bad|, τ1kt}, using |V −bad| ≥ |V

+
bad|, and (G8) follows.

Finally, if u ∈ V and ν ∈ {+,−} then |Nν(u)∩ Vokay| ≥ τ1kt− σ1ρkt ≥ max{1011|V \ Vokay|, τ1kt/2} (using

V \ Vokay = S(A1)), proving (G9).

4.2 Many available neighbours

Our aim in the next few steps is to form t pairwise disjoint sets, each consisting of 10k gadgets U(α) as well

as some additional vertices, and each inducing a k-connected set. The simplest way to form such a set is to

let U be a union of 10k gadgets, let W be a set of vertices which have out- and in-neighbours in all but at

most k gadgets in U , such that each vertex in U has at least k out- and in-neighbours in W . In practice,

this requirement on W is a bit too strong, e.g. because of the existence of vertices that have out-neighbours

in few of the sets S−(α). In this subsection we trim the collection of gadgets so that each vertex in each

remaining gadget U(α) has many out- and in-neighbours that are good candidates for being in such a set W

for a set U as above that contains U(α). Below, we give a formal definition for this notion and then state

Proposition 4.4 which formalises this assertion.

Given a subset A ⊆ A1, an element α ∈ A and a vertex u, we say that u is available for α with respect to

A if one of the following holds, where W := W (A \ {α}); namely W =
(
V \

⋃
β∈A U(β)

)
∪ U(α).

(A1) u ∈ Vgood ∩W .

(A2) u ∈ (V +
good \ V

−
good) ∩W and u has at least τ2kt in-neighbours as in (A1).

(A3) u ∈ (V −good \ V
+
good) ∩W and u has at least τ2kt out-neighbours as in (A1) or (A2).

(A4) u ∈ Vbad∩W and u has at least τ2kt out-neighbours as in (A1) or (A2), and at least τ2kt in-neighbours

as in (A1).

Our goal in this subsection is to prove the following proposition.

Proposition 4.4. There is a subset A2 ⊆ A1 of size σ2kt such that s has at least τ2kt out- and in-neighbours

that are available for α with respect to A2, for every α ∈ A2 and s ∈ S(α).
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We break down the proof of Proposition 4.4 into three lemmas. Before stating them, we need some notation.

Define ϕ0, ϕ1, ϕ2, ϕ3 as follows.

ϕ0 :=
τ1
4
, ϕ1 :=

ϕ0

26ρ
, ϕ2 :=

ϕ1

214ρ2
, ϕ3 :=

ϕ2

214ρ2
.

Note that, as τ1 � τ2, we have ϕ3 ≥ τ2. For a vertex u, write

N+
okay(u) := N+(u) ∩ Vokay N−okay(u) := N−(u) ∩ Vokay

N+
good(u) := N+(u) ∩ V +

good N−good(u) := N−(u) ∩ Vgood

(Note the difference between N+
good(u) and N−good(u)). Then |Nν

okay(u)| ≥ τ1kt/2 for every u ∈ V and

ν ∈ {+,−}, and |Nµ
good(u)| ≥ τ1kt/2 for every u ∈ Vokay and µ ∈ {+,−}, by (G7), (G8) and (G9).

Lemma 4.5. There is a subset C1 ⊆ A1 of size at least |A1|/36ρ2 such that |Nν
okay(s)∩W (C1 \ {α})| ≥ ϕ1kt

for every α ∈ C1, s ∈ S(α) and ν ∈ {+,−}.

Lemma 4.6. Let C1 be as in Lemma 4.5. Then there is a subset C2 ⊆ C1 of size at least |C1|/64ρ4 such that,

for every α ∈ C2, s ∈ S(α) and ν ∈ {+,−}, the set Nν
okay(s) ∩W (C2 \ {α}) contains at least ϕ2kt vertices u

satisfying |Nµ
good(u) ∩W (C2 \ {α})| ≥ ϕ2kt for µ ∈ {+,−}.

Lemma 4.7. Let C2 be as in Lemma 4.6. Then there is a subset C3 ⊆ C2 of size at least |C2|/64ρ4 such that

for every α ∈ C3, s ∈ S(α) and ν ∈ {+,−} the following holds: Nν
okay(s)∩W (C3 \{α}) contains at least ϕ3kt

vertices u for which Nµ
good(u) ∩W (C3 \ {α}) contains at least ϕ3kt vertices v such that |N−good(v) ∩W (C3 \

{α})| ≥ ϕ3kt, for µ ∈ {+,−}.

Proof of Proposition 4.4 using Lemmas 4.5 to 4.7. Let C1, C2 and C3 be as in Lemma 4.5, Lemma 4.6 and

Lemma 4.7, respectively. Define A2 := C3. Then

|A2| = |C3| ≥
|A1|

36ρ2 · 64ρ4 · 64ρ4
≥ σ1kt

610ρ10
≥ σ2kt.

(using ρ = σ2 = 104 and σ1 = 1060.)

Fix α ∈ A2 and s ∈ S(α) and write W := W (A2 \ {α}). We claim that every vertex u ∈ W , such that

Nµ
good(u)∩W contains at least τ2kt vertices v with |N−good(v)∩W | ≥ τ2kt, for µ ∈ {+,−}, is available for α

with respect to A2. To see this, we need to show that one of (A1) to (A4) holds for u.

• If u ∈ Vgood then (A1) automatically holds.

• If u ∈ V +
good \ V

−
good then, using |N−good(u) ∩W | ≥ τ2kt, we see that (A2) holds.

• Suppose that u ∈ V −good \ V
+
good. Note that every vertex v ∈ N+

good(u) ∩W with |N−good(v) ∩W | ≥ τ2kt
satisfies one of (A1) or (A2). Then, since u has at least τ2kt such out-neighbours v, it satisfies (A3).

• Suppose now u ∈ Vbad. The reasoning from the previous item shows that u has at least τ2kt out-

neighbours satisfying (A1) or (A2), and the reasoning from the second item show that u has at least

τ2kt in-neighbours satisfying (A1). In particular, (A4) holds.
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Recalling that ϕ3 ≥ τ2, it follows from the choice of C3 that s has at least τ2kt out- and in-neighbours that

are available for α with respect to A2. We conclude that A2 satisfies the requirements of Proposition 4.4.

We now prove Lemmas 4.5 to 4.7.

4.2.1 Proof of Lemma 4.5

Proof. In order to find an appropriate set C1, we will find subsets C′′′1 , C′′1 ⊆ C′1 ⊆ C0 and use them to define

C1. The set C′1 will be taken to satisfy the properties of the following claim.

Claim 4.8. There is a subset C′1 ⊆ C0 of size at least |C0|/9ρ2 such that for every α ∈ C′1, if for some

s ∈ S(α) and ν ∈ {+,−} there exists β ∈ C′1 \{α} with |Nν
okay(s)∩U(β)| ≥ ϕ1kt, then there exists γ ∈ C0 \C′1

with |Nν
okay(s) ∩ U(γ)| ≥ ϕ1kt.

Proof. Fix an arbitrary ordering ≺ of C0. First, run the following process. Start with X1 = Y1 = ∅. As long

as the set C0 \ (X1 ∪ Y1) is non-empty, take α to be the first element this set (according to ≺) and put it in

X1. Then, for each s ∈ S(α) and ν ∈ {+,−}, if |Nν
okay(s)∩U(β)| ≥ ϕ1kt for some β ∈ C0 \ (X1 ∪ Y1 ∪ {α}),

put one such β in Y1.

Next, we run a similar process on X1. Start with X2 = Y2 = ∅. As long as the set X1 \ (X2 ∪ Y2) is

non-empty, let α be the last element in this set (according to ≺) and put α in X2. Then, for every s ∈ S(α)

and ν ∈ {+,−}, if |Nν
okay(s) ∩ U(β)| ≥ ϕ1kt for some β ∈ X1 \ (X2 ∪ Y2 ∪ {α}), put one such β in Y2.

Now set C′1 := X2. We claim that this choice satisfies the requirements of the claim. To see this observe

first that |X1| ≥ |C0|/(2 maxα |S(α)| + 1) ≥ |C0|/3ρ, because {X1, Y1} is a partition of C0 and for each

element α which is put in X1, at most 2|S(α)| elements are put in Y1. Similarly, |X2| ≥ |X1|/3ρ ≥ |C0|/9ρ2.

Next, suppose that for some α ∈ X2 there exist s ∈ S(α), ν ∈ {+,−} and β ∈ X2 \ {α} such that

|Nν
okay(s)∩U(β)| ≥ ϕ1kt. If α ≺ β then by choice of X1 there exists γ ∈ Y1 such that |Nν

okay(s)∩U(γ)| ≥ ϕ1kt.

Similarly, if β ≺ α then there exists γ ∈ Y2 such that |Nν
okay(s) ∩ U(γ)| ≥ ϕ1kt.

Take C′′1 to be a subset of C′1, chosen uniformly at random, and let C′′′1 be the set of elements α in C′1 such

that |Nν
okay(s) ∩W (C′′1 \ {α})| ≥ ϕ1kt for every s ∈ S(α) and ν ∈ {+,−}.

Claim 4.9. P[α ∈ C′′′1 ] ≥ 1/2 for every α ∈ C′1.

Using Claim 4.9, which we prove below, we find that each of the events {α ∈ C′′1 } and {α ∈ C′′′1 } occurs

with probability at least 1/2, for every α ∈ C′1. Noting that these events are independent for α ∈ C′1, it

follows that E(|C′′1 ∩ C′′′1 |) ≥ |C′1|/4 ≥ |C0|/36ρ2. Take an instance where the intersection C′′1 ∩ C′′′1 has size at

least |C0|/36ρ2, and set C1 to be this intersection. So C1 has the required size and the desired property that

|Nν
okay(s) ∩W (C1 \ {α})| ≥ ϕ1kt for every α ∈ C1, s ∈ S(α) and ν ∈ {+,−}.
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Proof of Claim 4.9. Fix α ∈ C′1, s ∈ S(α) and ν ∈ {+,−}. Write C′ := C′1 \ {α}, W ′ := W (C′), W ′′ :=

W (C′′1 \ {α}) and N := Nν
okay(s). Let Es,ν be the event that |N ∩ W ′′| ≥ ϕ1kt. We will show that

P[Es,ν ] ≥ 1− exp(−ϕ0/8ϕ1). This will imply that

P[α ∈ C′′′1 ] = P

[⋂
s,ν

Es,ν

]
≥ 1− 2|S(α)| · exp(−ϕ0/8ϕ1) ≥ 1− 2ρ exp(−8ρ) ≥ 1/2,

as claimed (using ϕ0/ϕ1 = 26ρ).

We now estimate P[Es,ν ]. Recall that |N | ≥ τ1kt/2. If |N∩W ′| ≥ ϕ1kt, then P[Es,ν ] = 1 (using W ′ ⊆W ′′) so

suppose this is not the case. We claim that |N ∩U(β)| ≤ ϕ1kt for every β ∈ C′. Indeed, if |N ∩U(β)| ≥ ϕ1kt

for some β ∈ C′, then by choice of C′1 there exists γ ∈ C0 \ C′1 such that |N ∩ U(γ)| ≥ ϕ1kt. In particular,

|N ∩W ′| ≥ ϕ1kt, a contradiction to the previous assumption.

For each β ∈ C′ write mβ := |N ∩ U(β)| and let Xβ be a random variable which is mβ when β /∈ C′′1 and

0 otherwise. Set X :=
∑
β Xβ , so that X = |N ∩ (W ′′ \ W ′)|. By the previous paragraph, mβ ≤ ϕ1kt

for every β ∈ C′ and
∑
βmβ = |N \ W ′| ≥ τ1kt/2 − ϕ1kt ≥ τ1kt/4 = ϕ0kt. Thus, by Proposition 3.1,

P[Es,ν ] ≥ P[X ≥ ϕ1kt] ≥ 1− exp(−ϕ0/8ϕ1), as claimed.

4.2.2 Proof of Lemma 4.6

The proof of Lemma 4.6 will follow from two applications of the following lemma.

Lemma 4.10. Let D1 ⊆ C1, µ ∈ {+,−} and θ1 ≤ ϕ1, and write θ2 = θ1/2
7ρ. For each α ∈ D1, s ∈ S(α)

and ν ∈ {+,−}, let Mν(s) be a subset of Vokay of size at least θ1kt. Then there is a subset D2 ⊆ D1 of

size at least |D1|/36ρ2 such that for every α ∈ D2, s ∈ S(α) and ν ∈ {+,−} there are at least θ2kt vertices

u ∈Mν(s) such that |Nµ
good(u) ∩W (D2 \ {α})| ≥ θ2kt.

The proof of Lemma 4.6 follows easily from Lemma 4.10. Indeed, first apply the latter lemma to C1 with

µ = + and θ1 = ϕ1, where, for α ∈ C1, we define Mν(s) := Nν
okay(s)∩W (C1\{α}); denote the resulting set C′2.

Now apply the lemma again to C′2 with µ = − and θ1 = ϕ1/2
7ρ, where for α ∈ C′2 we take Mν(s) to be the set

of vertices u in Nν
okay(s)∩W (C1\{α}) for which |N+

good(u)∩W (C′2\{α})| ≥ θ2kt (note that |Mν(s)| ≥ θ1kt for

every s ∈ S(α) and ν ∈ {+,−} by the choice of C′2); take C2 to be the set resulting of the latter application.

Then |C2| ≥ |C1|/362ρ4 and for every α ∈ C2, s ∈ S(α) and ν ∈ {+,−}, the set Nν
okay(s) ∩W (C1 \ {α})

contains at least (ϕ1/2
14ρ2)kt = ϕ2kt vertices u satisfying |Nµ

good(u) ∩W (C2 \ {α})| ≥ ϕ2kt for µ ∈ {+,−},
as required for Lemma 4.6.

Proof of Lemma 4.10. We proceed similarly to the proof of Lemma 4.5, first picking a subset D′2 ⊆ D1 as in

the following claim.

Claim 4.11. There is a subset D′2 ⊆ D1 of size at least |D1|/9ρ2 such that for every α ∈ D′2, s ∈ S(α) and

ν ∈ {+,−}, if there exists β ∈ D′2 \ {α} for which Mν(s) contains at least θ2kt vertices u with |Nµ
good(u) ∩

U(β)| ≥ θ2kt, then there exists γ ∈ D1 \ D′2 with the same property.
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Proof. The proof is very similar to that of Claim 4.8. We pick an ordering ≺ of C1 and find partitions

{X1, Y1} of C1 and {X2, Y2} of X1 as before, namely that after adding an element α to X1, for each s ∈ S(α)

and ν ∈ {+,−}, if there exists β in C1 \ (X1 ∪ Y1 ∪ {α}) such that Mν(s) contains at least θ2kt vertices u

with |Nµ
good(u)∩U(β)| ≥ θ2kt, then we move one such β to Y1. A similar modification is done when defining

{X2, Y2}. Take D′2 := X2 and analyse as before.

Take D′′2 to be a random subset of D′2, chosen uniformly at random, and let D′′′2 be the set of elements

α ∈ D′2 such that for every s ∈ S(α) and ν ∈ {+,−}, the set Mν(s) contains at least θ2kt vertices u for

which |Nµ
good(u) ∩W (D′′2 \ {α})| ≥ θ2kt. As above, the next claim implies that there is a suitable choice of

D2 with |D2| ≥ |D′2|/4 ≥ |D1|/36ρ2.

Claim 4.12. P[α ∈ D′′′2 ] ≥ 1/2 for every α ∈ D′2.

Proof. Fix α ∈ D′2, s ∈ S(α) and ν ∈ {+,−}. We define the following notation.

D′ := D′2 \ {α}, D′′ := D′′2 \ {α}.

W ′ := W (D′), W ′′ := W (D′′).

Additionally, we define

M := Mν(s), N ′(u) := Nµ
good(u) for u ∈M.

Let E be the event that M has at least θ2kt vertices u for which |N ′(u) ∩W ′′| ≥ θ2kt. We will show that

P[E] ≥ 1− exp(−θ1/16θ2), which will suffice to prove the claim.

Define f : M → D′ ∪ {∞} as follows: for u ∈ M , if there is β ∈ D′ such that |N ′(u) ∩ U(β)| ≥ θ2kt,

set f(u) := β (there may be several such β, pick one arbitrarily); otherwise, set f(u) := ∞. Define

M∞ := N ∩ f−1(∞). We consider two cases: |M∞| ≥ 2θ2kt and |M∞| ≤ 2θ2kt.

Consider the former case. Given u ∈ M , we claim that |N ′(u) ∩ W ′′| ≥ θ2kt holds with probability at

least 1 − 2 exp(−θ1/8θ2). Indeed, this event holds with probability 1 if |N ′(u) ∩W ′| ≥ θ2kt, so we assume

|N ′(u) ∩W ′| ≤ θ2kt. Denote mβ := |N ′(u) ∩ U(β)| for β ∈ D′, and let Xβ be a random variable which

takes value mβ when β /∈ D′′2 and is 0 otherwise. Set X :=
∑
β Xβ . Then mβ ≤ θ2kt for every β ∈ D′

(because u ∈M∞) and
∑
βmβ = |N ′(u) \W ′| ≥ τ1kt/2− θ2kt ≥ θ1kt (by assumption on |N ′(u) ∩W ′| and

using |N ′(u)| ≥ τ1kt/2, which holds for every u ∈ Vokay). By Proposition 3.1 and definition of X, we have

|N ′(u) ∩W ′′| ≥ X ≥ θ2kt with probability at least 1− exp(−θ1/8θ2). It follows from Proposition 3.2 that,

with probability at least 1− exp(−θ1/16θ2), the event |N ′(u) ∩W ′′| ≥ θ2kt holds for at least θ2kt values of

u ∈M∞ (using the assumption |M∞| ≥ 2θ2kt). This proves P[E] ≥ 1− exp(−θ1/16θ2) in this case.

Now consider the latter case, where |M∞| ≤ 2θ2kt. Then |M ∩ f−1(D′)| ≥ (θ1 − 2θ2)kt ≥ θ1kt/2. If there

is β ∈ D′ which is the image of at least θ2kt vertices u in M , then P[E] = 1 by choice of D′2. So suppose

that every β in D′ is the image of at most θ2kt vertices u in M . Let Xβ be the random variable which

is |M ∩ f−1(β)| if β /∈ D′′ and 0 otherwise. Setting X :=
∑
β Xβ , we have X ≥ θ2kt with probability

at least 1 − exp(−θ1/16θ2), by Proposition 3.1. Note that X lower bounds the number of vertices u ∈ N

13



for which |N ′(u) ∩ W ′′| ≥ θ2kt, as each vertex in M is counted at most one time. Thus, this implies

P[E] ≥ 1− exp(−θ1/16θ2), as required.

4.2.3 Proof of Lemma 4.7

As above, we prove Lemma 4.7 by twice applying the following lemma.

Lemma 4.13. Let D1 ⊆ C2 and θ1 ≤ ϕ2, and write θ2 = θ1/2
8ρ. For each α ∈ D1, s ∈ S(α) and ν ∈ {+,−}

let Mν(s) be a set of size at least θ1kt such that each u ∈Mν(s) is associated with a subset Mα(u) of Vokay

of size at least θ1kt. Then there is a subset D2 ⊆ D1 of size at least |D1|/36ρ2 such that for every α ∈ D2,

s ∈ S(α) and ν ∈ {+,−} there are at least θ2kt vertices u ∈ Mν(s) such that Mα(u) contains at least θ2kt

vertices v with |N−good(v) ∩W (D2 \ {α})| ≥ θ2kt.

Before proving Lemma 4.13, we show that it implies Lemma 4.7. Write Wα := W (C2 \ {α}) here for

brevity. Indeed, first apply the former lemma to C2 with θ1 = ϕ2, where Mα(u) := N+
good(u) ∩Wα and

Mν(s) is the set of vertices u in Nν
okay(s) ∩ Wα for which |Nµ

good(u) ∩ Wα| ≥ θ1kt for µ ∈ {+,−} (so

|Mν(s)| ≥ θ1kt for α ∈ C2, s ∈ S(α) and ν ∈ {+,−}). Denote the resulting set C′2 and apply the same

lemma to C′2, with θ1 = ϕ2/2
8ρ, where now Mα(u) := N−good(u) ∩Wα and Mν(s) is the set of vertices u in

Nν
okay(s) ∩Wα for which |N−good(u) ∩Wα| ≥ θ1kt and N+

good(u) ∩Wα contains at least θ1kt vertices v with

|N−good(v)∩W (C′2 \{α})| ≥ θ1kt. Take C3 to be the set resulting from the latter application. Then C3 satisfies

the requirements of Lemma 4.7.

Proof. We pick a subset D′2 ⊆ D1 as in the following claim, which can be proved similarly to Claim 4.8 and

Claim 4.11.

Claim 4.14. There exists D′2 ⊆ D1 of size at least |D1|/9ρ2 such that for every α ∈ D′2, s ∈ S(α) and

ν ∈ {+,−}, if Mν(s) contains at least θ2kt vertices u such that Mα(u) contains at least θ2kt vertices v with

|N−good(v) ∩ U(β)| ≥ θ2kt, for some β ∈ D′2 \ {α}, then there exists γ ∈ D1 \ D′2 with the same property.

As usual, let D′′2 be a random subset of D′2, chosen uniformly at random, and let D′′′2 be the set of elements

α ∈ D′2 such that for every vertex s ∈ S(α) and ν ∈ {+,−}, the set Mν(s) contains at least θ2kt vertices u

for which Mα(u) contains at least θ2kt vertices v that satisfy |N−good(v) ∩W (D′′2 \ {α})| ≥ θ2kt. Again, as

usual, it suffices to prove the following claim.

Claim 4.15. P[α ∈ D′′′3 ] ≥ 1/2 for α ∈ D′3.

Proof. Fix α ∈ D′2, s ∈ S(α) and ν ∈ {+,−}. We define the following notation.

D := D1 \ {α}, D′ := D′2 \ {α}, D′′ := D′′2 \ {α}.
W := W (D), W ′ := W (D′), W ′′ := W (D′′).

Additionally, let M ′′(v) := N−good(v), M ′(u) := Mα(u) and M := Mν(s).
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Let E be the event that M has at least θ2kt vertices u for which M ′(u) contains at least θ2kt vertices v such

that |M ′′(v) ∩W ′′| ≥ θ2kt. As before, it suffices to prove P[E] ≥ 1− exp(−θ1/32θ2).

Define functions f1, f2, f3, f4 from subsets of V to D′ ∪ {∞}, as follows.

1. For w ∈ V , if w ∈ U(β) with β ∈ D′, put f1(w) := β; otherwise f1(w) :=∞.

2. For v ∈ Vokay, if there exists β ∈ D′ such that f1(w) = β for at least θ2kt vertices w in M ′′(v), put

f2(v) := β (there may be several suitable choices of β, pick one arbitrarily); otherwise f2(v) :=∞.

3. For u ∈ M , if there exists β ∈ D′ such that f2(v) = β for at least θ2kt vertices v in M ′(u), put

f3(u) := β; otherwise f3(u) :=∞.

4. If there exists β ∈ D′ such that f3(u) = β for at least θ2kt vertices u in M , put f4(s) := β; otherwise

f4(s) :=∞.

We draw the following conclusions regarding the above functions.

• Let v ∈ Vokay satisfy f2(v) =∞. Then |M ′′(v)∩W ′′| ≥ θ2kt with probability at least 1−exp(−θ1/8θ2),

by Proposition 3.1 (using |M ′′(v)| ≥ τ1kt/2).

• Let u ∈ M satisfy f3(u) = ∞. We claim that M ′(u) contains at least θ2kt vertices v with |M ′′(v) ∩
W ′′| ≥ θ2kt, with probability at least 1 − exp(−θ1/16θ2). Indeed, if |M ′(u) ∩ f−1

2 (∞)| ≥ 2θ2kt, this

follows from Proposition 3.2 and the previous item, and, otherwise, it follows from Proposition 3.1,

using |M ′(u)| ≥ θ1kt.

• Suppose that f4(s) =∞. We claim that, with probability at least 1−exp(−θ1/32θ2), the set M contains

at least θ2kt vertices u for which M ′(u) contains at least θ2kt vertices v with |M ′′(v)∩W ′′| ≥ θ2kt. If

|M ∩ f−1
3 (∞)| ≥ 2θ2kt, then the claim follows from Proposition 3.2 and the previous item. Otherwise,

it follows from Proposition 3.1 (using |M | ≥ θ1kt).

In particular, if f4(s) =∞ then P[E] ≥ 1− exp(−θ1/32θ2), and, otherwise, P[E] = 1, by choice of D′2.

4.3 Partition with many eligible neighbours

In this subsection, we obtain a collection of pairwise disjoint sets of 10k gadgets, such that every vertex in

each of these gadgets has many out- and in-neighbours that are candidates for connecting the gadgets in its

set. Here is a definition of such candidates, and in Proposition 4.16 we state the main result of this section,

which proves the existence of a collection as described.

For subsets A ⊆ A2 and W ⊆ V , we say that a vertex u is eligible for A in W if one of the following holds.

(E1) u ∈ Vgood ∩ W and u has an out-neighbour in all but at most k sets S−(α) with α ∈ A and an

in-neighbour in all but at most k sets S+(α) with α ∈ A.
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(E2) u ∈ (V +
good \ V

−
good)∩W and u has an out-neighbour in all but at most k set S−(α) with α ∈ A and at

least τ3kt in-neighbours that satisfy (E1).

(E3) u ∈ (V −good \ V
+
good) ∩W and u has an in-neighbour in all but at most k sets S+(α) with α ∈ A and at

least τ3kt out-neighbours that satisfy (E1) or (E2).

(E4) u ∈ Vbad ∩W and u has at least τ3kt in-neighbours that satisfy (E1) and at least τ3kt out-neighbours

that satisfy (E1) or (E2).

We remark that this definition is similar to that of an available vertex, with the main difference being that

whenever a vertex is required to have out-neighbours in all but at most kt sets S(α) with α ∈ A for it to be

available for A, here it is required to have out-neighbours in all but at most k sets S(α) (and similarly for

in-neighbours).

Recall that s+(α) and s−(α) are vertices in S(α) and X(α) is a set of size at most ρσ1kt such that all

out-neighbours of s+(α) in V \X(α) are also out-neighbours of every vertex in U(α) \ S(α), and similarly

for in-neighbours of s−(α).

Proposition 4.16. There is a subset A3 ⊆ A2 and a partition {B1, . . . ,Bσ3t} of A3, such that

• |Bi| = 10k for every i ∈ [σ3t].

• For every i ∈ [σ3t], α ∈ Bi and u ∈ S(α), the vertex u has at least τ3kt out- and in-neighbours that are

eligible for Bi in W (A3 \ Bi) \X(α).

• For every i ∈ [σ3t], there are at least n/10 vertices in Vgood ∩W (A3) that are eligible for Bi.

Proof. Let ϕ = 16σ3; so ϕ = 160. We partition A2 into ϕt sets {C1, . . . , Cϕt}, uniformly at random. For

α ∈ A2, let i(α) be the (random) index in [ϕt] such that α ∈ Ci(α), and write Wα := W (A2 \ Ci(α)) \X(α).

Claim 4.17. Let α ∈ A2 and let u be a vertex which is available for α (with respect to A1). Then

P[u is eligible for Ci(α) in Wα] ≥ 1− 3 exp(−k/12ϕ).

Proof. Write C := Ci(α) and W := Wα. We consider four cases, according to the four possible scenarios in

the definition of an available vertex.

First, suppose that u ∈ Vgood ∩W ; so u has in-neighbours in all but at most kt sets S+(β) with β ∈ A2, and

similarly for out-neighbours in S−(β). Denote the set of elements β ∈ A2 \{α} for which u does not have an

in-neighbour in S+(α) or an out-neighbour in S−(α) by X ; so |X | ≤ 2kt, and the expected size of C ∩ X is

at most 2k/ϕ. It follows from Chernoff’s bounds (see Lemma 3.3) that |C ∩X | ≤ 4k/ϕ ≤ k with probability

at least 1− exp(−2k/3ϕ). In particular, u is eligible for C (in W ) with probability at least 1− exp(−2k/3ϕ).

Next, suppose that u ∈ (V +
good \ V

−
good) ∩ W , so u has out-neighbours in all but at most kt sets S−(β)

and it has at least τ2kt − |X(α)| ≥ τ2kt/2 in-neighbours in Vgood ∩ W (using τ2 � ρ, σ1); denote this

set of in-neighbours by N . First observe that every element in N is eligible for α with probability at least

1−exp(−2k/3ϕ), by the previous paragraph. By Proposition 3.2, with probability at least 1−exp(−k/3ϕ), at
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least (1−exp(−k/3ϕ))|N | ≥ τ3kt elements of N are eligible for α (using τ2 � τ3 and that k is large). Similarly

to the previous paragraph, with probability at least 1 − exp(−2k/3ϕ) the vertex u has out-neighbours in

all but at most k sets S−(β) with β ∈ C. It follows that u is eligible for α with probability at least

1− 2 exp(−k/3ϕ).

The next case is when u ∈ (V −good \ V
+
good) ∩W . Then u has in-neighbours in all but at most kt sets S+(β)

and it has at least τ2kt/2 out-neighbours as in (A1) or (A2). Similarly to the above, with probability at

least 1 − 2 exp(−k/6ϕ), at least a (1 − 2 exp(−k/6ϕ))-fraction of u’s out-neighbours that satisfy (A1) or

(A2) are eligible for u. Also, u has in-neighbours in all but at most k sets S+(β), with probability at least

1− exp(−2k/3ϕ). Altogether it follows that u is eligible for α with probability at least 1− 3 exp(−k/6ϕ).

Finally, if u is as in (A4), then, using arguments as in the previous two paragraphs, with probability at least

1− 3 exp(−k/12ϕ) it has at least τ3kt out- and in-neighbours that are eligible for α.

We claim that the following three events hold simultaneously with positive probability.

(a) For all but at most t values of α in A2, every u ∈ S(α) has at least τ3kt out- and in-neighbours that

are eligible for Ci(α) in Wα.

(b) All but at most t values i ∈ [ϕt] satisfy |Ci| ≥ 10k.

(c) For all but at most 6t values of i in [ϕt], there are at least n/4 vertices that are eligible for Ci in

W (Ci) ∩ Vgood.

Fix α ∈ A2 and s ∈ S(α). Recall that by choice of A2, the vertex s has at least τ2kt out- and in-neighbours

in W (A2 \ {α}) that are available for α (with respect to A2), and so the number of out- and in-neighbours

of s in Wα that are available for α is at least (τ2 − ρσ1)kt ≥ τ2kt/2 (using W (A2 \ {α}) \Wα ⊆ X(α)).

Thus, by Claim 4.17 and Proposition 3.2, s has at least (1 − 2 exp(−k/24ϕ))τ2kt/2 ≥ τ3kt out-neighbours

that are eligible for Ci(α) in Wα, with probability at least 1 − 2 exp(−k/24ϕ). A similar statement holds

for in-neighbours of s. By a union bound, every s ∈ S(α) has at least τ3kt out- and in-neighbours that are

eligible for Ci(α) in Wα, with probability at least 1− 8ρ exp(−k/24ϕ). It follows from Proposition 3.2 that,

with probability at least 1− 3ρ exp(−k/48ϕ) > 1/2, for at least (1− 3ρ exp(−k/48ϕ))|A2| ≥ |A2| − t values

of α in A2, every s ∈ S(α) has at least τ3kt out- and in-neighbours that are eligible for Ci(α) in Wα. Thus

(a) holds with probability larger than 1/2.

By Chernoff’s bounds (Lemma 3.3), |Ci| ≥ σ2k/2ϕ ≥ 10k (using ϕ = 160 and σ2 = 104) with probability at

least 1− exp(−σ2k/8ϕ), for every i ∈ [ϕt]. It follows from Proposition 3.2 that |Ci| ≥ 10k for all but at most

exp(−σ2k/16ϕ)ϕt ≤ t values of i ∈ [ϕt], with probability at least 1− 2 exp(−σ2k/16ϕ) > 1/2. So (b) holds

with probability larger than 1/2.

Let H be a bipartite auxiliary graph, with parts Vgood and [ϕt], such that ui (with u ∈ Vgood and i ∈ [ϕt])

is an edge in H if u has no in-neighbours in at least k sets S+(α) with α ∈ Ci; or u has no out-neighbours

in at least k sets S−(α) with α ∈ Ci; or u ∈ U(Ci). Then e(H) ≤ 2t · |Vgood| + n ≤ 3t · |Vgood| (using that

|Vgood| ≥ n/2; see (G5)). Thus all but at most 6t values of i in [ϕt] satisfy dH(i) ≤ |Vgood|/2. Given such i,
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at least |Vgood|/2 ≥ n/4 vertices u ∈ Vgood are in W (Ci) and are eligible for Ci. This shows that (c) holds

deterministically.

To summarise, the above three properties hold simultaneously with positive probability. Fix an instance of

{C1, . . . , Cϕt} for which (a), (b) and (c) all hold. Let I be the set of elements i in [ϕt] such that: for every

α ∈ Ci, every s ∈ S(α) has at least τ3kt out- and in-neighbours in Wα that are eligible for Ci; |Ci| ≥ 10k; at

least n/4 vertices in W (Ci) ∩ Vgood are eligible for Ci. Then |I| ≥ ϕt − 8t ≥ ϕt/2. Let J be a subset of I

that consists of the |I|/8 ≥ ϕt/16 = σ3t elements i in I for which U(Ci) is smallest; so |
⋃
j∈J U(Cj)| ≤ n/8.

For each j ∈ J , let C′j be a subset of Cj of size exactly 10k. Let j1, . . . , jσ3t ∈ J be distinct, let Bi := C′ji for

i ∈ [σ3t], and set A3 :=
⋃
i Bi.

The sets A3,B1, . . . ,Bσ3t satisfy the requirements of the proposition. Indeed, clearly |Bi| = 10k for i ∈ [σ3t].

The second bullet holds because W (A3 \ Bi) \X(α) ⊆ W (A2 \ Cji) \X(α) = Wα for i ∈ [σ3t] and α ∈ Bi.
Finally, because |U(A3)| ≤ n/8 and by (c), there are at least n/8 vertices in Vgood ∩W (A3) that are eligible

for Bi, for i ∈ [σ3t].

4.4 Many connected sets

We now find a collection of t pairwise disjoint k-connected sets with some additional properties that will

later allow us to add the unused vertices into these sets while maintaining k-connectivity.

Proposition 4.18. There exist pairwise-disjoint sets V1, . . . , Vt such that

• 2k ≤ |Vi| ≤ n/t for i ∈ [t].

• T [Vi] is k-connected for i ∈ [t].

• Each Vi contains at least 10k sets U(α) with α ∈ A3.

• Let Z := V \ (V1 ∪ . . . ∪ Vt). For every i ∈ [t], there are at least n/100 vertices in Z ∩ Vgood that have

at least k out- and in-neighbours in Vi.

The next notion, of helpful vertices, will aid us in the proof of Proposition 4.18. Given subsets A ⊆ A3 and

W ⊆W (A3 \ A), we say that a vertex u is helpful for A in W if one of the following holds.

(H1) u ∈ Vgood ∩W and u has out-neighbours in all but at most k sets S−(α) and in-neighbours in all but

at most k sets S+(α) with α ∈ A.

(H2) u ∈ (V +
good \ V

−
good) ∩W and u has out-neighbours in all but at most k sets S−(α) with α ∈ A and at

least k in-neighbours as in (H1).

(H3) u ∈ (V −good \ V
+
good) ∩W and u has in-neighbours in all but at most k sets S+(α) with α ∈ A and at

least k out-neighbours as in (H1) or (H2).

(H4) u ∈ Vbad ∩W and u has at least k in-neighbours as in (H1) and at least k out-neighbours as in (H1)

or (H2).
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The following claim illustrates how helpful vertices can be used along with sets U(A) to form k-connected

sets.

Claim 4.19. Let A ⊆ A3 be a set of size at least 3k, and let W ⊆W (A3 \A). Suppose every vertex in S(α)

has at least k out- and in-neighbours in W \X(α) that are helpful for A in W , for every α ∈ A. Then there

is a set Y such that U(A) ⊆ Y ⊆W ∪ U(A) and T [Y ] is k-connected.

Proof. Let W ′ be the set of vertices in W that are helpful for A in W . Set Y := W ′ ∪ U(A). We will show

that T [Y ] is k-connected. To do this, we need to show that for every subset Z ⊆ Y of size at most k− 1 and

every u, v ∈ Y \ Z, there is a directed path in T [Y \ Z] from u to v; fix such Z, u, v. Let A′ ⊆ A be the set

of elements α in A such that U(α) is disjoint of Z; so |A′| > 2k.

First suppose that u, v ∈W ′. It is easy to check, by definition of helpfulness and by choice of A′, that there

is a path in Y \ Z from u to all but at most k sets S−(α) with α ∈ A′, and from all but at most k sets

S+(α) with α ∈ A′ to v. In particular, there exists α ∈ A′ such that there is a path from u to S−(α) and

from S+(α) to v. Since U(α) is disjoint of Z, and there is a path from any element of S−(α) to any element

of S+(α) in U(α), it follows that there is a path from u to v in T [Y ′], as required.

Next, if u /∈W ′, then u ∈ U(α) for some α ∈ A. Since every vertex in S(α) has at least k out-neighbours in

W ′ \X(α), the same holds for u by choice of X(α) (see (G4)), and so u has an out-neighbour u′ in W ′ \ Z.

Similarly, if v /∈W ′ then v has an in-neighbour v′ in W ′ \ Z (if v ∈W ′, put v′ = v). Since, by the previous

paragraph, there is a path from u′ to v′ in Y \ Z, it follows that there is a path from u to v in Y \ Z, as

required.

The next claim will allow us to find many helpful vertices for a subset A ⊆ A3.

Claim 4.20. Let A ⊆ A3, let Z be a random subset of W (A3) ∩ Vokay, obtained by picking each vertex

with probability at least 1/100t, independently. Then every vertex u ∈W (A3 \ A), which is eligible for A, is

helpful for A in Z ∪ {u}, with probability at least 1− 3 exp(−τ3k/105).

Proof. Let W ′ be the set of vertices in W (A3) ∩ Vokay that are eligible for A, and let Z ′ := Z ∩W ′. We

think of Z ′ as the union of Z1, Z2, Z3 and Z4, which are random subsets of Vgood ∩W ′, (V +
good \V

−
good)∩W ′,

(V −good \ V
+
good) ∩ W ′ and Vbad ∩ W ′, respectively, each obtained by including each potential vertex with

probability 1/100t, independently. We consider four cases, according to the definition of a helpful vertex. It

will be useful to note that if u is helpful for A in a set S, then it is helpful for A in any set that contains S.

If u ∈ Vgood∩W ′, then u is helpful for A in {u}. In particular, u is helpful for A in Z ′∪{u} with probability

1.

If u ∈ (V +
good \ V

−
good) ∩W ′, then u has at least τ3kt in-neighbours in Vgood ∩W ′. By Chernoff, at least

τ3k/103 ≥ k of them are in Z1, with probability at least 1 − exp(−τ3k/103). In particular, u is helpful in

Z1 ∪ {u}, and thus in Z ′ ∪ {u}, with probability at least 1− exp(−τ3k/103).

Next, suppose that u ∈ (V −good \ V
+
good) ∩W ′, so u has at least τ3kt out-neighbours in V +

good ∩W ′; denote

the set of such out-neighbours by N , and write N1 = N ∩ Vgood and N2 = N \ N1. If |N1| ≥ |N |/2, then

19



by Chernoff, with probability at least 1− exp(−τ3k/104), at least |N1|/103t ≥ τ3k/2000 ≥ k of the vertices

in N1 are in Z1, and so u is helpful in Z1 ∪ {u}, with probability at least 1− exp(−τ3k/104). Now suppose

that |N2| ≥ |N |/2. By the previous paragraph, every v ∈ N2 is helpful for A in Z1 ∪ {v} with probability

at least 1− exp(−τ3k/103). Thus, by Proposition 3.2, with probability at least 1− exp(−τ3k/104), at least

(1 − exp(−τ3k/104))|N2| ≥ τ3kt/4 vertices v in N2 are helpful in Z1 ∪ {v}. Conditioning on Z1 satisfying

this property, by Chernoff, there are at least τ3k/104 ≥ k vertices in N2 that are in Z2 and are helpful in

Z1 ∪ Z2, with probability at least 1 − exp(−τ3k/104). It follows that u is helpful in Z1 ∪ Z2 ∪ {u}, with

probability at least 1− 2 exp(−τ3k/104).

Finally, suppose that u ∈ Vbad. Then u has at least τ3kt out-neighbours in V +
good ∩W ′ and at least τ3kt

in-neighbours in Vgood ∩ W ′; denote these sets of out- and in-neighbours by N+ and N−. By Chernoff,

at least τ3k/103 vertices in N− are in Z1, with probability at least 1 − exp(τ3k/103). By the previous

paragraph and Proposition 3.2, at least k vertices in N+ are helpful in Z1∪Z2∪Z3, with probability at least

1− 2 exp(τ3k/105). It follows that u is helpful in Z ′ ∪ {u} with probability at least 1− 3 exp(−τ3k/105).

To summarise, we showed that every u ∈W ′ is helpful in Z ′∪{u} with probability at least 1−3 exp(−τ3k/105),

where Z ′ is a random subset of W ′ obtained by including each vertex with probability 1/100t. The same thus

holds for Z, which is a random subset of W (A3)∩ Vokay, obtained by including each vertex with probability

at least 1/100t, because we can couple the two random sets so that Z ′ ⊆ Z.

Proof of Proposition 4.18. Let B1, . . . ,B10t,A3 be the sets produced by Proposition 4.16 (recall that σ3 =

10). Let W := W (A3). We partition W into sets Y,W1, . . . ,W10t by putting each vertex in Y with probability

1/2, and otherwise in one of W1, . . . ,W10t, uniformly at random, independently. We claim that the following

properties hold simultaneously with positive probability.

(a) For every i ∈ [10t], there are at least n/100 vertices in Y ∩ Vgood that have at least k out- and

in-neighbours in U(Bi).

(b) For at least 5t values of i, there is a set Zi such that U(Bi) ⊆ Zi ⊆ U(Bi)∪Wi and T [Zi] is k-connected.

Fix i ∈ [10t]. By assumption on Bi, there is a set We ⊆ Vgood ∩W of size at least n/10 whose vertices are

eligible for Bi, namely they have at least k out- and in-neighbours in U(Bi). By Chernoff, |We∩W | ≥ n/100

with probability at least 1− exp(−n/100). Thus, by a union bound, (a) holds with probability at least 3/4.

Fix i ∈ [10t], α ∈ Bi and s ∈ S(α). Let N be the set of out-neighbours of s in (W ∪ U(α)) \ X(α)

that are eligible for Bi; so |N | ≥ τ3kt by the assumptions (see Proposition 4.16). Let p ∈ (0, 1) satisfy

(1−p)2 = 1−1/20t; so p ≥ 1/40t. Let W ′i and W ′′i be two random sets, obtained by including each vertex in

W with probability p, independently. Notice that every vertex in W is in W ′i ∪W ′′i with probability 1/20t,

so we may generate the sets Y,W1, . . . ,W10t by taking Wi to be W ′i ∪W ′′i , then put each vertex in W \Wi

in Y independently with probability (1 − 1/20t)/2, and then put each of the remaining uncovered vertices

in one of W1, . . . ,Wi−1,Wi+1, . . . ,W10t, independently and uniformly at random.

By Claim 4.20 and Proposition 3.2, the set N ′ of vertices u in N that are helpful for Bi in W ′i ∪{u} has size

at least |N |/2, with probability at least 1 − 2 exp(−τ3k/106). Conditioning on this occurring, by Chernoff,
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|N ′ ∩W ′′i | ≥ |N |/103t ≥ τ3k/103 ≥ k with probability at least 1− exp(−|N |/103t) ≥ 1− exp(−τ3k/103). It

follows that s has at least k out-neighbours that are helpful for Bi in (Wi ∪ U(α)) \X(α), with probability

at least 1 − 3 exp(−τ3k/105), and similarly for in-neighbours of s. A union bound, combined with the

assumption that |Bi| = 10k, shows that, with probability at least 1− 60ρk exp(−τ3k/105), for every α ∈ Bi,
every s ∈ S(α) has at least k out- and in-neighbours that are helpful for Bi in (Wi ∪ U(α)) \X(α).

It follows from Proposition 3.2 that the latter property holds for at least 5t values of i ∈ [10t], with probability

at least 3/4. By Claim 4.19, property (b) holds with probability at least 3/4.

This completes the proof that (a) and (b) hold simultaneously with positive probability. It is now easy to

prove Proposition 4.18. Indeed, fix an instance of Y,W1, . . . ,W10t such that (a) and (b) hold. Let I be the

set of indices i ∈ [10t] for which (b) holds (so |I| ≥ 5t). For i ∈ I, let Zi be as in (b). Note that |Zi| ≤ n/t

for all but at most t indices i ∈ I. It follows that there are distinct i1, . . . , it ∈ I such that |Zij | ≤ n/t for

j ∈ [t]. Take Vj := Zij . It is easy to see that the properties in Proposition 4.18 hold.

4.5 Partition into connected sets

We are almost ready to complete the proof of Theorem 1.1. The following proposition does most of the

remaining work.

Proposition 4.21. Let Z, Y, V1 . . . , Vt be disjoint subsets of V that satisfy the following properties.

• 2k ≤ |Vi| ≤ n/t for i ∈ [t].

• T [Vi] is k-connected for i ∈ [t].

• Every vertex in Y has at least k out- and in-neighbours in at least 3t/4 sets Vi with i ∈ [t].

• For every i ∈ [t], there are at least n/103 vertices in Y that have at least k out- and in-neighbours in

Vi.

• Every vertex in Z either has at least k out-neighbours in Vi for at least 3t/4 values of i ∈ [t], or has at

least max{1010|Z|, 100kt} out-neighbours in Y ∪ V1 ∪ . . . ∪ Vt; similarly for in-neighbours.

Then there is a partition {V ′1 , . . . , V ′t } of Z ∪ Y ∪ V1 ∪ . . . ∪ Vt such that Vi ⊆ V ′i and T [V ′i ] is k-connected,

for i ∈ [t].

Proof. For y ∈ Y , let I(y) be the set of elements i ∈ [t] such that y has at least k out- and in-neighbours

in Vi; so |I(y)| ≥ 3t/4 for every y ∈ Y . We form a random partition {Y1, . . . , Yt} of Y as follows: put each

y ∈ Y in one of the sets Yi with i ∈ I(y), uniformly at random and independently of other vertices. Observe

that T [Vi ∪ Yi] is k-connected for every i ∈ [t].

We show that, with positive probability, for every z ∈ Z there exists i ∈ [t] such that z has at least k out-

and in-neighbours in Vi ∪ Yi. If true, there is a partition {Z1, . . . , Zt} of Z such that every z ∈ Zi has at
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least k out- and in-neighbours in Vi ∪ Yi, for i ∈ [t]. Then T [Vi ∪Zi ∪ Yi] is k-connected, and so we can take

V ′i = Vi ∪ Zi ∪ Yi for i ∈ [t].

Fix z ∈ Z. We will show that z has at least k out- and in-neighbours in some set Vi ∪ Yi with i ∈ [t], with

probability larger than 1 − 1/|Z|. This, combined with a union bound, would prove Proposition 4.21, as

explained in the previous paragraph.

Let I+ be the sets of indices i ∈ [t] such that z has at least k out-neighbours in Vi, and define I− analogously

for in-neighbours. Note that z has either at least k out-neighbours or at least k in-neighbours in Vi, for

each i ∈ [t] (as |Vi| ≥ 2k), implying I+ ∪ I− = [t]. Thus, without loss of generality, |I+| ≥ t/2. Note that

if I+ ∩ I− 6= ∅ then z satisfies the above event with probability 1. So we may assume |I−| ≤ t/2, which

implies, by assumption, that z has at least max{1010|Z|, 100kt} in-neighbours in Y ∪ V1 ∪ . . . ∪ Vt.

Let N+ and N− be the out- and in-neighbourhoods, respectively, of z in Y . We consider two cases, according

to the size of N−.

Suppose first that |N−| ≥ min{ 1
2 max{1010|Z|, 100kt}, n/104}. Given a vertex u ∈ N−, it is in

⋃
i∈I+ Yi with

probability at least 1/4 (because |I(u)∩I+| ≥ t/4). It follows by Chernoff that
∣∣N− ∩⋃i∈I+ Yi∣∣ ≥ |N−|/8 ≥

kt (using n ≥ τ1kt), with probability at least 1− exp(−|N−|/32) ≥ 1− exp(−min{n/106, |Z|}) > 1− 1/|Z|.
Hence z has at least k in-neighbours in some set Yi (and at least k out-neighbours in Vi) with i ∈ I+, with

probability larger than 1− 1/|Z|, as required.

Otherwise, |N−| ≤ min{ 1
2 max{1010|Z|, 100kt}, n/104}. Then z has at least 1

2 max{1010|Z|, 100kt} − |Z|
in-neighbours in

⋃
i Vi. Thus, using |Vi| ≤ n/t,

|I−| ≥
1
2 max{1010|Z|, 100kt} − |Z| − kt

n/t
≥ 109|Z|

n/t
.

Also, |N+| ≥ |Y | − |N−| ≥ |Y | − n/104. Let N ′ be the set of vertices u in N+ that have at least k out-

and in-neighbours in Vj , for at least |I−|/104 values j ∈ I−. We claim that |N ′| ≥ n/104. To see this,

form an auxiliary bipartite graph H with parts N+ and I−, such that uj (with u ∈ N+ and j ∈ I−) is an

edge of H if u has at least k out- and in-neighbours in Vj . Then, by assumption on Y and N+, we have

e(H) ≥ |I−| · (n/103−n/104). Since e(H) ≤ |N ′| · |I−|+n · |I−|/104, we find that |N ′| ≥ n/104, as claimed.

Since every vertex in N ′ is in
⋃
j∈I− Yj with probability at least |I−|/104t, the following holds

∣∣∣N ′ ∩ ⋃
j∈I−

Yj

∣∣∣ ≥ |N ′| · |I−|
105t

≥ n|I−|
109 t

≥ k|I−|,

(using n ≥ τ1kt) with probability at least

1− exp(−n|I−|/109t) ≥ 1− exp(−|Z|) > 1− 1/|Z|.

In particular, |Yj ∩N ′| ≥ k for some j ∈ I−, with probability larger than 1− 1/|Z|. Since |Yj ∩N ′| ≥ k and

j ∈ I− imply z has at least k out- and in-neighbours in Yj ∪ Vj , this completes the proof.

Consider sets V1, . . . , Vt as in Proposition 4.18. Let Z := V \ (V1 ∪ . . . ∪ Vt), and write Y := Z ∩ Vgood,
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Z1 := Z∩(V +
good\V

−
good), Z2 := Z∩(V −good\V

+
good), Z3 := Z∩Vbad and Z4 := Z\Vokay. Let {Y1, Y2, Y3, Y4} be a

random partition of Y . We claim that the following properties hold simultaneously with positive probability.

(a) Every vertex in Y has at least k out- and in-neighbours in Vi, for at least 3t/4 values i ∈ [t].

(b) At least n/103 vertices in Yi have at least k out- and in-neighbours in Vj , for i ∈ [4] and j ∈ [t].

(c) Every vertex in Zi either has at least k out-neighbours in at least 3t/4 sets Vi, or has at least

max{1010|Zi|, 100kt} out-neighbours in Z1 ∪ . . . ∪ Zi−1 ∪ Y1 ∪ . . . ∪ Yi ∪ V1 ∪ . . . ∪ Vt; similarly for

in-neighbours.

Note that (a) holds deterministically. Indeed, given y ∈ Y = Vgood, it has out-neighbours in all but at most

kt sets U(α). Since each set Vi contains at least 10k sets U(α) (this follows from the assumption that each

Vi contains a set Bj , which in turn contains at least 10k sets U(α)), it follows that the number of indices

i ∈ [t] for which y has fewer than k out-neighbours in Vi is at most kt/9k = t/9. An analogous argument

holds for in-neighbours of y, showing that y has at least k out- and in-neighbours is at least 7t/9 ≥ 3t/4 sets

Vi.

Recall that, for every j ∈ [t], there are at least n/100 vertices in Y that have at least k out- and in-neighbours

in Vj . Thus, by Chernoff and a union bound, (b) holds with probability at least 1− 4t exp(−n/104) ≥ 3/4.

We now show that (c) holds with probability at least 15/16 for i = 1. Similar arguments can be used to

show that the same holds for every i ∈ [4], proving that (c) holds with probability at least 3/4.

Fix z ∈ Z1. Since z ∈ V +
good, it has at least k out-neighbours in at least say 3t/4 sets Vi, similarly to a

paragraph above. Because z is in Vokay and by (G8), |N−(z) ∩ Vgood| ≥ max{1011|V −bad|, τ1kt/2}. Denote

V ′ := V1 ∪ . . . ∪ Vt. Then Vgood ⊆ Y ∪ V ′. Thus, as Z1 ⊆ V −bad,

∣∣N−(z) ∩ (Y ∪ V ′)
∣∣ ≥ max{1011|V −bad|, τ1kt/2} ≥ max{1011|Z1|, 1000kt}.

It follows, using Chernoff, that
∣∣N−(z) ∩ (Y1 ∪ V ′)

∣∣ ≥ max{1010|Z1|, 100kt} with probability at least 1 −
exp(−max{1010|Z1|, 100kt}). Thus, (c) holds with probability at least 1−|Z1| exp(−max{1010|Z1|, 100kt}) ≥
15/16, as claimed.

Apply Proposition 4.21 four times: first with Z1, Y1, V1, . . . , Vt, then with Z2, Y2, V
′
1 , . . . , V

′
t , where V ′1 , . . . , V

′
t

are the sets resulting from the first application of the claim, and so on. We end up with a partition

{U1, . . . , Ut} of V where T [Ui] is k-connected for i ∈ [t], as required.

5 Conclusion

Recall that ft(k1, . . . , kr) is the minimum K such that the vertices of every strongly K-connected tournament

can be partitioned into t sets, the ith of which induces a strongly ki-connected tournament. We showed that

ft(k, . . . , k) = O(kt), which is tight up to the implicit constant factor. It would be interesting to evaluate

ft(k1, . . . , kt) when possibly k1, . . . , kt vary significantly.
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Question 5.1. Is it true that ft(k1, . . . , kt) = O(k1 + . . .+ kt)?

Note that it would be enough to show that for every k1 ≥ k2 one has that f2(k1, k2) = k1 +O(k2).

It would also be very interesting, but probably very hard, to determine if the analogue of ft(k1, . . . , kt) for

digraphs (which are not necessarily tournaments) holds.

Question 5.2 (Question 1.3 in [5]). Is there a function g such that, for every positive integer k, the vertices

of every strongly g(k)-connected digraph can be partitioned into two sets inducing strongly k-connected

subdigraphs?

Finally, we remark that Kim, Kühn and Osthus [4] proved that for every integer k ≥ 1 there exists K such

that if T is a strongly K-connected tournament, then there is a partition {V1, V2} of V (T ) such that T [V1],

T [V2] and T [V1, V2] are k-strongly connected. Denote the minimum such K by h(k). Their proof shows

h(k) = O(k6 log k). It would be interesting to determine the correct order of magnitude of h(k).

Question 5.3. Is h(k) = O(k)?
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