
1 Proof of Mader’s splitting theorem

Given a digraph D and a set of vertices X, let d+(X;D) be the number of edges from X to X

(here X := V (D) \ X), and similarly let d−(X;D) be the number of edges from X to X. We

may omit D when it is clear what the underlying digraph is. For vertices x and y we denote by

λ(x, y;D) (or λ(x, y) in short) the maximum number of edge-disjoint directed paths from x to y in

D. By Menger’s theorem, this is the minimum of d+(X) over all subsets X with x ∈ X and y /∈ X.

For a vertex z in D, let λz(D) be the minimum of d+(X), over all sets of vertices X such that

X \ {z}, X \ {z} 6= ∅. Equivalently, this is the minimum value of λ(x, y), over all pairs of distinct

vertices x and y with x, y 6= z.

Given a directed edge e = xy in D, write α(e) = x and ε(e) = y.

Theorem 1 (Mader [1]). Let D be a digraph, let z be a vertex with d+(z) = d−(z) ≥ 1, such that

λz(D) ≥ k. Then there are edges uz and zv such that the multidigraph D′ obtained by splitting of

the path uzv satisfies λz(D
′) ≥ k.

Given a digraph D, a vertex z and a set A such that A\{z}, A\{z} 6= ∅, we denote the contraction

of D at A by DA, and we will denote the vertex replacing A by a. We allow multiedges, so

d+(A;D) = d+(a;DA). (Mader’s paper also allows for loops.)

Observation 2. Let D be a digraph, let z be a vertex, and let A be a set of vertices such that z /∈ A
and A \ {z} 6= ∅. If d+(A;D) = λz(D) then λz(DA) = λz(D).

Proof. The observation follows by noting that for every subset X ⊆ V (D)\A we have d+(X;DA) =

d+(X;D) and d+(X ∪ {a};DA) = d+(X ∪A;D).

Given a digraph D and edges h and k with ε(h) = α(k), we denote the digraph obtained by splitting

the walk hk by Dhk.

Lemma 3. Let D be a digraph, let z be a vertex with d+(z) = d−(z), and let A be a set of vertices

such that z /∈ A and A \ {z} 6= ∅ satisfying λz(D) = d+(A). Suppose that h′ is an edge in DA

directed towards z and k′ is an edge in DA directed from z, such that λz((DA)h
′k′) = λz(DA). Then

λz(D
hk) = λz(D), where h and k are the edges of D that correspond to h′ and k′ in DA.

Proof. Write m = λz(D), and D′ = Dhk. Note that D′A = (DA)h
′k′ .

Because λz(D
′
A) = λz((DA)h

′k′) = d+(a;DA), at least one of α(h′) and ε(k′) is not a. Equivalently,

at least one of α(h) and ε(k) is not in A. It follows that d+(B;D) = d+(B;D′) and d−(B;D) =

d−(B;D′) for every B ⊆ A.

We will show that for every subset X ⊆ V (D), that satisfies X \ {z}, X \ {z} 6= ∅, we have

d+(X) ≥ m. We do so in three steps.

First, let x ∈ A and y ∈ A \ {z}. We claim that λ(x, y;D′) ≥ m. To see this, because λz(D
′
A) = m,

there are m pairwise edge-disjoint directed paths P1, . . . , Pm in D′A from a to y. Let P ′i be the path
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in D′ that corresponds to Pi (namely, replace each edge e in Pi by the edge corresponding to e in

D′). Because λz(D) = m, there are m pairwise edge-disjoint directed paths Q1, . . . , Qm in D from x

to y. Since d+(A;D) = m, each path Qi contains exactly one edge from A to A; denote it by ei. Let

Q′i be the subpath of Qi from x to α(ei). Let Ri be the path obtained by concatenating P ′i and Q′i.

Then R1, . . . , Rm are m pairwise edge-disjoint paths from x to y, implying that λ(x, y;D′) ≥ m, as

claimed. By Menger’s theorem, it follows that d+(X;D′) ≥ m for every X ⊆ V (D) with X ∩A 6= ∅,
and X ∩ (A \ {z}) 6= ∅.

Second, if X ∩ A = ∅ and X \ {z} 6= ∅, we have d+(X;D′) = d+(X;D′A) ≥ m, using λz(D
′
A) = m

for the inequality.

Finally, let X be a set of vertices such that X ∩ (A \ {z}) = ∅ and X \ {z} 6= ∅. In particular,

X ⊆ A ∪ {z}. If z ∈ X, then X ⊆ A, so, by a remark above and since λz(D
′
A) = m,

d+(X;D′) = d−(X;D′) = d−(X;D′A) = d+(V (D′A) \X;D′A) ≥ m.

We now assume that z ∈ X. Recall that there are m pairwise edge-disjoint paths P1, . . . , Pm from

A to A \ {z} in D′. Since d+(A;D′) = m, it follows that each path Pi contains exactly one edge

from A to A. Thus, if Pi contains an edge from A to z, this edge is followed by an edge from z to

A \ {z}. It follows that e(A, z) ≤ e(z,A \ {z}) (here e(S, T ) is the number of edges from S to T in

D′). Hence e(X \ {z}, z) ≤ e(A, z) ≤ e(z,A \ {z}) ≤ e(z,X). Since d+(z) = d−(z), we also have

e(X, z) ≥ e(z,X \ {z}). It follows that d+(X ∪ {z};D′) = d+(X;D′) − e(X, z) + e(z,X \ {z}) ≤
d+(X;D′). But d+(X ∪ {z};D′) ≥ m, by the beginning of this paragraph, and so d+(X;D′) ≥ m.

This completes the proof that d+(X;D′) ≥ m for every set of vertices X with X \{z}, X \{z}) 6= ∅.
Thus λz(D

′) = m, as required.

Proof of Theorem 1. Write m := λz(D). The proof proceeds by induction on |D|. If |D| ≤ 3,

it is easy to check that the statement holds. Now suppose that |D| ≥ 4. We may assume that

there are edges e and f with ε(e) = α(f) = z and α(e) 6= ε(f). Indeed, otherwise, there is a vertex

y 6= z such that all edges incident with z are also incident with y (or are loops), and it follows

that λz(D \ {z}) = m. Let e and f be such edges. If λz(D
ef ) ≥ m, we are done, so suppose

otherwise. Then there exists a set of vertices A such that A\{z}, A\{z} 6= ∅ and d+(A;Def ) < m.

Without loss of generality, z /∈ A. Since λz(D) = m, we have d+(A;D) ≥ m. It follows that

d+(A;D) = m and α(e), ε(f) ∈ A, which implies that |A| ≥ 2. Consider the graph DA. It has fewer

vertices than D, so by induction, there are edges h′ and k′ in this graph with ε(h′) = α(k′) = z

and λz((DA)h
′k′) = m. Let h and k be the edges in D corresponding to h′ and k′. By Lemma 3,

λz(D
hk) = m, as required.
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