1 Proof of Mader's splitting theorem

Given a digraph D and a set of vertices X, let $d^{+}(X ; D)$ be the number of edges from X to \bar{X} (here $\bar{X}:=V(D) \backslash X$), and similarly let $d^{-}(X ; D)$ be the number of edges from \bar{X} to X. We may omit D when it is clear what the underlying digraph is. For vertices x and y we denote by $\lambda(x, y ; D)$ (or $\lambda(x, y)$ in short) the maximum number of edge-disjoint directed paths from x to y in D. By Menger's theorem, this is the minimum of $d^{+}(X)$ over all subsets X with $x \in X$ and $y \notin X$. For a vertex z in D, let $\lambda_{z}(D)$ be the minimum of $d^{+}(X)$, over all sets of vertices X such that $X \backslash\{z\}, \bar{X} \backslash\{z\} \neq \emptyset$. Equivalently, this is the minimum value of $\lambda(x, y)$, over all pairs of distinct vertices x and y with $x, y \neq z$.

Given a directed edge $e=x y$ in D, write $\alpha(e)=x$ and $\varepsilon(e)=y$.
Theorem 1 (Mader [1]). Let D be a digraph, let z be a vertex with $d^{+}(z)=d^{-}(z) \geq 1$, such that $\lambda_{z}(D) \geq k$. Then there are edges $u z$ and $z v$ such that the multidigraph D^{\prime} obtained by splitting of the path uzv satisfies $\lambda_{z}\left(D^{\prime}\right) \geq k$.

Given a digraph D, a vertex z and a set A such that $A \backslash\{z\}, \bar{A} \backslash\{z\} \neq \emptyset$, we denote the contraction of D at A by D_{A}, and we will denote the vertex replacing A by a. We allow multiedges, so $d^{+}(A ; D)=d^{+}\left(a ; D_{A}\right)$. (Mader's paper also allows for loops.)

Observation 2. Let D be a digraph, let z be a vertex, and let A be a set of vertices such that $z \notin A$ and $\bar{A} \backslash\{z\} \neq \emptyset$. If $d^{+}(A ; D)=\lambda_{z}(D)$ then $\lambda_{z}\left(D_{A}\right)=\lambda_{z}(D)$.

Proof. The observation follows by noting that for every subset $X \subseteq V(D) \backslash A$ we have $d^{+}\left(X ; D_{A}\right)=$ $d^{+}(X ; D)$ and $d^{+}\left(X \cup\{a\} ; D_{A}\right)=d^{+}(X \cup A ; D)$.

Given a digraph D and edges h and k with $\varepsilon(h)=\alpha(k)$, we denote the digraph obtained by splitting the walk $h k$ by $D^{h k}$.

Lemma 3. Let D be a digraph, let z be a vertex with $d^{+}(z)=d^{-}(z)$, and let A be a set of vertices such that $z \notin A$ and $\bar{A} \backslash\{z\} \neq \emptyset$ satisfying $\lambda_{z}(D)=d^{+}(A)$. Suppose that h^{\prime} is an edge in D_{A} directed towards z and k^{\prime} is an edge in D_{A} directed from z, such that $\lambda_{z}\left(\left(D_{A}\right)^{h^{\prime} k^{\prime}}\right)=\lambda_{z}\left(D_{A}\right)$. Then $\lambda_{z}\left(D^{h k}\right)=\lambda_{z}(D)$, where h and k are the edges of D that correspond to h^{\prime} and k^{\prime} in D_{A}.

Proof. Write $m=\lambda_{z}(D)$, and $D^{\prime}=D^{h k}$. Note that $D_{A}^{\prime}=\left(D_{A}\right)^{h^{\prime} k^{\prime}}$.
Because $\lambda_{z}\left(D_{A}^{\prime}\right)=\lambda_{z}\left(\left(D_{A}\right)^{h^{\prime} k^{\prime}}\right)=d^{+}\left(a ; D_{A}\right)$, at least one of $\alpha\left(h^{\prime}\right)$ and $\varepsilon\left(k^{\prime}\right)$ is not a. Equivalently, at least one of $\alpha(h)$ and $\varepsilon(k)$ is not in A. It follows that $d^{+}(B ; D)=d^{+}\left(B ; D^{\prime}\right)$ and $d^{-}(B ; D)=$ $d^{-}\left(B ; D^{\prime}\right)$ for every $B \subseteq A$.

We will show that for every subset $X \subseteq V(D)$, that satisfies $X \backslash\{z\}, \bar{X} \backslash\{z\} \neq \emptyset$, we have $d^{+}(X) \geq m$. We do so in three steps.

First, let $x \in A$ and $y \in \bar{A} \backslash\{z\}$. We claim that $\lambda\left(x, y ; D^{\prime}\right) \geq m$. To see this, because $\lambda_{z}\left(D_{A}^{\prime}\right)=m$, there are m pairwise edge-disjoint directed paths P_{1}, \ldots, P_{m} in D_{A}^{\prime} from a to y. Let P_{i}^{\prime} be the path
in D^{\prime} that corresponds to P_{i} (namely, replace each edge e in P_{i} by the edge corresponding to e in $\left.D^{\prime}\right)$. Because $\lambda_{z}(D)=m$, there are m pairwise edge-disjoint directed paths Q_{1}, \ldots, Q_{m} in D from x to y. Since $d^{+}(A ; D)=m$, each path Q_{i} contains exactly one edge from A to \bar{A}; denote it by e_{i}. Let Q_{i}^{\prime} be the subpath of Q_{i} from x to $\alpha\left(e_{i}\right)$. Let R_{i} be the path obtained by concatenating P_{i}^{\prime} and Q_{i}^{\prime}. Then R_{1}, \ldots, R_{m} are m pairwise edge-disjoint paths from x to y, implying that $\lambda\left(x, y ; D^{\prime}\right) \geq m$, as claimed. By Menger's theorem, it follows that $d^{+}\left(X ; D^{\prime}\right) \geq m$ for every $X \subseteq V(D)$ with $X \cap A \neq \emptyset$, and $\bar{X} \cap(\bar{A} \backslash\{z\}) \neq \emptyset$.

Second, if $X \cap A=\emptyset$ and $X \backslash\{z\} \neq \emptyset$, we have $d^{+}\left(X ; D^{\prime}\right)=d^{+}\left(X ; D_{A}^{\prime}\right) \geq m$, using $\lambda_{z}\left(D_{A}^{\prime}\right)=m$ for the inequality.

Finally, let X be a set of vertices such that $\bar{X} \cap(\bar{A} \backslash\{z\})=\emptyset$ and $\bar{X} \backslash\{z\} \neq \emptyset$. In particular, $\bar{X} \subseteq A \cup\{z\}$. If $z \in X$, then $\bar{X} \subseteq A$, so, by a remark above and since $\lambda_{z}\left(D_{A}^{\prime}\right)=m$,

$$
d^{+}\left(X ; D^{\prime}\right)=d^{-}\left(\bar{X} ; D^{\prime}\right)=d^{-}\left(\bar{X} ; D_{A}^{\prime}\right)=d^{+}\left(V\left(D_{A}^{\prime}\right) \backslash \bar{X} ; D_{A}^{\prime}\right) \geq m .
$$

We now assume that $z \in \bar{X}$. Recall that there are m pairwise edge-disjoint paths P_{1}, \ldots, P_{m} from A to $\bar{A} \backslash\{z\}$ in D^{\prime}. Since $d^{+}\left(A ; D^{\prime}\right)=m$, it follows that each path P_{i} contains exactly one edge from A to \bar{A}. Thus, if P_{i} contains an edge from A to z, this edge is followed by an edge from z to $\bar{A} \backslash\{z\}$. It follows that $e(A, z) \leq e(z, \bar{A} \backslash\{z\}$) (here $e(S, T)$ is the number of edges from S to T in $\left.D^{\prime}\right)$. Hence $e(\bar{X} \backslash\{z\}, z) \leq e(A, z) \leq e(z, \bar{A} \backslash\{z\}) \leq e(z, X)$. Since $d^{+}(z)=d^{-}(z)$, we also have $e(X, z) \geq e(z, \bar{X} \backslash\{z\})$. It follows that $d^{+}\left(X \cup\{z\} ; D^{\prime}\right)=d^{+}\left(X ; D^{\prime}\right)-e(X, z)+e(z, \bar{X} \backslash\{z\}) \leq$ $d^{+}\left(X ; D^{\prime}\right)$. But $d^{+}\left(X \cup\{z\} ; D^{\prime}\right) \geq m$, by the beginning of this paragraph, and so $d^{+}\left(X ; D^{\prime}\right) \geq m$. This completes the proof that $d^{+}\left(X ; D^{\prime}\right) \geq m$ for every set of vertices X with $\left.X \backslash\{z\}, \bar{X} \backslash\{z\}\right) \neq \emptyset$. Thus $\lambda_{z}\left(D^{\prime}\right)=m$, as required.

Proof of Theorem 1. Write $m:=\lambda_{z}(D)$. The proof proceeds by induction on $|D|$. If $|D| \leq 3$, it is easy to check that the statement holds. Now suppose that $|D| \geq 4$. We may assume that there are edges e and f with $\varepsilon(e)=\alpha(f)=z$ and $\alpha(e) \neq \varepsilon(f)$. Indeed, otherwise, there is a vertex $y \neq z$ such that all edges incident with z are also incident with y (or are loops), and it follows that $\lambda_{z}(D \backslash\{z\})=m$. Let e and f be such edges. If $\lambda_{z}\left(D^{e f}\right) \geq m$, we are done, so suppose otherwise. Then there exists a set of vertices A such that $A \backslash\{z\}, \bar{A} \backslash\{z\} \neq \emptyset$ and $d^{+}\left(A ; D^{e f}\right)<m$. Without loss of generality, $z \notin A$. Since $\lambda_{z}(D)=m$, we have $d^{+}(A ; D) \geq m$. It follows that $d^{+}(A ; D)=m$ and $\alpha(e), \varepsilon(f) \in A$, which implies that $|A| \geq 2$. Consider the graph D_{A}. It has fewer vertices than D, so by induction, there are edges h^{\prime} and k^{\prime} in this graph with $\varepsilon\left(h^{\prime}\right)=\alpha\left(k^{\prime}\right)=z$ and $\lambda_{z}\left(\left(D_{A}\right)^{h^{\prime} k^{\prime}}\right)=m$. Let h and k be the edges in D corresponding to h^{\prime} and k^{\prime}. By Lemma 3 , $\lambda_{z}\left(D^{h k}\right)=m$, as required.

References

[1] W. Mader, Konstruktion aller n-fach kantenzusammenhängenden Digraphen, Europ. J. Combin. 3 (1982), 63-67.

