1 Proof of Mader’s splitting theorem

Given a digraph D and a set of vertices X, let d*(X; D) be the number of edges from X to X
(here X := V(D) \ X), and similarly let d~(X; D) be the number of edges from X to X. We
may omit D when it is clear what the underlying digraph is. For vertices z and y we denote by
Az, y; D) (or A(z,y) in short) the maximum number of edge-disjoint directed paths from z to y in
D. By Menger’s theorem, this is the minimum of d(X) over all subsets X with x € X and y ¢ X.
For a vertex z in D, let A\,(D) be the minimum of d*(X), over all sets of vertices X such that
X\ {z}, X\ {2} # 0. Equivalently, this is the minimum value of \(z,y), over all pairs of distinct

vertices x and y with x,y # z.
Given a directed edge e = zy in D, write a(e) = x and (e) = y.

Theorem 1 (Mader [1]). Let D be a digraph, let z be a vertex with d*(z) = d~(z) > 1, such that
A.(D) > k. Then there are edges uz and zv such that the multidigraph D' obtained by splitting of
the path uzv satisfies A,(D') > k.

Given a digraph D, a vertex z and a set A such that A\ {z}, A\ {z} # (), we denote the contraction
of D at A by D4, and we will denote the vertex replacing A by a. We allow multiedges, so
dT(A; D) = d*(a; D). (Mader’s paper also allows for loops.)

Observation 2. Let D be a digraph, let z be a vertez, and let A be a set of vertices such that z ¢ A
and A\ {z} # 0. If d*(A; D) = \,(D) then X\,(Da) = \.(D).

Proof. The observation follows by noting that for every subset X C V(D)\ A we have d*(X;D,) =
dt(X;D) and d* (X U{a}; D4) =dT (X U A; D). O

Given a digraph D and edges h and k with (h) = a(k), we denote the digraph obtained by splitting
the walk hk by D",

Lemma 3. Let D be a digraph, let z be a vertex with d*(z) = d~(2), and let A be a set of vertices
such that z ¢ A and A\ {z} # 0 satisfying \,(D) = d*(A). Suppose that h' is an edge in Dy
directed towards z and k' is an edge in D4 directed from z, such that A\,((DA)"*) = X\,(D4). Then
M. (D"6) = X\,(D), where h and k are the edges of D that correspond to h' and k' in D 4.

Proof. Write m = \,(D), and D’ = D"**. Note that D', = (Da)"¥".

Because (D)) = A\.((Da)"*) = d*(a; Da), at least one of a(h’) and e(k') is not a. Equivalently,
at least one of a(h) and e(k) is not in A. It follows that d*(B; D) = d™(B; D’) and d~(B; D) =
d—(B; D) for every B C A.

We will show that for every subset X C V(D), that satisfies X \ {2z}, X \ {2z} # 0, we have
d*t(X) > m. We do so in three steps.

First, let € A and y € A\ {z}. We claim that A(z,y; D’) > m. To see this, because \,(D’y) = m,
there are m pairwise edge-disjoint directed paths Pi, ..., P, in D’y from a to y. Let P/ be the path



in D’ that corresponds to P; (namely, replace each edge e in P; by the edge corresponding to e in
D'). Because A, (D) = m, there are m pairwise edge-disjoint directed paths Q1,...,Q., in D from x
to y. Since d*(A; D) = m, each path Q; contains exactly one edge from A to A; denote it by e;. Let
@), be the subpath of Q; from z to a(e;). Let R; be the path obtained by concatenating P/ and Q.
Then Ry, ..., R, are m pairwise edge-disjoint paths from z to y, implying that A\(x,y; D") > m, as
claimed. By Menger’s theorem, it follows that d*(X; D’) > m for every X C V(D) with XN A # 0,
and X N (A\ {z}) #0.

Second, if X N A =0 and X \ {z} # 0, we have d*(X; D) = d*(X;D/y) > m, using \.(D'y) =m
for the inequality.

Finally, let X be a set of vertices such that X N (A \ {z}) = 0 and X \ {2} # 0. In particular,
X CAU{z}. If z € X, then X C A, so, by a remark above and since \,(D/,) = m,

d*(X;D") = d~(X; D) = d~(X; Dly) = d*(V(D)) \ X; D}y) > m.

We now assume that z € X. Recall that there are m pairwise edge-disjoint paths Py, ..., P, from
Ato A\ {z} in D'. Since d*(A;D’) = m, it follows that each path P; contains exactly one edge
from A to A. Thus, if P; contains an edge from A to z, this edge is followed by an edge from z to
A\ {z}. Tt follows that e(4,2) < e(z, A\ {2}) (here e(S,T) is the number of edges from S to T in
D'). Hence e(X \ {z},2) < e(A,2) < e(z,A\ {z}) < e(z, X). Since d*(z) = d~(z), we also have
e(X,z) > e(z, X \ {2}). It follows that d* (X U {z}; D") = d*(X;D’) —e(X,2) +e(z,X \ {z}) <
dt(X;D’). But d*(X U{z}; D') > m, by the beginning of this paragraph, and so d*(X;D’) > m.

This completes the proof that d™(X; D’) > m for every set of vertices X with X\ {z}, X \{z}) # 0.
Thus A\, (D) = m, as required. O

Proof of Theorem 1. Write m := A,(D). The proof proceeds by induction on |D|. If |D| < 3,
it is easy to check that the statement holds. Now suppose that |[D| > 4. We may assume that
there are edges e and f with e(e) = a(f) = z and «a(e) # (f). Indeed, otherwise, there is a vertex
y # z such that all edges incident with z are also incident with y (or are loops), and it follows
that A\,(D \ {z}) = m. Let e and f be such edges. If \,(D) > m, we are done, so suppose
otherwise. Then there exists a set of vertices A such that A\ {2z}, A\ {z} # 0 and d*(4; D) < m.
Without loss of generality, z ¢ A. Since \,(D) = m, we have d*(A4;D) > m. It follows that
d*(A4; D) =m and a(e),e(f) € A, which implies that |A| > 2. Consider the graph Dy4. It has fewer
vertices than D, so by induction, there are edges h’ and k' in this graph with e(h’') = a(¥) = 2
and \,((D4)"*¥) = m. Let h and k be the edges in D corresponding to k' and k. By Lemma 3,
A, (D) = m, as required. O
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