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Abstract

We consider the problem of maximising the largest eigenvalue of subgraphs of the

hypercube Qd of a given order. We believe that in most cases, Hamming balls are

maximisers, and our results support this belief. We show that the Hamming balls

of radius o(d) have largest eigenvalue that is within 1 + o(1) of the maximum value.

We also prove that Hamming balls with fixed radius maximise the largest eigenvalue

exactly, rather than asymptotically, when d is sufficiently large. Our proofs rely on

the method of compressions.

1 Introduction

In the last few decades much research has been done on spectra of graphs, i.e. the eigenval-

ues of the adjacency matrices of graphs; see Finck and Grohmann [10], Hoffman [16, 17],

Nosal [25], Cvetković, Doob and Sachs [7], Neumaier [20], Brigham and Dutton [3, 4],

Brualdi and Hoffman [5], Stanley [30], Shearer [29], Powers [26], Favaron, Mahéo and

Saclé [8, 9], Hong [18], Liu, Shen and Wang [19], Nikiforov [21, 22, 23, 24], and Cvetković,

Rowlinson and Simić [6] for a small selection of relevant publications. Perhaps the most

basic property of the spectrum of a graph is its radius, i.e. the maximum eigenvalue: this

has received especially much attention. Here we shall mention a small handful of these

results.

In what follows, A(G) denotes the adjacency matrix of a graph G and λ1(G) denotes the

largest eigenvalue of A(G). As usual, we write e(G) for the number of edges, ∆(G) for

the maximum degree and d(G) for the average degree. Trivially, d(G) ≤ λ1(G) ≤ ∆(G);
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in particular, if G is d-regular then λ1(G) = d. In 1985, Brualdi and Hoffman [5] gave an

upper bound on λ1(G) in terms of e(G): if e(G) ≤
(
k
2

)
for some integer k ≥ 1 then λ1(G) ≤

k− 1, with equality if and only if G consists of a k-clique and isolated vertices. Extending

this result, Stanley [30] showed that if e(G) = m then λ1(G) ≤ 1
2

(√
8m+ 1− 1

)
, with

equality only as before. In 1993, Favaron, Mahéo and Saclé [9] published an upper bound

on λ1(G) in terms of the local structure of G: writing s(G) for the maximum of the sum

of degrees of vertices adjacent to some vertex, we have λ1(G) ≤
√
s(G). Furthermore,

if G is connected then equality holds if and only if G is regular or bipartite semi-regular

(i.e. vertices in the same class have equal degrees). In particular, if G is a triangle-free

graph with m edges then s(G) ≤ m, so λ1(G) ≤
√
m. This inequality was first proved by

Nosal [25] in 1970. The star K1,m shows that this upper bound is best possible.

Our main aim in this paper is to study the maximum eigenvalue of subgraphs of the

hypercube Qd on 2d vertices, rather than general graphs restricted by their parameters

like order and size. To be precise, our aim is to give a partial answer to the following

question posed by Fink [11] and in a weaker form by Friedman and Tillich [12].

Question 1. Given m, 1 ≤ m ≤ 2d, what is the maximum of the largest eigenvalue of

Qd[U ], where |U | = m?

This problem can be viewed as a variant of the ‘classical’ isoperimetric problem in the

cube. Indeed, since Qd is d-regular, the problem of bounding the maximum eigenvalue

of the subgraph Qd[U ] of Qd induced by a set U ⊂ V (Qd) = {0, 1}d is closely related

to the size of the edge boundary of U , the set of edges joining a vertex in U to one

not in U . If the maximum eigenvalue of Qd[U ] is λ1, then e (Qd[U ]) ≤ λ1|U |/2 (by the

bound λ1(G) ≥ d(G) mentioned above), so the size of the edge boundary of U is at least

(d− λ1)|U |. Thus, if λ1 ≤ λ(m) whenever |U | = m, then for every set of m vertices of the

cube Qd the edge boundary has size at least (d− λ(m))m.

The study of eigenvalues as a form of isoperimetric inequality is not new: in 1985, Alon

and Milman [1] showed that there is a close relation between the second smallest eigenvalue

of the Laplacian of a graph and some expansion properties of the graph. The nature of

our problem is very different from this. A vaguely related problem has been studied by

Reeves, Farr, Blundell, Gallagher and Fink [27].

Before we state our results, we give some precise definitions. Our ground graph is taken

to be Qd, the d-dimensional hypercube, where the vertices are labelled by the 0, 1 strings

of length d, so that V (Qd) = {0, 1}d, and two vertices are joined by an edge if they differ

in exactly one coordinate. We shall often use the obvious correspondence between binary

strings of length d and subsets of [d], in which a subset corresponds to its characteristic

function. A subcube of Qd of dimension i is the graph induced by a subset of the vertices

obtained by fixing the values of all but i coordinates. The Hamming ball H i
d is the

subgraph of Qd induced by the vertices with at most i ones in their strings. We note that
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the subgraphs minimising the sizes of the vertex and edge boundaries among all subgraphs

of Qd of a given order are well known. In particular, Harper (see [13] and [14]) showed in

1966 that the Hamming balls minimise the size of the vertex boundary among subgraphs

of the same order. In 1976, Hart [15] proved a similar result, showing that subcubes

minimise the size of the edge boundary among subgraphs of the hypercube with the same

number of vertices.

As the problem of maximising λ1 is a form of an isoperimetric problem, it seems natural

to believe that either Hamming balls or subcubes should be maximisers of λ1. Although,

intuitively, it may seem that λ1 is related to the edge boundary, we believe that in most

cases, the task of maximising λ1 is, in fact, more related to minimising the vertex boundary.

More precisely, we believe that for most radii sufficiently smaller than d/2, Hamming balls

maximise λ1 among subgraphs of Qd with the same order.

We prove several results in this direction. Our first result, which is relatively easy, gives a

precise answer when the number of vertices is at most the dimension of the hypercube.

Theorem 2. Let G be an induced subgraph of Qd with n ≤ d vertices. Then, for n ≥ 105,

λ1(G) ≤
√
n− 1, with equality if and only if G is a star.

We note that the conclusion of Theorem 2 does not hold for all n. Indeed, for n = 4, the

largest eigenvalue of Q2 (or C4) is 2, which is larger than
√

3, the largest eigenvalue of the

star K1,3.

In order to obtain more general results we evaluate the largest eigenvalue of the Hamming

ball H i
d for radii tending to infinity with the dimension of the cube.

Theorem 3. If d, i→∞ and i ≤ d+1
2 then

λ1(H
i
d) = 2

√
i(d+ 1− i)

(
1 +O

(√
log i

i

))
.

Our first main result is a generalisation of Theorem 2. We prove that for a wide range of

radii, the Hamming balls have largest eigenvalues which are asymptotically largest among

all subgraphs of the cube of the same order. We note that Samorodnitsky [28] obtained an

equivalent result for a wider range of radii (namely for radii i satisfying i→∞; however,

our proof works also if i is bounded). His proof methods are very different from ours.

Theorem 4. Let i = i(d) = o(d) and let G be a subgraph of Qd with n = O
(∣∣H i

d

∣∣) vertices.

Then λ1(G) ≤ (1 + o(1)) λ1(H
i
d).

Finally, our second main result gives an exact answer when the radius is fixed.

Theorem 5. For every i there is d0 = d0(i) such that for d ≥ d0 the Hamming ball H i
d

maximises the largest eigenvalue among subgraphs of Qd of the same order.
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1.1 Notation

Given a graph G and a vertex u, the degree of u in G is denoted by dG(u); when it is

not likely to cause confusion, we drop the subscript and write d(u). We denote the base 2

logarithm by log(x) and the base e logarithm by ln(x). We use the notation [d](i) to denote

the collection of subsets of [d] of size i, and, similarly, [d](≤i) denotes the collections of

subsets of [d] of size at most i. We note that if H is a subgraph of G then λ1(H) ≤ λ1(G),

due to the monotonicity of λ1. We may thus concentrate on induced subgraphs of Qd;

hence, throughout the paper, we implicitly assume that the subgraphs of Qd that we

consider are induced subgraphs of Qd.

1.2 Structure of the paper

In the next section, Section 2, we state and prove results about compressions which will be

used in the proofs of the above theorems. We prove Theorem 2 in Section 3. In Section 4

we prove Theorem 3 as well as other bounds on the largest eigenvalue of certain subgraphs

of the cube. We prove our first main result, Theorem 4, in Section 5 and our second

main result, Theorem 5, is proved in Section 6. We conclude with some remarks and open

problems in Section 7.

2 Compressions

In this section we prove the results about compressions that we shall need. We start by

introducing notation. Let G be an induced subgraph of Qd, and let v ∈ RV (G) ⊆ RV (Qd).

Then 〈A(G)v, v〉 = 〈A(Qd)v, v〉, since the support of v is contained in V (G). Hence

max
|G|=n

{λ1(G)} = max
|G|=n, ‖v‖=1

{〈A(G)v, v〉} = max
‖v‖=1, supp(v)=n

{〈A(Qd)v, v〉}.

We consider a notion of compressions acting on vectors in RV (Qd). Let U, V ⊆ [d] be

disjoint and let v ∈ RV (Qd). We define CU,V (v) ∈ RV (Qd) as follows, where S ⊆ [d].

(CU,V (v))S =


max{vS , vS4(U∪V )} V ⊆ S and U ∩ S = ∅
min{vS , vS4(U∪V )} U ⊆ S and V ∩ S = ∅
vS otherwise.

Note that CU,V applies a U − V compression to the support of v, leaving the multiset

of entries of v unchanged. In particular, it preserves the size of the support of v and its

norm. For an illustration of compressions, see Figures 1 and 2.

The infinite-dimensional hypercube Q∞ is the graph whose vertices are the finite subsets
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Figure 1: A C{3},∅-compression in Q3.
(In each edge marked by an arrow, the coordinates of the two vertices
are swapped if the coordinate at the starting point is larger than the
coordinate at the end point).

direction 1 direction 2

Figure 2: A C{2},{1}-compression in Q4.

of N, where ST is an edge if and only if |S4T | = 1. Note that by viewing Qn as a graph

on the subsets of [n], Q∞ can be viewed as the union ∪n≥1Qn. The binary order on Q∞

is defined as follows: S < T if and only if max(S4T ) ∈ T , where S, T ∈ V (Q∞). It is

easy to see that the binary order is a total order. An initial segment in the binary order is

the set of the first m elements in the order, for some m. For example, V (Qn) is an initial

segment. We define the binary i-compression Ci(v) to rearrange the values (vS)i∈S to be

decreasing in the binary order restricted to the subcube {S : i ∈ S}, and rearrange the

values (vS)i/∈S to be decreasing in the binary order restricted to {S : i /∈ S}. We define C+
i

and C−i to be the restrictions of v to sets containing i and not containing i, respectively.

Note that C+
i and C−i commute with Ci.

We may naturally apply these maps to the indicator function of a set F to obtain another

indicator function, coinciding with the usual definitions of these maps on sets. We suppress
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explicit usage of the indicator function where this can be done without confusion.

Given i ∈ [d], we abuse notation by denoting the singleton {i} by i where this is not likely

to cause confusion. Furthermore, if S ⊆ [d] we denote S ∪ {i} by S + i and similarly

we denote S \ {i} by S − i. The following two results show that the application of a

Ci,∅ compression or a Ci,j compression to a vector v does not decrease the inner product

〈A(Qd)v, v〉.

Lemma 6. Let i ∈ [d] and v ∈ RV (Qd) and denote A = A(Qd) and v̄ = Ci,∅(v). Then

〈Av, v〉 ≤ 〈Av̄, v̄〉.

Proof. Consider an edge ST ∈ E(Qd) with S ⊂ T . If T \ S = {i}, then vS and vT are

either swapped or not, and in either case the contribution of ST to the inner product is

unchanged. All other edges have either i ∈ S ∩ T or i /∈ S ∪ T . These edges come in pairs

(S, S + j), (S + i, S + i + j). By the rearrangement inequality and the definition of Ci,∅,

the contribution of this pair of edges to the inner product is at most as large in Ci,∅(v) as

it is in v.

Lemma 7. Let i, j ∈ [d] be distinct, let v ∈ RV (Qd), and denote A = A(Qd) and v̄ =

Ci,j(v). Then 〈Av, v〉 ≤ 〈Av̄, v̄〉.

Proof. Consider an edge ST ∈ E(Qd) with S ⊆ T . The function Ci,j is a composition

of conditional swaps, and each vertex of Qd is involved in at most one of these swaps. If

neither S nor T are involved in a swap, then the contribution of the edge ST to the inner

product is unchanged.

If both S and T are involved in a swap, then if i ∈ S then j /∈ S and, also, i ∈ T and j /∈ T ,

and we have vS potentially being swapped with vS−i+j and vT potentially being swapped

with vT−i+j ; if i /∈ S then j ∈ S, so vS and vT are potentially swapped with vS−j+i and

vT−j+i respectively. Hence edges ST where both vertices are potentially swapped come in

pairs (S, T ), (S − i + j, T − i + j). By the rearrangement inequality, the contribution of

each of these pairs to the inner product is not decreased by Ci,j .

If only S is involved in a swap, then exactly one of i and j is in S, whilst both i and j are

in T . Hence such edges come in pairs (T − i, T ) and (T − j, T ), and the contribution of

such pairs to the inner product is unchanged by Ci,j . Similarly, the edges where only T

is involved in a swap come in pairs (S, S + i) and (S, S + j), and the contribution of such

pairs to the inner product is unchanged by Ci,j .

We say that a vector v ∈ RV (Qd) is down-compressed if CU,∅(v) = v for every U ⊆ [d], and

we say that v is left-compressed if Ci,j(v) = v for every 1 ≤ j < i ≤ d. We say that v is

compressed if it is down-compressed and left-compressed. It follows from Lemmas 6 and

7 that in order to find the maximum of λ1(G) over subgraphs of the cube of order n, it
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suffices to consider induced graphs G whose vertex set is compressed. Furthermore, this

maximum is the maximum of 〈Av, v〉 over compressed vectors v with support of size n.

2.1 Counting copies of subcubes

The aim of this subsection is to provide an upper bound on the number of copies of a

subcube in a subgraph G of the cube, in terms of |G|.

Given a set U ⊆ V (Qd) and d′ ≤ d we denote the number of copies of Qd′ in Qd[U ] by

#(Qd′ ⊆ U). The following result, which was proved by Bollobás and Radcliffe [2], shows

that the number of copies of Qd′ is maximised by initial segments of the binary order. We

present a proof here for the sake of completeness.

Lemma 8. Let U, I ⊆ V (Qd) with |U | = |I| and I is an initial segment in binary order.

Then for any d′ ≤ d,

#(Qd′ ⊆ U) ≤ #(Qd′ ⊆ I).

Proof. We prove the lemma by induction on d′. The case d′ = 0 is trivial, as |U | = |I|.
Suppose that d′ > 0. We proceed by induction on d ≥ d′. For d = d′ we have that both

#(Qd′ ⊆ U) and #(Qd′ ⊆ I) are 0 if |U | = |I| < 2d and both are 1 otherwise.

Fix i ∈ [d]. Suppose that d > d′ and Ci(U) = U ′ 6= U . For any copy H of Qd′ in Qd[U ],

one of the following three statements holds: C+
i (H) = H; C−i (H) = H; or C−i (H) =

Ci,∅(C
+
i (H)). Hence by induction the following holds.

#(Qd′ ⊆ U) ≤#(Qd′ ⊆ C+
i U) + #(Qd′ ⊆ C−i U) +

min
{

#(Qd′−1 ⊆ C+
i U),#(Qd′−1 ⊆ C−i U)

}
≤#(Qd′ ⊆ C+

i U
′) + #(Qd′ ⊆ C−i U

′) +

min
{

#(Qd′−1 ⊆ C+
i U
′),#(Qd′−1 ⊆ C−i U

′)
}

= #(Qd′ ⊆ U ′).

The last equality follows from the fact that C−i U
′ and Ci,∅(C

+
i U
′) are nested, i.e. one of

these sets is contained in the other.

Define a finite sequence {Uk : k = 0, . . . ,K} by taking U0 = U and Uk+1 = CiUk for the

least i such that CiUk 6= Uk, if such an i exists. It is easy to verify that this sequence

cannot be infinite. Denote W = UK . Then #(Qd′ ⊆ U) ≤ #(Qd′ ⊆ W ) and CiW = W

for every i ∈ [d]. If W = I the proof is complete, thus we may assume that W 6= I.

Since W 6= I, W is not an initial segment in binary order, so there exists S < T with

S /∈ W and T ∈ W . Since C+
i W and C−i W are both initial segments, we have that
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i ∈ S4T for every i ∈ [d]. In other words, S = T c, and there is at most one such pair

(S, T ), so T is the successor of S in binary order and is the maximal element of W . Hence

T = {d} and S = [d− 1]. But then T is in at most one Qd′ in W , whilst S is in
(
d−1
d′

)
≥ 1

copies of Qd′ in W − T + S. Hence I = W − T + S has at least as many Qd′ subgraphs as

W , completing the proof.

The following upper bound on the number of copies of a subcube follows easily.

Lemma 9. Let U be a subset of V (QD) of size n, for some D. Then, for every d ≤ D,

#(Qd ⊆ U) ≤ n

2d

(
log n+ 1

d

)
.

Proof. By Lemma 8, we may assume that U is initial in binary order, so U is contained

in a cube of dimension dlog ne. Hence each vertex is in at most
(
logn+1

d

)
copies of Qd and

each copy of Qd is counted 2d times.

In fact, one can prove a smooth version of the above upper bound. We define
(
x
d

)
=

1{x≥ d−1}
x(x−1)·...·(x−d+1)

d! for x ≥ 0 and d integer; in particular,
(
x
d

)
≥ 0 for every x ≥ 0

and d integer.

Lemma 10. Let U be a subset of V (QD) of size n, for some D. Then, for every d ≤ D,

#(Qd ⊆ U) ≤ n

2d

(
log n

d

)
.

Proof. Let Tn,d = #(Qd ⊆ In), where In is initial in binary order in Q∞ with |I| = n.

We prove that Tn,d ≤ n
2d

(
logn
d

)
by induction on d. It is clear for d = 0 so we assume d > 0.

Note that we may assume that n ≥ 2d because, otherwise, In contains no copies of Qd.

We proceed by induction on the number of non-zero digits in the binary representation of

n. If n is a power of 2, In is a cube of dimension log n and we have Tn,d = n
2d

(
logn
d

)
.

Now suppose that n has l > 1 non-zero digits in the binary representation. Write n =

2k1 + . . .+ 2kl where k1 > . . . > kl and let r = 2k1 and m = n− r. Then by the definition

of binary order and by induction we obtain the following inequality.

Tn,d = Tr,d + Tm,d + Tm,d−1 ≤
r

2d

(
log r

d

)
+
m

2d

(
logm

d

)
+

m

2d−1

(
logm

d− 1

)
.

Note that if m < 2d−1 then Tm,d = Tm,d−1 = 0, so Tn,d = Tr,d ≤ r
2d

(
log r
d

)
≤ n

2d

(
logn
d

)
, as

required, so we may assume that m ≥ 2d−1. It remains to prove the following inequality.

r

2d

(
log r

d

)
+
m

2d

(
logm

d

)
+

m

2d−1

(
logm

d− 1

)
≤ n

2d

(
log n

d

)
. (1)
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Writing r = (1 + α)m and rearranging (1), we need to show that the following expression

is non-negative for m ≥ 2d−1 and α > 0.

(2 + α)m

2d

(
log((2 + α)m)

d

)
− (1 + α)m

2d

(
log((1 + α)m)

d

)
− m

2d

(
logm

d

)
− m

2d−1

(
logm

d− 1

)
.

Writing β = logm, we need to show that the following expression is non-negative for α > 0

and β ≥ d− 1.

fβ(α) = (2 + α)

(
log(2 + α) + β

d

)
− (1 + α)

(
log(1 + α) + β

d

)

−
(
β

d

)
− 2

(
β

d− 1

)
.

Substituting α = 0 we obtain

fβ(0) = 2

(
β + 1

d

)
−
(
β

d

)
−
(
β

d

)
− 2

(
β

d− 1

)
= 0.

The derivative f ′β(α) at α > 0 is

1

d! ln 2

d−1∑
i=0

 ∏
0≤j≤d−1,j 6=i

(log(2 + α) + β − j)−
∏

0≤j≤d−1,j 6=i
(log(1 + α) + β − j)



+

(
log(2 + α) + β

d

)
−
(

log(1 + α) + β

d

)
≥ 0.

We have shown that fβ(0) = 0 and f ′β(α) ≥ 0 for every α > 0. It follows that fβ(α) ≥ 0

for every α ≥ 0, as required.

3 The star is best for n ≤ d

In this section we prove Theorem 2, thus showing that the star on d vertices maximises

the largest eigenvalue among subgraphs of the cube Qd with at most d vertices.

Theorem 2. Let G be an induced subgraph of Qd with n ≤ d vertices. Then, for n ≥ 105,

λ1(G) ≤
√
n− 1, with equality if and only if G is a star.

Note that this result is not entirely obvious. Indeed, a natural line of attack is to use

the inequality λ1(G) ≤
√
s(G) of Favaron, Mahéo and Saclé [9] that we mentioned in the

introduction, where s(G) is the maximum of the sum of degrees of vertices adjacent to some
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vertex. Taking a vertex u, its k neighbours, and
(
k
2

)
additional vertices, each joined to two

of the k neighbours of u, we get a subgraph G of Qn with n = 1 +k+
(
k
2

)
= (k2 +k+ 2)/2

vertices and e(G) = s(G) = k2. Hence, λ1(G) ≤
√
s(G) = k, which is about

√
2 times

as large as
√
n− 1, the bound we wish to prove. The problem is, of course, that the

inequality we have applied is far from sharp in this case.

We shall use the following bound, relating the problem of maximising the largest eigenvalue

to the task of maximising a trace of a matrix.

Lemma 11. Let G be a bipartite graph with bipartition {X,Y } and let k ≥ 1. Then

(λ1(G))2k ≤ 1

2
tr
(
A(G)2k

)
= #(closed walks of length 2k starting at a vertex in X)

= #(closed walks of length 2k starting at a vertex in Y ).

In particular,

(λ1(G))4 ≤ #(edges in G) + 2#(paths of length 2 in G) + 4#(C4 in G).

Proof. Let λ1 ≥ . . . ≥ λn be the eigenvalues of A = A(G) (A is symmetric and real, so

its eigenvalues are all real). Recall that, since G is bipartite, λ is an eigenvalue of A if and

only if −λ is an eigenvalue of A (given an eigenvector v with eigenvalue λ, swap the sign

in coordinates of v corresponding to one of the sides of G to obtain an eigenvector with

eigenvalue −λ). It follows that λn = −λ1. Hence,

2(λ1)
2k ≤ (λ1)

2k + . . .+ (λn)2k = tr(A2k).

We conclude that (λ1)
2k ≤ tr(A2k)/2. The rest of the proof is immediate from the fact

that
(
Ak
)
i,j

is the number of walks of length k from vertex i to vertex j.

We shall also make use of the following bound on the number of edges and 4-cycles in a

K2,3-free bipartite graph.

Claim 12. Let G be a bipartite graph with bipartition {X,Y } and assume that G is K2,3-

free. Set k = |X|, l = |Y |. Then

• #(C4 in G) ≤
(
l
2

)
.

• |E(G)| ≤ #(2-paths with both ends in Y ) + k ≤ 2
(
l
2

)
+ k.

Proof. The first part follows directly from the fact that G is K2,3-free, so every pair

of vertices in Y is contained in at most one 4-cycle. The first inequality in the sec-

ond part follows from the observation that for every vertex v ∈ X, we have d(v) ≤

10



#(2-paths in G with v as the middle vertex)+1. The second inequality again follows from

the assumption that G is K2,3-free.

We now proceed to the proof of Theorem 2.

Proof of Theorem 2. Let G be a subgraph of Qd with n ≤ d vertices and assume

that λ1(G) ≥
√
n− 1. Denote by {X,Y } the bipartition of the vertices of G where

k = |X| ≥ |Y | = l.

By Lemma 11 and the fact that G is K2,3-free, we obtain the following.

(n− 1)2 ≤ (λ1(G))4

≤ 2
∑

v∈V (G)

(
d(v)

2

)
+ |E(G)|+ 4#(C4 in G)

≤ 2

((
k

2

)
+

(
l

2

)
+ 2#(C4 in G)

)
+ |E(G)|+ 4#(C4 in G)

= 2l2 − 2nl + n2 − n+ |E(G)|+ 8#(C4 in G).

Hence,

0 ≤ 2l2 − 2nl + n− 1 + |E(G)|+ 8#(C4 in G). (2)

We replace |E(G)| and #(C4 in G) by the upper bounds from Lemma 10 to obtain the

following inequality.

0 ≤ 2l2 − 2nl + n− 1 + (n log n)/2 + 2n

(
log n

2

)
= 2l2 − 2nl + n

(
log2 n− (log n)/2 + 1

)
− 1.

Since l ≤ n/2, we deduce the following upper bound on l (we implicitly assume that

n ≥ 72, in which case the expression under the square root sign is non-negative).

l ≤ 1

4

(
2n−

√
4n2 − 8n

(
log2 n− (log n)/2 + 1

)
+ 8

)
=

1

2

(
n−

√
n2 − 2n log2 n+ n log n− 2n+ 2

)
.

(3)

By Claim 12 and by (2),

0 ≤ 2l2 − 2nl + n− 1 + 10

(
l

2

)
+ n− l

= (l − 1)(7l + 1− 2n).

11



If l ≥ 2 it follows that l ≥ 1
7(2n − 1). Combining this lower bound on l with the upper

bound (3), we get the following inequality.

1

7
(2n− 1) ≤ l ≤ 1

2

(
n−

√
n2 − 2n log2 n+ n log n− 2n+ 2

)
.

This is a contradiction if n ≥ 105. Thus if n ≥ 105 we must have l = 1, implying that G

is a star.

4 The largest eigenvalue of the Hamming ball

In this section we estimate the largest eigenvalue of the Hamming ball H i
d for several

ranges of i and d. We start by proving Theorem 3, where we give an estimate for the

eigenvalue of the Hamming ball when the radius goes to infinity.

Theorem 3. If d, i→∞ and i ≤ d+1
2 then

λ1(H
i
d) = 2

√
i(d+ 1− i)

(
1 +O

(√
log i

i

))
.

We establish the upper bound of Theorem 3 in the following claim.

Claim 13. Let d and i be integers satisfying i ≤ d+1
2 . Then λ1(H

i
d) ≤ 2

√
i(d− i+ 1).

Proof. Let G = H i
d and for j ≥ 0 let Vj = [d](j). Let Gj = G[Vj ∪ Vj+1]. The graph Gj

is a bipartite graph whose vertices in one side (Vj) have degree d − j and the vertices in

the other side (Vj+1) have degree j + 1. Thus λ1(Gj) =
√

(j + 1)(d− j).

Let v = (vS)S∈V (G) be an eigenvector with norm 1 and eigenvalue λ1(G). Define α2
j =∑

S∈Vj v
2
S . Note that E(G) =

⋃
0≤j≤i−1E(Gj), hence the following holds (we view Gj as

a graph on vertex set V (G), so that the product A(Gj)v is well defined).

λ1(G) = 〈A(G)v, v〉 ≤
i−1∑
j=0

〈A(Gj)v, v〉

≤
i−1∑
j=0

(
α2
j + α2

j+1

)
λ1(Gj)

=

i−1∑
j=0

(
α2
j + α2

j+1

)√
(j + 1)(d− j)

≤ 2
√
i(d− i+ 1).

It follows that λ1(G) ≤ 2
√
i(d− i+ 1), as required.

12



We shall need the following claim in a subsequent section.

Claim 14. Let t, d and i be integers, and let G be a subgraph of H i
d whose maximum

degree is at most t. Then λ1(G) ≤ 2
√
it.

We do not include the proof here, instead we remark that the proof of Claim 13 can be

adapted to prove Claim 14, by defining Gj = G[Vj ∪ Vj+1] (where Vj = [d](j)), and noting

that here λ1(Gj) ≤
√

(j + 1)t.

We now turn to the proof of Theorem 3.

Proof of Theorem 3. Denote λ = λ1(H
i
d) and A = A(H i

d). We first note that by Claim

13, we have λ ≤ 2
√
i(d+ 1− i).

We now obtain a lower bound on λ. Given 0 < k < i, define the vector vk ∈ RV (Hi
d) by

(vk)S = 1{S∈[d](i−k)}
(
d
i−k
)− 1

2 . Note that ||vk|| = 1. We obtain the following sequence of

inequalities.

λ2k ≥〈A2kvk, vk〉

= #
(

2k-walks in H i
d from [d](i−k) to [d](i−k)

)( d

i− k

)−1
≥
(

d

i− k

)
#
(

2k-walks in [i− 2k, i] from i− k to i− k
)

·
(

(i− 2k + 1)(d− i+ 2k)
)k( d

i− k

)−1
≥
(

2k

k

)(
(i− 2k + 1)(d− i+ 2k)

)k
.

To see why the second inequality holds, note that to form a 2k-walk from [d](i−k) to [d](i−k)

we first pick the starting point (for which there are
(
d
i−k
)

options); then we pick a 2k-walk

in [i− 2k, i] from i− k to i− k; and, finally, for each move from a set of size r to a set of

size r−1 we have r options for an edge to go along, and for a move from a set of size r−1

to a set of size r there are d+1−r options. We pair each move from a set of size r to a set

of size r−1 with a move in the opposite direction, from a set of size r−1 to a set of size r.

The number of possible steps in H i
d for such a pair is r(d+ 1− r). Note that the function

r(d+ 1− r) is increasing for r ≤ (d+ 1)/2; hence, r(d+ 1− r) ≥ (i−2k+ 1)(d− i+ 2k) for

every r ∈ [i− 2k+ 1, i]. So, for each choice of a walk in [i− 2k, i] from i− k to i− k and a

starting point in [d](i−k), there are at least
(
(i− 2k+ 1)(d− i+ 2k)

)k
walks corresponding

to it in H i
d. The third inequality holds because each 2k-walks from i−k to i−k in [i−2k, i]

is determined by the set of times in the walk in which we move ‘up’ (i.e. from r to r+ 1).

Since there are exactly k ‘up’ and k ‘down’ moves, this number is
(
2k
k

)
.

13



Hence, if k →∞,

λ2k ≥ 1√
πk

22k
(

(i− 2k + 1)(d− i+ 2k)
)k

(1 + o(1)).

Thus,

λ ≥ k−
1
4k 2
√

(i− 2k + 1)(d− i+ 2k)
(
1 +O

(
k−1

))
= 2
√

(i− 2k + 1)(d− i+ 2k)
(
1 +O

(
k−1 log k

))
= 2
√
i(d+ 1− i)

(
1 +O

(
k−1 log k

)
+O (k/i)

)
.

Taking k =
√
i log i, we get λ ≥ 2

√
i(d+ 1− i)

(
1 +O

(√
log i
i

))
, completing the proof

of Theorem 3.

We now consider the case where the radius of the Hamming ball is fixed.

Lemma 15. There exist constants λ1 < λ2 < . . . such that λ1(H
i
d) = λi

√
d(1 + O(1/d)),

for fixed i and d→∞.

Proof. Let Ai be the (i+ 1)× (i+ 1)-matrix defined by

(Ai)j,k =


1 j = k − 1

j j = k + 1

0 otherwise.

Denote λi = λ1(Ai). We show that λi−1 < λi, for every i ≥ 2. Indeed, it follows from the

Perron-Frobenius theorem that Ai has only one eigenvector u with eigenvalue λ1(Ai) (up

to multiplication by a factor), and that all the coordinates of u are positive (the theorem

is applicable here because Ai is a non-negative irreducible matrix, i.e. its entries are non-

negative, and for every j, k, there is l such that ((Ai)j,k)
l 6= 0). Then, since Ai−1 is a

submatrix of Ai,

λi−1 = max
{
〈Ai−1v, v〉 : v ∈ Ri, ‖v‖ = 1

}
= max

{
〈Ai(v, 0), (v, 0)〉 : v ∈ Ri, ‖v‖ = 1

}
< 〈Aiu, u〉 = λi.

In order to complete the proof of Lemma 15, we show that λ(H i
d) = λi

√
d(1 +O(1/d)).

By symmetry, the eigenvector v of A(H i
d) with eigenvalue λ1(H

i
d) is uniform on [d](j) for

every 0 ≤ j ≤ i (as there is only one such eigenvector, up to multiplication by a factor, by

14



the Perron-Frobenius theorem). Denote xj = v[j]. The following holds.

λ1(H
i
d) xj =


dx1 j = 0

jxj−1 + (d− j)xj+1 0 < j < i

ixi−1 j = i.

Letting µ = λ1(H
i
d)/
√
d and yj = xjd

j/2, we obtain

µyj =


y1 j = 0

jyj−1 + (1− j/d)yj+1 0 < j < i

iyi−1 j = i.

Recalling the definition of Ai, it follows that µ is the largest eigenvalue of a matrix Ad,i

whose entries are non-negative and differ (coordinate-wise) from those of Ai by O(1/d).

It follows from Observation 16 below that |µ− λi| = O(1/d). Lemma 15 follows.

We conclude this section with the following observation, which states that if the entries

of two matrices are very close to each other, then so are the largest eigenvalues of the two

matrices. This observation was used in Lemma 15, and will be used in Section 6.

Observation 16. Let A and B be n × n matrices with non-negative entries, satisfying

|Ai,j −Bi,j | ≤ ε for every i, j ∈ [n]. Then |λ1(A)− λ1(B)| ≤ nε.

Proof. Let v be an eigenvector of A with eigenvalue λ1(A) and norm 1, whose entries are

non-negative (such an eigenvector exists because the entries of A are non-negative). Then

the following holds.

λ1(B) ≥〈Bv, v〉

=
∑
i,j∈[n]

Bi,jvivj

≥
∑
i,j∈[n]

(Ai,j − ε)vivj

= 〈Av, v〉 − ε

∑
i∈[n]

vi

2

≥λ1(A)− nε.

The second inequality follows from the assumptions on A and B and uses the fact that the

entries of v are non-negative, and the third follows from the Cauchy-Schwarz inequality

(using the assumption that the norm of v is 1). By swapping the roles of A and B,

Observation 16 follows.
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5 Hamming ball is asymptotically best for i = o(d)

In this section we prove Theorem 4, showing that for i = o(d) the Hamming ball H i
d

asymptotically maximises λ1 among subgraphs of Qd with about the same number of

vertices. Since our proof is rather technical, we start with the special case i = 1.

5.1 Proof of Theorem 4 for i = 1

Let us first state the result for the special case i = 1.

Lemma 17. Let c > 0 be fixed and let G be a subgraph of Qd with n ≤ cd vertices. Then

λ1(G) ≤
√
d+O

(
d1/4(log d)1/2

)
.

Our proof strategy is as follows. Using our results about compressions, we may assume

that V (G) is compressed. This enables us to partition V (G) into stars, in such a way

that the edges not covered by the stars have a small contribution to the eigenvalue, thus

enabling us to obtain the required estimate for λ1(G).

Proof. By Lemmas 6 and 7 we can assume that V (G) is compressed. Namely, V (G)

is down-compressed (i.e. CU,∅(V (G)) = V (G) for every U ⊂ [d]) and left-compressed

(i.e. Ci,j(V (G)) = V (G) for every 1 ≤ j < i ≤ d).

We aim to partition V (G) in such a way that each part induces a star and the graph

spanned by the edges not contained in any of these parts has small maximum degree.

This would imply that λ1(G) is at most the eigenvalue of the star with d+ 1 vertices plus

an error term which can be controlled by the maximum degree of the ‘leftover’ edges.

Let ε = ε(d) =
√

2c/d. Let A be the set of vertices of degree at least εd in G. We call

these vertices ‘heavy’. To minimise the maximum degree of the leftover graph, we wish to

have each heavy vertex as a centre of one of the stars in the partition. However, it may

happen, e.g., that {1}, {2} are heavy and {1, 2} is not, in which case {1, 2} will have to

appear in two stars of the partition. To avoid this from happening, we add vertices to the

set of heavy vertices as follows.

Let B = {t ∈ [d] : {t} ∈ A}. Note that since V (G) is down-compressed, d(S) ≥ d(T )

for S, T ∈ V (G) that satisfy S ⊆ T ; hence, A is down-compressed. Similarly, A is left-

compressed. It follows that B is an interval and maxB = |B|; denote m = maxB. Finally

define D = P([m]) ∩ V (G). Since A is down-compressed, A ⊆ D. We show that the

maximum degree of G[A] is at most εd. Indeed, suppose that v ∈ A has at least εd

neighbours in A. Denote the set of these neighbours by N . Then every vertex in N has

at least εd neighbours in V (G). By the structure of Qd, no vertex is a neighbour of more

than two vertices of N . It follows that |V (G)| > |N |εd
2 ≥ (εd)2

2 ≥ n, a contradiction.
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For S ∈ D define N∗(S) = {S} ∪
(
N(S) \ D

)
, where N(S) denotes the neighbourhood of

S in G. We claim that N∗(S)S∈D is a collection of disjoint sets. Indeed, by the choice of

D, it follows that D ⊆ P([m]) and any vertex in the neighbourhood of S, where S ∈ D,

which is not in D must be of the form S ∪ {s} where s /∈ [m] and S ∈ D. Furthermore,

clearly, each of the sets N∗(S) induces a star.

Let v = (vS)S∈V (G) be an eigenvector of A(G) with eigenvalue λ1(G), whose norm is 1 and

whose entries are positive. Note that the edges of G are covered by the edges of the graphs

G[D], G \ D and {N∗(S)}S∈D. We thus obtain the following upper bound on λ1(G).

λ1(G) = 〈A(G)v, v〉

≤
∑
S∈D
〈A(G[N∗(S)])v, v〉+ 〈A(G[D])v, v〉+ 〈A(G \ D)v, v〉

≤
∑
S∈D

λ1(G[N∗(S)])
∑

T∈N∗(S)

v2T + λ1(G[D])
∑
S∈D

v2S + λ1(G \ D)
∑
S/∈D

v2S .

It remains to obtain upper bounds on the largest eigenvalue of the graphs G[D], G \ D
and {N∗(S)}S∈D. By Claim 14, given a subgraph H of Qd, we have λ1(H) ≤ 2

√
∆(H)l,

where ∆(H) is the maximum degree of H and l is the size of the largest set in V (H).

Since D ⊆ P([m]), the maximum degree of G[D] is bounded by εd. Also, by definition of

A, the maximum degree of G \D is at most εd. Since V (G) is compressed, the largest set

in V (G) has size at most log n. It follows that

λ1(G[D]), λ1(G \ D) ≤ 2
√
εd log n.

Furthermore, λ1(N
∗(S)) ≤

√
d since each set N∗(S) is a star on at most d + 1 vertices.

Thus, by the above inequality and using the disjointness of the sets N∗(S), we obtain

λ1(G) ≤
√
d+O

(√
εd log n

)
=
√
d+O

(
d1/4(log d)1/2

)
,

thus completing the proof of Lemma 17.

5.2 Proof of Theorem 4

We now prove Theorem 4 in general.

Theorem 4. Let i = i(d) = o(d) and let G be a subgraph of Qd with n = O
(∣∣H i

d

∣∣) vertices.

Then λ1(G) ≤ (1 + o(1)) λ1(H
i
d).

Proof. By Lemmas 6 and 7 we can assume that G is compressed. Similarly to the proof

for i = 1, we partition the vertices into sets that induce subsets of a Hamming ball of
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radius approximately i. We choose the partition in such a way that the edges not covered

by one of these subsets span a graph with small maximum degree. In this way we can

bound the eigenvalue of the both subgraphs of G to obtain the required bound. In order

to define the partition we need some notation.

Denote n = |G| and let logn
d < ε = ε(d) < 1/2 and define the following sets recursively.

A0 = V (G),

Ak = {S ∈ Ak−1 : S has at least εd neighbours in Ak−1}.

Let M = max{k : Ak 6= ∅}. We remark that M is well-defined, i.e. Ak = ∅ for some k.

Indeed, otherwise, G contains a subgraph of minimum degree at least εd; let U be the

vertex set of such a subgraph. Then, on the one hand, e(G[U ]) ≥ εd|U |
2 and, on the other

hand, by Lemma 10 (with d = 1) we have

e(G[U ]) ≤ |U |
2

log |U | ≤ |U |
2

log n.

Putting the two inequalities together, we find that ε ≤ logn
d , a contradiction.

Note that since G is compressed, the sets (Ak)0≤k≤M are compressed. Indeed, we have that

A0 = V (G) is down-compressed; by induction, if Ak is down-compressed then dG[Ak](S) ≥
dG[Ak](T ), for S, T ∈ Ak satisfying S ⊆ T , which implies that Ak+1 is down-compressed.

A similar reasoning shows that Ak is left-compressed.

Intuitively, the sets Ak measure how ‘heavy’ a vertex is: for a vertex v ∈ V (G), the larger

max{k : v ∈ Ak} is, the heavier v is. As in the proof of the special case of i = 1, we

want to take the heaviest vertices to be the centres of the Hamming balls defining the

partition. Since we now have many levels, we first take Hamming balls centred at the

heaviest vertices; then we take as centres the heaviest vertices among those that were not

covered in the first round; and so on. This process is complicated by the fact that we want

each vertex to appear in at most one such Hamming ball. To ensure this, we add some

lighter vertices to sets of heavy vertices using the following definitions.

We define sets Bk, Ck, Dk, Ek and numbers mk for 0 ≤ k ≤M as follows. For k = 0,

B0 = {t ∈ [d] : {t} ∈ AM} ∪ {1},

m0 = maxB0,

C0 = ∅,

E0 = D0 = P([m0]) ∩ V (G).
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For 0 < k ≤M define recursively

Bk = {t > mk−1 + 1 : {m0 + 1, . . . ,mk−1 + 1, t} ∈ AM−k} ∪ {mk−1 + 1},

mk = maxBk,

Ck = {S ∪ {t} : S ∈ Ck−1 ∪ Dk−1, t > mk−1} ∩ V (G),

Dk = (P([mk]) ∩ V (G)) \ (Ek−1 ∪ Ck),

Ek = C0 ∪ . . . ∪ Ck ∪ D0 ∪ . . . ∪ Dk.

Before we proceed with the proof, we try to convey the ideas behind the above definitions.

The sets Dk defined above will be the centres of the Hamming balls and the Ck’s will

consist of the other vertices covered by these balls. In each stage we define Ck to be the

set of neighbours of vertices which appeared previously. We define Dk to be the up-closure

(relatively to V (G)∩P([mk])) of the vertices in AM−k which were not covered previously.

To this end, in each stage Bk and mk are defined so that every t ∈ S ∈ AM−k \
(
Ek−1∪Ck

)
satisfies t ≤ mk. Thus Dk contains AM−k \

(
Ek−1∪Ck

)
and is up-closed in V (G)∩P([mk]).

We now define the partition of V (G) into sets inducing subgraphs of Hamming balls with

centres in
⋃

0≤k<M Dk. For a vertex S ∈ V (G) and t ≥ 1, let Nt(S) denote the set of

vertices of V (G) in distance t from S. For every 0 ≤ k ≤M − 1 and every S ∈ Dk, let

N
(k)
S = {S} ∪

⋃
1≤j≤M−k

(
Nj(S) ∩ Ck+j

)
.

In order to show that the setsN
(k)
S satisfy our requirement we use the following proposition.

Its proof is delayed to the end of this section.

Proposition 18. The following assertions hold.

1. the sets N
(k)
S , where 0 ≤ k ≤M − 1 and S ∈ Dk, are pairwise disjoint;

2. the sets Ck ∪ Dk, where 0 ≤ k ≤M , form a partition of V (G);

3. E(G) =
(⋃

0≤k≤M E(G[Ck ∪ Dk])
)
∪
(⋃

0≤k≤M−1, S∈Dk E(G[N
(k)
S ])

)
;

4. the maximum degree of G[Ck ∪ Dk], where 0 ≤ k ≤M , is at most εd.

Let v = (vS)S∈V (G) be an eigenvector of A(G) with eigenvalue λ1(G), whose entries are

positive and whose norm is 1. Define

α2
k =

∑
S∈Ck∪Dk

v2S for 0 ≤ k ≤M,

(βk,S)2 =
∑

T∈N(k)
S

v2T for 0 ≤ k < M and S ∈ Dk.

19



By Parts 1 and 2 above,
∑

0≤k<M

∑
S∈Dk

(βk,S)2 ≤ 1 and
M∑
k=0

α2
k = 1. Thus, by Part 3,

λ1(G) = 〈A(G)v, v〉

≤
M∑
k=0

〈
A(G[Ck ∪ Dk])v, v

〉
+
M−1∑
k=0

∑
S∈Dk

〈
A
(
G
[
N

(k)
S

])
v, v
〉

≤
∑
k

α2
k · λ1(G[Ck ∪ Dk]) +

∑
k,S

(βk,S)2 · λ1
(
G
[
N

(k)
S

])
≤ max

k
{λ1(G[Ck ∪ Dk])}+ max

k,S

{
λ1(G[N

(k)
S ])

}
.

(4)

By Part 4 of Proposition 18, the maximum degree of G[Ck∪Dk] is at most εd. Since V (G)

is compressed, the largest set in V (G) has size at most log n. Recall that n = Θ
((

d
i

))
,

thus logn = (1 + o(1))i log(d/i). Claim 14 implies the following upper bound.

λ1(G[Ck ∪ Dk]) ≤ 2
√
εd log n = 2(1 + o(1))

√
εdi log(d/i). (5)

Let us treat first the case where i → ∞. By Claim 14, using the monotonicity of the

largest eigenvalue of a graph,

λ1

(
G
[
N

(k)
S

])
≤ λ1

(
HM−k
d

)
≤ λ1

(
HM
d

)
≤ 2
√
Md. (6)

Substituting (5) and (6) into (4), it follows that

λ1(G) ≤ 2(1 + o(1))
(√

εdi log(d/i) +
√
Md

)
. (7)

The following claim will imply that we can choose ε so as to make the above upper bound

arbitrarily close to λ1(H
i
d).

Claim 19. Let 0 < α < 1 be fixed and set ε = α
log(d/i) . Then M ≤ (1 + o(1))i.

We note that for ε = α
log(d/i) , as is Claim 19, we have logn

d < ε < 1/2 for large enough d, as

required before the definition of the sets Ak. Indeed, the upper bound follows as i = o(d);

the lower bound holds since logn
d ≤ (1 + o(1)) log(d/i)d/i = o

(
1

log(d/i)

)
.

Proof. For arbitrary β > 0 we show thatM ≤ (1+β)i for large enough d. LetN = (1+β)i

and D = εd. We need to show that AN = ∅. Assuming the contrary, we may pick S ∈ AN .

We show that for 0 ≤ l ≤ N .

|Nl(S) ∩ AN−l| ≥
(
D

l

)
. (8)
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Indeed, (8) holds trivially for l = 0. For 0 ≤ l < N , every vertex in Nl(S) ∩ AN−l has

at least D neighbours in AN−l−1, at most l of which are in Nl−1(S) and the remaining

neighbours are in Nl+1(S). Furthermore, every vertex in Nl+1(S)∩AN−l−1 is a neighbour

of at most l+1 vertices in Nl(S). We conclude that |Nl+1(S)∩AN−l−1| ≥ |Nl(S)∩AN−l| ·
D−l
l+1 . By induction on l, (8) follows.

It follows from (8) that n = |V (G)| ≥
(
D
N

)
. Recall that i = o(d) and note that N

D =
1+β
α ·

log(d/i)
d/i ≤ 1/2, for sufficiently large d. Thus,

n ≥
(
D

N

)
=
D(D − 1) · . . . · (D −N + 1)

N !

≥ (D −N)N

e
√
N
(
N
e

)N
≥ 1

e
√
N

(
eD

2N

)N
.

For the second inequality, we used the inequality m! ≤ e
√
m
(
m
e

)m
, that holds for all m;

the third inequality follows since N/D ≤ 1/2, as explained above. On the other hand,

n ≤ c
∣∣∣[d](≤i)

∣∣∣ = c

((
d

0

)
+ . . .+

(
d

i

))
≤ c

(
2−i + . . .+ 2−1 + 1

)(d
i

)
≤ 2c√

2πi

(
ed

i

)i
.

The first inequality holds since
(
d

x−1
)

=
(
d
x

)
x

d−x+1 ≤
1
2

(
d
x

)
for x ≤ (d + 1)/3; the second

inequality holds since m! ≥
√

2πm(m/e)m for every m. Combining the two inequalities,

we obtain the following inequality.

2c√
2πi

(
ed

i

)i
≥ 1

e
√
N

(
eD

2N

)N
=

1

e
√

(1 + β)i

(
eα

2(1 + β)
· d/i

log(d/i)

)(1+β)i

.

Hence, the following holds, where c1, c2 are constants depending on α, β, c.

c2 ≥

(
c1

(d/i)
β

1+β

log(d/i)

)(1+β)i

.

Since i = o(d), we have log(d/i) = o ((d/i)γ) for every fixed γ > 0, so we have reached a

contradiction. This implies that M ≤ (1 + β)i for large d.

Assuming still that i→∞, by (7) with ε = α
log(d/i) and Claim 19, we have

λ1(G) ≤ 2 (1 + o(1))
(
1 +
√
α
)√

id.

Since α can be taken arbitrarily close to 0, i = o(d), and i→∞, it follows from Theorem
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3 that

λ1(G) ≤ 2(1 + o(1))
√
i(d+ 1− i) = (1 + o(1))λ1(H

i
d).

This completes the proof of Theorem 4 for i→∞.

Now suppose that i ≤ log d
4 log log d . Take ε = 2id−1/(i+1). It is easy to check that logn

d < ε <

1/2, satisfying our assumption on ε. Furthermore, one can check that
(
εd
i+1

)
> n, implying

that M ≤ i, by (8) (which holds for every i and l ≤ N , assuming that S ∈ AN ; hence, if

S ∈ Ai+1, then |G| ≥ |A0| ≥
(
εd
i+1

)
, a contradiction). The following upper bound on λ1(G)

follows from (4), (5) and Claim 13.

λ1(G) ≤ O

(√
i2d1−

1
i+1 log d

)
+ λ1

(
H i
d

)
= o

(√
d
)

+ λ1
(
H i
d

)
= (1 + o(1))λ1

(
H i
d

)
.

Here we used the inequality i2d−
1
i+1 log d = o(1), which holds for i ≤ log d

4 log log d , and the

lower bound λ1(H
i
d) ≥

√
d. This completes the proof of Theorem 4, as we have λ1(G) ≤

(1 + o(1))λ1(H
i
d) for both i ≤ log d

4 log log d and for i ≥ log d
4 log log d (because in the latter case, in

particular, i→∞).

5.3 Proof of Proposition 18

In order to complete the proof of Theorem 4, it remains to prove Proposition 18.

Proposition 18. The following assertions hold.

1. the sets N
(k)
S , where 0 ≤ k ≤M − 1 and S ∈ Dk, are pairwise disjoint;

2. the sets Ck ∪ Dk, where 0 ≤ k ≤M , form a partition of V (G);

3. E(G) =
(⋃

0≤k≤M E(G[Ck ∪ Dk])
)
∪
(⋃

0≤k≤M−1, S∈Dk E(G[N
(k)
S ])

)
;

4. the maximum degree of G[Ck ∪ Dk], where 0 ≤ k ≤M , is at most εd.

Proof. We prove the following seven assertions.

1. for every 0 ≤ k ≤ M and S ∈ Ck ∪ Dk, there are unique j ≤ k and T ∈ Dj , for

which there exist distinct tj+1, . . . , tk satisfying tl > ml−1 (for j + 1 ≤ l ≤ k) and

S = T ∪ {tj+1, . . . , tk};

2. Ek is compressed for every 0 ≤ k ≤M ;

3. (Ck ∪ Dk) ∩ Ek−1 = ∅ for every 1 ≤ k ≤M ;

4. there are no edges of G between Ek and Dk+1∪Ck+2∪Dk+2 for every 0 ≤ k ≤M−2;

5. the maximum degree of G[Ck∪Dk] is at most mk, and mk ≤ εd for every 0 ≤ k ≤M ;
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6. AM−k ⊆ Ek for every 0 ≤ k ≤M . In particular, EM = V (G);

7. the sets N
(k)
S , where 0 ≤ k ≤M − 1 and S ∈ Dk, are pairwise disjoint.

Note that Proposition 18 follows from these assertions. Indeed, Parts 1 and 4 follow

directly from Assertions 7 and 5. Part 2 follows easily from Assertions 3 and 6. To prove

Part 3, let ST be an edge of G, where T = S∪{t}. Let k be smallest such that S ∈ Ek (such

k exists because EM = V (G)). We show that T ∈ Ek+1. Recall that S∪{t′} ∈ Ck+1, for any

t′ /∈ S satisfying t′ > mk. We note that there exists such t′ that satisfies t′ ≥ t, because

|S| = o(d) (recall that G is compressed, so |G| ≥ 2|S| and |G| = 2o(d)) and mk ≤ εd < d/2

(see Assertion 5; recall that ε < 1/2). Since Ck+1 ⊆ Ek+1, it follows that S ∪ {t′} ∈ Ek+1,

and because Ek+1 is compressed (see Assertion 2), we have T = S ∪ {t} ∈ Ek+1. Also,

T /∈ Ek−1 (since, otherwise, S ∈ Ek−1 because Ek−1 is compressed, contrary to the choice

of k). Furthermore, T /∈ Dk+1, by Assertion 4. So, T is either in Ck ∪ Dk, in which case

the edge ST is in G[Ck ∪Dk]; or T ∈ Ck+1. By Assertion 1, S ∈ N (k′)
S′ for some S′ and k′.

It is easy to see that, in the latter case, also T ∈ N (k′)
S′ , so ST ∈ E(N

(k′)
S′ ).

Proof of Assertion 1. We prove Assertion 1 by induction on k. It is trivial for k = 0,

so we assume k > 0. Let S ∈ Ck ∪ Dk. By the definition of Cl and by induction, S =

T ∪ {tj+1, . . . , tk} for some j, T ∈ Dj and tu > mu−1 for all j + 1 ≤ u ≤ k. Suppose that

we may also write S = R∪{rl+1, . . . , rk}, where R ∈ Dl and ru > mu−1 for l+ 1 ≤ u ≤ k.

We show that we must have l = j and R = T .

Note that if j = l = k, there is nothing to prove. If j < k it follows from the definitions

that S ∈ Ck, thus S /∈ Dk and so l < k. By the definitions, there is s ∈ S with s >

mk−1 such that S \ {s} ∈ Ck−1 ∪ Dk−1. Since T ⊆ [mj ] and R ⊆ [ml] it follows that

s ∈ {tj+1, . . . , tk} ∩ {rl+1, . . . , rk}. Without loss of generality, s = tk = rk (if, say, s = tj′ ,

swap tj′ with tk; the property tu > mu−1 for j + 1 ≤ u ≤ k is maintained). It follows

that T ∪ {tj+1, . . . , tk−1} = R ∪ {rl+1, . . . , rk−1} ∈ Ck−1 ∪ Dk−1. By induction, j = l and

R = T , as required.

Proof of Assertion 2. Again we prove the assertion by induction on k. For k = 0, we

have E0 = P([m0])∩V (G), hence, since G is compressed, E0 is also compressed. Let k > 0,

S ∈ Ck ∪ Dk and choose a ∈ S, b < a such that b /∈ S (if such b exists). Let T = S \ {a}
and R = S4{a, b}. To prove the assertion we show that R, T ∈ Ek.

If S ∈ Dk, the claim follows directly from the definition of Dk and the fact that G is

compressed. Thus we assume S ∈ Ck, so we can write S = S1 ∪ {s} where s > mk−1 and

S1 ∈ Ck−1 ∪ Dk−1. If a 6= s, by induction we have R \ {s}, T \ {s} ∈ Ek−1, thus R, T ∈ Ek
(e.g. if R \ {s} ∈ Cl ∪Dl for some l ≤ k− 1, then R ∈ Cl+1 by definition of Cl+1). We may

now assume that a = s. Then clearly T = S1 ∈ Ck−1 ∪ Dk−1 ⊆ Ek. It remains to show

that R ∈ Ek.
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Let S = S2∪{sj+1, . . . , sk}, where S2 ∈ Dj for some j ≤ k and sl > ml−1 and j+1 ≤ l ≤ k
(by Assertion 1 such a representation exists). Note that we may assume that sk = a

(indeed, S2 ⊆ [mj ], by definition of Dj , so a = sl for some j + 1 ≤ l ≤ k, but then, since

a = s > mk−1, we may swap sl and sk).

If b ≤ mj , it follows that S2 ∪ {b} ∈ Ej (by definition of Dj). Hence, in this case,

(S2 ∪ {b})∪ {sj+1, . . . , si} ∈ Ci−1, for every j + 1 ≤ i ≤ k (by induction and the definition

of Cl). In particular, R = S2 ∪ {b, sj+1, . . . , sk−1} ∈ Ck−1 ⊆ Ek−1, as required.

It remains to consider the case b > mj . Let s′j+1 < . . . < s′k be such that {s′j+1, . . . , s
′
k} =

{sj+1, . . . , sk−1, b}. If s′u > mu−1 for every j + 1 ≤ u ≤ k then R ∈ Ck. Otherwise let

l = max{u : s′u ≤ mu−1} and S3 = S2 ∪ {s′j+1, . . . , s
′
l}. Since S3 ⊆ [ml−1] it follows that

S3 ∈ El−1 and R = S3 ∪ {sl+1, . . . , sk} ∈ Ek−1.

Proof of Assertion 3. From the definitions it follows that Ek−1 ∩ Dk = ∅. Since

D0 ∪ . . . ∪ Dk−1 ⊆ P([mk−1]), it follows that Ck ∩ (D0 ∪ . . . ∪ Dk−1) = ∅. Thus it remains

to show that Cj ∩ Ck = ∅ for 0 ≤ j < k. We prove this by induction on k. For k = 0

there is nothing to prove. Assume 0 ≤ j < k and S ∈ Cj ∩ Ck. Write s = maxS and

S = S1∪{tj+1, . . . , tk}, where S1 ∈ Dj and tl > ml−1 for some j and for j+1 ≤ l ≤ k (this

is possible by Assertion 1). As in the proof of Assertion 2, we may assume that tk = s. It

follows from the definition of Cl that S \ {s} ∈ Ck−1 ∪ Dk−1. Similarly, we can show that

S ∈ Cj−1 ∪ Dj−1, so S \ {s} ∈ (Ck−1 ∪ Dk−1) ∩ (Cj−1 ∪ Dj−1). As explained above this

implies that S \ {s} ∈ Cj−1 ∩ Ck−1, contradicting the induction hypothesis.

Proof of Assertion 4. Let S ∈ Ek and T be a neighbour of S in G. We show that

T ∈ Ek ∪Ck+1, implying that there are no edges of G between Ek and Dk+1 ∪Ck+2 ∪Dk+2.

If T ⊆ S, it follows from Assertion 2 that T ∈ Ek. So we assume T = S ∪ {t} and set

s = maxS. If t > mk, then T ∈ Cl+1 ⊆ Ek ∪ Ck+1, where l ≤ k is such that S ∈ Cl ∪ Dl.
If s, t ≤ mk, then T ⊆ [mk], so T ∈ Ek. Finally, we consider the case t ≤ mk < s.

Since Ek is compressed, it follows that T \ {s} = S4{s, t} ∈ Ek. Let l ≤ k be such that

T \ {s} ∈ Cl ∪ Dl. Then, by the definition of Cl+1, we have T ∈ Cl+1 ⊆ Ek ∪ Ck+1, as

required.

Proof of Assertion 5. Let S, T ∈ Ck∪Dk and t ∈ [d] be such that T = S∪{t}. We note

that t ≤ mk, because otherwise T ∈ Ck+1 ∩ (Ck ∪ Dk) = ∅. It follows that the maximum

degree of G[Ck ∪ Dk] is at most mk.

We now prove by induction on k thatmk ≤ εd. Recall that by the definition ofM , the max-

imum degree of G[AM ] is at most εd. Thus for k = 0 we have m0 = max{1, dG[AM ](∅)} ≤
εd. Now let k > 0 and S = {m0 + 1, . . . ,mk−1 + 1}. It follows from the definition of

Bk−1 that S /∈ AM−(k−1), so d(S,AM−k) ≤ εd (we define d(S,AM−k) to be the number of
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neighbours of S in AM−k). Hence mk ≤ max{t : S ∪ {t} ∈ AM−k} ≤ d(S,AM−k) ≤ εd,

and the assertion follows.

Proof of Assertion 6. Let S ∈ AM−k. Note that if |S| ≤ k it can be easily shown by

induction that S ∈ Ek. Thus we assume |S| ≥ k+ 1. Define tk = maxS and for 0 ≤ j < k,

denote tj = max(S \ {tj+1, . . . , tk}). Assume first that mj < tj for every 0 ≤ j < k. Since

AM−k is compressed, it follows that {m0 + 1, . . . ,mk−1 + 1, tk} ∈ AM−k. Thus tk ≤ mk,

S ⊆ [mk] and S ∈ Ek. Otherwise, let l ≥ 0 be maximal such that tl ≤ ml. It follows from

the definitions that S ∩ [ml] ∈ El and S ∈ Ek.

Proof of Assertion 7. We show that for every 0 ≤ j < k ≤ M − 1 if S ∈ Ck, T ∈ Dj
are such that S ∈ N (k−j)

T then there exist tj+1, . . . , tk such that S = T ∪{tj+1, . . . , tk} and

tl > ml−1 for every j < l ≤ k. By uniqueness of such a representation (see Assertion 1),

it follows that j and T are unique, i.e., if S ∈ N (k−j′)
T ′ for some 1 ≤ j′ ≤ k and T ′ ∈ Cj′

then j′ = j and T ′ = T , as required.

By Assertions 2 and 4 the sets El are down-compressed and there are no edges between El
and Cl+2∪Dl+2, for every 0 ≤ l ≤M −2. Thus, since S ∈ N (k−j)

T , S is obtained by adding

k − j elements to T , and we can write S = T ∪ {tj+1, . . . , tk}. Without loss of generality,

tj+1 < . . . < tk. We show that tl > ml−1 for j + 1 ≤ l ≤ k. Suppose to the contrary that

there is l for which tl ≤ ml−1. It follows that T ∪ {tj+1, . . . , tl} ∈ El−1 and thus S ∈ Ek−1,
contradicting our assumptions that S ∈ Ck. This proves that the required representation

exists, thus proving the assertion.

The proof of Proposition 18 completes the proof of our first main result, Theorem 4.

6 Hamming ball is best for fixed i

In this section we prove Theorem 5.

Theorem 5. For every i there is d0 = d0(i) such that for d ≥ d0 the Hamming ball H i
d

maximises the largest eigenvalue among subgraphs of Qd of the same order.

Let us start with an outline of the proof. We are given a graph G that maximises the

largest eigenvalue among subgraphs of Qd with |H i
d| vertices. As usual, we assume that G

and its eigenvector v with eigenvalue λ1(G) are compressed. Using the proof of Theorem

4, we conclude that by removing the vertices of size at least i + 1, the largest eigenvalue

does not decrease by much. We infer that G contains almost all vertices of size at most

i. By the assumption that G maximises λ1, and given an eigenvector v, we know that

by replacing (in both G and v) any vertex of size at least i + 1 with a vertex of size i

25



that is not already in G, the inner product 〈A(G)v, v〉 does not decrease. This enables

us to obtain a lower bound on the coefficient vS for S in G whose size is largest among

vertices in G. Finally, using the relations between the coefficients in v of vertices and their

neighbourhoods, and the fact that there are few vertices of size at least i+ 1, we reach a

contradiction to the assumption that v is compressed, by concluding that there is a vertex

whose coefficient in v is larger than the coefficient of the empty set.

We now proceed to the proof of the theorem.

Proof of Theorem 5. Let G be a subgraph of Qd with |H i
d| vertices and assume λ ,

λ1(G) is largest among subgraphs of Qd with the same number of vertices. In light of

Claim 13,

λ = Ω
(√

d
)
. (9)

Let v = (vS)S∈V (G) be a positive vector of norm 1 satisfying λ = 〈A(G)v, v〉. By Lemmas

6 and 7, we can assume that V (G) and v are compressed.

We first show that the graph obtained from G by removing vertices of size at least i + 1

still has a large maximum eigenvalue.

Claim 20. Let U = V (G) ∩ [d](≤i). There exists η = η(i) > 0 such that λ1(Qd[U ]) ≥
λ1(H

i
d)−O

(
d1/2−η

)
.

Proof. We use the proof of Theorem 4. Consider (4) which states the following (we use

the definitions of Ck, Dk and N
(k)
S from Section 5).

λ = λ1(G) ≤ max
k
{λ1 (G [Ck ∪ Dk])}+ max

k, S

{
λ1

(
G
[
N

(k)
S

])}
.

As explained after the proof of Claim 19, if ε = 2id−1/(i+1) then M ≤ i, implying that

the sets N
(k)
S are subsets of Hamming balls of radius at most i. Recall that each set N

(k)
S

(where k ≤ M − 1 and S ∈ Dk) is a subset of the set of vertices T in G that contain

S and satisfy |T \ S| ≤ i. Since G is compressed, it follows that G[N
(k)
S ] is isomorphic

to a subgraph of Qd[U ], hence λ1(N
(k)
S ) ≤ λ1(Qd[U ]) for every k ≤ M − 1 and S ∈ Dk.

Furthermore, for our choice of ε, the following holds (see (5)).

λ1(G[Ck ∪ Dk]) = O

(√
d1−

1
i+1 log d

)
.

Thus, for any η < 1/2(i+ 1), we have

λ ≤ O(d1/2−η) + λ1(Qd[U ]).

Claim 20 follows from the assumption that λ ≥ λ1(H i
d).
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We conclude that
∣∣V (G) \ [d](≤i)

∣∣ is small.

Claim 21. There exists θ = θ(i) > 0 such that
∣∣V (G) \ [d](≤i)

∣∣ = O
(
di−θ

)
.

Proof. Define

U =
{
s ∈ [d] : there exists S ∈ V (G) ∩ [d](i) such that s = minS

}
U =

{
S ∈ [d](i) : S ∩ U 6= ∅

}
.

Since G is compressed, it follows that U (i) ⊆ V (G) ∩ [d](i) ⊆ U . Write |U | = (1− β)d and

let H be the subgraph of Qd induced by [d](<i) ∪ U . Note that V (G) ∩ [d](≤i) ⊆ V (H). It

follows from Claim 20 that for some constant η = η(i) > 0, the following holds.

λ1(H) ≥ λ1(H i
d)−O(d1/2−η). (10)

We shall conclude that β = O(d−θ) for some θ = θ(i) > 0. This would imply that∣∣V (G) ∩ [d](i)
∣∣ ≥ ((1−β)di

)
=
(
d
i

)
−O(di−θ), as required.

Note that, by symmetry, the eigenvector u of H with eigenvalue λ1(H) is uniform on

vertices of the same size and with the same number of elements in [(1− β)d]. Let uj,k be

the coordinate in u of a vertex from [d](j) with k elements in [(1−β)d], where (j, k) ∈ I =

{(j, k) : 0 ≤ k ≤ j ≤ i} \ {(i, 0)} and define uj,k = 0 for (j, k) /∈ I. The following system

of equations holds.

λ1(H)uj,k = (j − k)uj−1,k + k uj−1,k−1+

((1− β)d− k)uj+1,k+1 + (βd− (j − k))uj+1,k.

Let A be the matrix whose rows and columns are indexed by I that satisfies the following

for x = (xj,k)(j,k)∈I (we define xj,k = 0 for (j, k) /∈ I).

(Ax)j,k = (j − k)xj−1,k + k xj−1,k−1+

((1− β)− k/d)xj+1,k+1 + (β − (j − k)/d)xj+1,k.

We note that the vector w, defined by wj,k = uj,kd
j/2 for (j, k) ∈ I, is an eigenvector

of A with eigenvalue λ(H)/
√
d. As all the coordinates in w are positive, it follows that

λ1(A) = λ1(H)/
√
d. Denote µ = λ1(A). Let B be the matrix whose rows and columns

are indexed by I+ = I ∪{(i, 0)}, and is defined by the same system of equations as A, but

for (xj,k)(j,k)∈I+ (where xj,k = 0 for (j, k) /∈ I+). As before, λ1(B)
√
d = λ1(H

i
d). So, by

Claim 20, we have

λ1(B)− λ1(A) = O(d−η). (11)

27



We shall show that if β ≤ 1/2, then

λ1(B)− λ1(A) = Ω
(
β4i
)
. (12)

Before proving (12), we show how to complete the proof of Claim 21 under the assumption

that (12) holds for β ≤ 1/2. First, suppose that β ≤ 1/2. Then, by (11) and (12), we have

β = O(d−η/4i), as required. Now, suppose that β > 1/2. Let A′ be defined as A but with

β′ = 1/2 in place of β (to be precise, we need (1− β′)d to be integer, which is the case if

β′ = 1/2 and d is even; if d is odd we take β′ = 1/2 − 1/2d). Note that λ1(A) ≤ λ1(A
′)

(as the graph corresponding to A is a subgraph of the graph corresponding to A′). Now,

by (12), applied to A′, we have λ1(B) − λ1(A) ≥ λ1(B) − λ1(A′) = Ω((1/2)4i) = Ω(1), a

contradiction to (11).

In order to prove (12) for β ≤ 1/2, we use Claim 22 below. Consider the graph F on vertex

set I, where the neighbourhood of (j, k) ∈ I is {(j+1, k+1), (j+1, k), (j−1, k), (j−1, k−
1)}∩ I. Every vertex in F is within distance at most i from (0, 0), thus the diameter of F

is at most 2i. The entries in A corresponding to these edges are at least β + O(1/d) (as

β ≤ 1/2). The following inequality follows from Claim 22 which is proved below (where

µ = λ1(A); using the fact that µ = O(1) which follows from Claim 15).

wj,k ≥
(
β +O(1/d)

µ

)2i

= Ω(β2i).

Let wε ∈ RI+ be defined as follows.

(wε)j,k =

{ √
1− ε2wj,k (j, k) ∈ I

ε (j, k) = (i, 0).

We note that, since w has norm 1, wε also has norm 1. Furthermore,

λ1(B) ≥ 〈Bwε, wε〉 =
(
1− ε2

)
µ+ iε

√
1− ε2wi−1,0

=
(
1− ε2

)
µ+ Ω

(
β2iε

√
1− ε2

)
.

By picking ε = cβ2i for sufficiently small c, we have λ1(B) ≥ µ + c2β4i/2, proving (12).

This completes our proof of Claim 21.

We now state and prove Claim 22, which was used in the proof of Claim 21.

Claim 22. Let A be an n× n matrix with non-negative entries, and let α > 0. Let H be

a graph with vertex set [n] for which if jk ∈ E(H) then Aj,k ≥ α and Ak,j ≥ α. Suppose,

additionally, that H is connected and has diameter r.

Let u = (uj)j∈[n] be an eigenvector of A with eigenvalue λ = λ1(A), whose norm is 1 and

whose entries are non-negative. The uj ≥
(
α
λ

)r 1√
n

for all j ∈ [n].
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Proof. Denote by j0 an index j that maximises uj . Then, in particular, uj0 ≥ 1/
√
n.

Let Nt be the set of vertices in H whose distance from j0 is t. We shall show that for

every j ∈ Nt, we have uj ≥
(
α
λ

)t
uj0 . This statement holds trivially for t = 0. Now

suppose that it holds for t. Let j ∈ Nt+1 and let k ∈ Nt be a neighbour of j. Then

λuj =
∑

lAj,lul ≥ Aj,kuk ≥ α
(
α
λ

)t
uj0 . The statement easily follows, completing the

proof of Claim 22. (note that α ≤ λ, as, otherwise, we reach a contradiction to the

maximality of uj0).

Let l = max{j : V (G) ∩ [d](j) 6= ∅}. Assuming that V (G) 6= [d](≤i), we have l > i. Note

that since G is left-compressed, [l] ∈ V (G); also, since G is down-compressed, we have

l = O(log d). (13)

Claim 23. If l > i then v[l] ≥ v∅λ−i.

Proof. We first show that vS ≥ v∅λ
−|S| for every S ∈ V (G), by induction on |S|. It is

trivially true for S = ∅. Now let S 6= ∅ and let a ∈ S, T = S \ {a}. Then λvS is the sum

of weights of the neighbours of S, and in particular λvS ≥ vT ≥ v∅λ
−|T | = v∅λ

−|S|+1, as

required.

Since we assume l > i, the set [d](≤i) \ V (G) is non-empty. Pick a minimal element S

in it. Consider the graph G′ which is induced by (V (G) \ {[l]}) ∪ {S}. Let v′ be the

vector in RV (G′) that agrees with v on every coordinate in V (G) ∩ V (G′), and v′S = v[l].

Note that |G′| = |G|, so, by our assumption on G, λ1(G) ≥ λ1(G
′). It follows that

〈A(G)v, v〉 = λ1(G) ≥ λ1(G′) ≥ 〈A(G′)v′, v′〉. Hence,

0 ≤ 〈A(G)v, v〉 − 〈A(G′)v′, v′〉 = v[l]

2
∑
j∈[l]

v[l]\{j} − 2
∑
j∈S

vS\{j}

 .

The following inequality follows.

λv[l] =
∑
j∈[l]

v[l]\{j} ≥
∑
j∈S

vS\{j} ≥ v∅λ−(|S|−1) ≥ v∅λ−(i−1).

This completes the proof of Claim 23.

We now make a few definitions. Let ε = ε(i) be a sufficiently small constant that depends

only on i (the constraint determining how small ε should be can be found at the end of

the proof of Claim 24). Let

t = min

{
j : v[l−j−1] ≤

ελ

l
· v[l−j]

}
.
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In particular, for every j ≤ t, the following holds.

v[l−j] ≥
(
ελ

l

)j
v[l]. (14)

Define, for j ≥ 0,

Aj =
{
S ∈ V (G) ∩ [d](l−t+j) : [l − t] ⊆ S

}
,

Wj =
∑
S∈Aj

vS .

In the next claim, we prove that t = i and give a lower bound on Wi.

Claim 24. t = i and Wi ≥ λiW0.

Before proving Claim 24, we show how it can be used to complete the proof of Theorem

5. By Claim 24, the definition of W0 and (14), we obtain the following inequality.

Wi ≥ λiW0 = λiv[l−i] ≥
(
ελ2

l

)i
v[l]. (15)

Since G and v are compressed, vS ≤ v[l] for every S ∈ Ai, and so Wi ≤ |Ai|v[l]. It follows

that |Ai| ≥
(
ελ2

l

)i
. Since l = O(log d) and λ = Ω(

√
d) (see (13) and (9)), it follows that

|V (G)∩ [d](l)| ≥ |Ai| = Ω
(

di

(log d)i)

)
. This is a contradiction to Claim 21 (recall that l > i,

otherwise we are done), thus completing the proof of Theorem 5.

We now prove Claim 24, which was used in the proof of Theorem 5.

Proof of Claim 24. We first note that t ≤ i. Indeed, by (14), if t ≥ i+1, then v[l−i−1] ≥(
ελ
l

)i+1
v[l]. Recall that, since G and v are compressed, v[l−i−1] ≤ v∅. Also, by Claim 23,

v[l] ≥ v∅λ−i. Putting these three inequalities together, we deduce that

v∅ ≥ v[l−i−1] ≥
(
ελ

l

)i+1

v[l] ≥
(
ελ

l

)i+1

v∅λ
−i ≥

(ε
l

)i+1
λv∅.

This is a contradiction, as the right-hand side is at least Ω
(( √

d
(log d)i+1

)
v∅

)
= ω(v∅) (as

λ = Ω(
√
d) and l = O(log d)).

Define, for j ≥ 0 (also, define A−1 = ∅),

Bj =
{
T ∈

(
V (G) ∩ [d](l−t+j−1)

)
\ Aj−1 : there exists S ∈ Aj s.t. T ⊆ S

}
Uj =

∑
S∈Bj

vS .
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We obtain the following inequalities, using the fact that every vertex in Aj has at most

d− j neighbours in Aj+1.

λWj ≤


W1 + U0 j = 0

(d− j + 1)Wj−1 + (j + 1)Wj+1 + Uj 0 < j < t

(d− t+ 1)Wt−1 + Ut j = t.

Define k = min{j : Wj+1 ≤ λWj}. Clearly k ≤ t since Wt+1 = 0 (by definition of l). Thus

Wj ≥ λjW0 for 0 ≤ j ≤ k. We will show that k = t = i, thus completing the proof of

Claim 24.

Note that U0 ≤ (l − t)v[l−t−1] ≤ lv[l−t−1] ≤ ελv[l−t] = ελW0, by the assumption that v

is compressed and the definition of t. Also, λUj ≥ (j + 1)Uj+1 ≥ Uj+1 for 0 ≤ j ≤ t,

thus Uj ≤ λjU0 ≤ ελj+1W0 ≤ ελWj for 0 ≤ j ≤ k. Hence, the above inequalities can be

rewritten as follows.

λWj ≤


W1 + ελW0 j = 0

(d− j + 1)Wj−1 + (j + 1)Wj+1 + ελWj 0 < j < k

(d− k + 1)Wk−1 + ελWk j = k.

Denote W = (W0, . . . ,Wk)
T , and let A be the matrix with the above coefficients, but

with the terms preceded by ε dropped. Note that λ1(A) = λ1(H
k
d ) (this follows from

the fact that, by symmetry, an eigenvector of Hk
d with eigenvalue λ1(H

k
d ) is uniform over

all vertices in [d](j) for every 0 ≤ j ≤ k; note that A is the transpose of the matrix

Ad,i which is described implicitly in Lemma 15). The above inequalities translate to

λWj ≤ (AW )j + ελWj , or, equivalently, (AW )j ≥ (1 − ε)λWj . We obtain the following

chain of inequalities.

λ1
(
Hk
d

)
= λ1(A) ≥ 〈AW,W 〉

〈W,W 〉
≥ (1− ε)λ ≥ (1− ε)λ1

(
H i
d

)
.

The last inequality follows from the assumption that λ = λ1(G) is maximal among all

subgraphs of Qd with the same order, so, in particular, λ ≥ λ1
(
H i
d

)
.

Recall that by Claim 13, λ1
(
Hj
d

)
= µj

√
d(1+O(1/d)), where µj < µj+1 for every j. Hence,

if ε is chosen to be sufficiently small, then k ≥ i. In fact, since k ≤ t ≤ i, we conclude that

k = t = i, as required.

7 Conclusion

The question of characterising the subgraphs of the cube that maximise λ1 is far from

being completely answered. We have shown that for fixed i and large d, H i
d maximises

31



λ1 among subgraphs of Qd of the same order. It would be interesting to determine if a

similar statement holds for a wider range of radii.

Question 25. For which i does H i
d maximise λ1 among all subgraphs of Qd of the same

order?

For radii tending to infinity with the dimension of the cube, our results as well as Samorod-

nitsky’s results [28] only show that the Hamming balls have largest eigenvalues which are

asymptotically largest among subgraphs of the same order. We believe that, similarly to

Theorem 2, the Hamming balls maximise the maximum eigenvalues exactly rather than

just asymptotically, for large d and a large range of radii.

We point out that for radii that are very close to d/2 the Hamming ball does not achieve

the largest maximum eigenvalue, as can be seen by the following example.

Example 26. Assume that d is even and consider the Hamming ball of radius d/2 − 1,

H = H
d/2−1
d . We show that λ1(H) = d − 2. Put λ = d − 2 and let x be the vector with

coefficient xi = 1− 2i/d on the vertices of size i. The following can be easily verified.

λxi =


dx1 i = 0

ixi−1 + (d− i)xi+1 0 < i < d/2− 1

ixi−1 i = d/2− 1.

Thus we have A(H)x = (d − 2)x. Since all the coefficients xi are positive, this implies

that λ1(H) = d − 2. Note that |H| = 2d−1
(
1 − Θ

(
1/
√
d
))

> 2d−2. Thus, since the

largest eigenvalue of the subcube of dimension d − 2 is d − 2, we can achieve a larger

maximum eigenvalue with a (connected) subgraph on |H| vertices that contains the subcube

of dimension d− 2.

As seen by this example, it may be interesting to consider subgraphs whose largest eigen-

value is very close to d. For instance, determining the range of radii for which the Hamming

balls maximise the largest eigenvalue, especially for large radii, seems like a challenging

problem. The following weaker problem also seems hard.

Question 27. Is it true that for every fixed c > 0, if a subgraph H of Qd has λ1(H) ≥ d−c,
then |H| = Ω(2d)?
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[10] H.J. Finck and G. Grohmann, Vollständiges Produkt, chromatische Zahl und charak-
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