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Abstract

We develop novel methods for constructing nearly Hamilton cycles in sublinear expanders with good regu-

larity properties, as well as new techniques for finding such expanders in general graphs. These methods are of

independent interest due to their potential for various applications to embedding problems in sparse graphs. In

particular, using these tools, we make substantial progress towards a twenty-year-old conjecture of Verstraëte,

which asserts that for any given graph F , nearly all vertices of every d-regular graph G can be covered by

vertex-disjoint F -subdivisions. This significantly extends previous work on the conjecture by Kelmans, Mubayi

and Sudakov, Alon, and Kühn and Osthus. Additionally, we present applications of our methods to two other

problems.

1 Introduction

A Hamilton cycle in a graph G is a cycle passing through all vertices of G. A graph is called Hamiltonian if it admits

a Hamilton cycle. Hamiltonicity is a central notion in graph theory. Since deciding whether a given graph contains a

Hamilton cycle is known to be NP-complete, much effort has been devoted to obtaining sufficient conditions for the

existence of a Hamilton cycle, for example see [2, 17, 19, 20, 23] and the surveys [31, 54]. Most existing Hamiltonicity

conditions, such as Dirac’s theorem [21], are typically applicable only to very dense graphs. Therefore, identifying

Hamiltonicity conditions that can also be applied to sparse graphs is a topic of significant interest. Over the last

50 years, a major focus of research has been understanding Hamiltonicity in sparse random graphs. Erdős and

Rényi [26] posed the foundational question of determining the threshold probability for Hamiltonicity in random

graphs. After a series of efforts by various researchers, including Korshunov [46] and Pósa [66], the problem was

ultimately resolved by Komlós and Szemerédi [43], and independently by Bollobás [9].

1.1 Long cycles in Expanders

Since Hamiltonicity in random graphs is well understood, a key area of research is to look for Hamilton cycles in

deterministic graphs that satisfy ‘pseudorandom’ conditions which enable them to mimic the properties of random

graphs. This line of inquiry is particularly valuable for various applications such as Hamiltonicity in random Cayley

graphs and Alon and Bourgain’s work on additive patterns in multiplicative subgroups [5]. A well-known class of

pseudorandom graphs, introduced by Alon, is defined using spectral properties as follows. A graph G is an (n, d, λ)-

graph if it is d-regular with n vertices and the second largest eigenvalue of G in absolute value is at most λ. In 2003,

Krivelevich and Sudakov, in their influential paper [50], proved that if d is sufficiently larger than λ, then every

(n, d, λ)-graph is Hamiltonian. In the same paper, they conjectured that there exists C > 0 such that if d
λ ≥ C, then

every (n, d, λ)-graph is Hamiltonian. Shortly after this conjecture was stated, several papers, such as [11], considered

an even stronger conjecture, singling out the key properties of (n, d, λ)-graphs that were believed to be instrumental
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in demonstrating their Hamiltonicity. This stronger conjecture asserts that there exists a constant C > 0 such that

every ‘C-expander’ is Hamiltonian. A graph G is called a C-expander if it satisfies the following two properties:

for every subset X ⊆ V (G) with |X| < n
2C , the neighbourhood of X satisfies |N(X)| ≥ C|X|, and there is an edge

between any two disjoint sets of at least n
2C vertices. Despite significant attention (see, e.g., [11, 30, 36, 47, 51]) and

many motivating applications, these two conjectures were only recently resolved by Draganić, Montgomery, Munhá

Correia, Pokrovskiy and Sudakov [23].

Graph expansion is a fundamental concept in graph theory and computer science, with a wide range of applications;

see, for example, the comprehensive survey by Hoory, Linial, and Wigderson [37]. Most of the expanders studied in

the literature are constant expanders, defined by their linear expansion (such as the C-expanders discussed earlier).

More formally, such graphs G satisfy the property |NG(U)| ≥ λ|U | for any subset U ⊆ V (G) that is not too large and

not too small, where the expansion factor λ is some strictly positive absolute constant independent of G. Sublinear

expansion is a weaker notion of this classical expansion introduced by Komlós and Szemerédi in the ‘90s [44, 45],

and characterised by taking a much smaller value of λ. More precisely, if G is a sublinear expander of order n,

then λ can be taken to satisfy λ = Ω( 1
(logn)2 ). Although sublinear expanders exhibit weaker expansion properties,

their key advantage is that they can be found in essentially any graph. This notion has played a central role in the

recent resolution of several long-standing conjectures (see, e.g. [6, 13, 14, 59, 60, 64] for notable examples and the

survey [57] for a rather comprehensive list).

The study of cycles in expanders is a key area of research; see, for example, [29, 34, 48]. Notably, a classic result

by Krivelevich [49] establishes that every n-vertex expander with expansion factor λ contains a cycle of length

Ω(λn). Hence, every n-vertex sublinear expander with expansion factor, say λ = 1
(logn)c , contains a cycle of length

Ω( n
(logn)c ). In general, we cannot necessarily guarantee a linear-sized cycle in sublinear expanders, as shown by

the imbalanced complete bipartite graph Kn,λn. In this paper, we prove that, somewhat surprisingly, sublinear

expanders with reasonably good regularity properties admit a nearly Hamilton cycle; see Lemma 2.2. We also show

how to find such expanders in general graphs.

Using these techniques, we make significant progress towards resolving a long-standing conjecture of Verstraëte from

2002 on packing subdivisions in regular graphs, which we address in the next subsection. Our second application

concerns the well-known conjecture of Magnant and Martin [63] from 2009, which asserts that any d-regular graph can

be partitioned into n/(d+1) paths. Recently, Montgomery, Müyesser, Pokrovskiy, and Sudakov [65] asymptotically

confirmed this conjecture by showing that nearly all vertices of a d-regular graph can be partitioned into n
d+1 paths.

As a simple consequence of our methods, we show that nearly all vertices of a d-regular graph with sufficiently large

degree can actually be partitioned into n
d+1 cycles (see the discussion following Conjecture 1.1 for further details on

this conjecture). Finally, our methods can also be used to find a cycle with many chords, addressing a question of

Chen, Erdős, and Staton [16] from 1996, and recovering—up to a slightly weaker polylogarithmic factor—a recent

result by Draganić, Methuku, Munhá Correia, and Sudakov [22] (see Section 8 for details on both applications).

Given the prominence of sublinear expanders, these new tools are likely to find further applications in future research.

1.2 Packing subgraphs in regular graphs

Packings in graphs have been extensively studied. Given two graphs H and G, an H-packing in G is a collection

of vertex-disjoint copies of H in G. An H-packing in G is called perfect if it covers all of the vertices of G. The

celebrated Hajnal–Szemerédi theorem [33] from 1970 states that every graph whose order n is divisible by t and

whose minimum degree is at least (1 − 1
t )n contains a perfect Kt-packing. (The case k = 3 was proved earlier by

Corrádi and Hajnal [18].)

This theorem is best possible in the sense that the bound on minimum degree cannot be lowered. For non-complete

graphs H, a series of papers including Alon and Yuster [8], Komlós, Sárkőzy and Szemerédi [42], Komlós [41],

determined the minimum degree thresholds which force a perfect H-packing in a graph, culminating in the work

of Kühn and Osthus [53], who essentially settled the problem by giving the best possible such condition (up to an

additive constant) for any graph H, in terms of the so-called critical chromatic number.

In view of the above results, rather surprisingly, Kühn and Osthus [52] showed that if we restrict our attention to

packings in regular graphs, then any linear bound on the minimum degree guarantees an almost perfect H-packing.
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More precisely, they showed that for every bipartite graph H and every 0 < c, α ≤ 1, every cn-regular graph G of

sufficiently large order n has an H-packing which covers all but at most αn vertices of G. Resolving a conjecture of

Kühn and Osthus [52], in an upcoming paper [58] the authors show that the bound αn on the number of uncovered

vertices can actually be significantly lowered to obtain an H-packing which covers all but a constant number of

vertices of G, which is clearly best possible, in the sense that there is not always an H-packing covering all vertices

of G, and in fact, there are examples where the number of uncovered vertices grows with |V (H)| and 1
c .

The notion of subdivisions has played an important role in topological graph theory since the seminal result of

Kuratowski [55] from 1930 showing that a graph is planar if and only if it does not contain a K5-subdivision or a

K3,3-subdivision. Here, for a given graph F , an F -subdivision (or a subdivision of F ), denoted by TF, is a graph

obtained by replacing each edge uv in F by a path with ends u and v, such that the internal vertex sets of these

paths are pairwise vertex-disjoint and vertex-disjoint from the original vertices of F . These original vertices of F

are called the branch vertices of TF. One of the most classical results in this area is due to Mader [62], who showed

that there is some d = d(t) such that every graph with an average degree at least d contains a subdivision of the

complete graph Kt. Mader [62], and independently Erdős and Hajnal [24] conjectured that d(t) = O(t2). In the

‘90s, Komlós and Szemerédi [44, 45] (using sublinear expanders), and independently, Bollobás and Thomason [10]

(using different methods) confirmed this conjecture. Since then, various extensions and strengthenings of this result

have been studied. For instance, an old conjecture of Thomassen asks for finding a balanced subdivision of Kt

and a conjecture of Verstraëte asks for finding vertex-disjoint isomorphic subdivisions of Kt. Recently, these two

conjectures have been resolved in [28, 59].

In 2002, Verstraëte [73] made the bold conjecture that every d-regular graph contains an almost perfect packing of

subdivisions. More precisely, given graphs F and G, a TF-packing in G is a collection of pairwise vertex-disjoint

copies of subdivisions of F in G (which are not required to be isomorphic). Verstraëte [73] observed that in any

d-regular graph G, one can find a TF-packing which covers about half of the vertices of G (by repeatedly removing

subdivisions of F from G until we obtain a graph containing no subdivisions of F ) and made the following conjecture.

Conjecture 1.1 (Verstraëte [73], 2002). For any graph F and any η > 0, there exists an integer d0 = d0(F, η) such

that, for all d ≥ d0, every d-regular graph G of order n contains a TF-packing that covers all but at most ηn vertices

of G.

Note that when F is a complete graph of order two or three, Conjecture 1.1 becomes a problem of covering the

vertices of a regular graph with vertex-disjoint paths or cycles, respectively. Hence, this conjecture is a far-reaching

extension of Petersen’s 2-factor theorem (see [61]) which states that for k ≥ 1, every 2k-regular graph contains

a 2-factor. Problems involving covering the edges or vertices of a graph with paths/cycles have been extensively

studied. Perhaps the most famous open problem in this area is the linear arboricity conjecture of Akiyama, Exoo,

and Harary [3] from 1980, which states that every graph with maximum degree ∆ can be decomposed into at most

⌈(∆ + 1)/2⌉ path forests. This is related to another well-known conjecture, posed by Magnant and Martin [63]

in 2009, which states that the vertices of any d-regular graph of order n can be covered by at most n/(d + 1)

vertex-disjoint paths. Indeed, the linear arboricity conjecture implies Magnant and Martin’s conjecture for odd d

by noting that the largest path forest in the conjectured decomposition yields the desired collection of paths. This

latter conjecture is still open; see [27, 32, 65] for some interesting recent progress towards it. Even the much weaker

conjecture by Feige and Fuchs [27] that every d-regular graph of order n can be covered by at most O(n/(d + 1))

vertex-disjoint paths (which follows from the linear arboricity conjecture for all d) remains wide open.

Conjecture 1.1 was motivated by an old result of Jørgensen and Pyber [39] on covering the edges of a graph with

subdivisions which actually implies that Conjecture 1.1 holds if we do not require the subdivisions of F to be vertex-

disjoint (as observed by Kühn and Osthus in [52]). In the last twenty years, there have been many results showing

that Conjecture 1.1 holds in several natural special cases. A result of Kelmans, Mubayi and Sudakov [40] shows

that Conjecture 1.1 holds when F is a tree. In 2003, Alon [4] proved that Conjecture 1.1 holds when F is a cycle,

using careful estimates on permanents. Alon [4] also remarked that this result can be extended to the case when F

is a unicyclic graph but that it does not extend to the case of more complicated graphs F .

In 2005, Kühn and Osthus [52] proved that Conjecture 1.1 holds when G is dense (i.e., d = Ω(n)). However, a

significant obstacle in the way of proving the conjecture in full generality is that this proof relies on Szemerédi’s

3



regularity lemma and the Blow-up lemma which only apply to dense graphs G. In this paper, we substantially

improve on their results by showing that Conjecture 1.1 holds in the following stronger form for all graphs G with

at least polylogarithmic average degree.

Theorem 1.2. For any graph F and large enough n, every d-regular graph G of order n with d ≥ (log n)130 contains

a TF-packing that covers all but at most n
(log logn)1/30

vertices of G.

As mentioned earlier, our proof of Theorem 1.2 involves novel methods for finding nearly Hamilton cycles in sublinear

expanders with good regularity and techniques for finding such expanders in general graphs. We give a detailed

outline of our methods in Section 2. In particular, in Lemma 4.1, we show that almost all vertices of every d-regular

n-vertex graph with d ≥ 2 log n can be covered by nearly-regular sublinear expanders (see Section 3.2 for a formal

definition of these expanders). A key feature of this lemma is that it allows us to control the regularity properties

of the expanders we obtain. As a consequence, Corollary 4.2 shows that every n-vertex graph with average degree

at least Ω(d log n) contains a sublinear expander with maximum degree at most d and average degree extremely

close to d. This result and our techniques for finding nearly Hamilton cycles in sublinear expanders have significant

potential for further applications (see Section 8 for some examples).

In the dense case, where d = Ω(n), Kühn and Osthus [52] showed that one can even find a perfect TKt-packing in G

when t = 4 and t = 5. It follows from the work of Gruslys and Letzter [32] towards the aforementioned conjecture of

Magnant and Martin [63] that this holds for t = 2 and t = 3. Kühn and Osthus posed the question of whether this

result holds for t ≥ 6. Recently, the authors [58] answered this question positively using techniques very different

from those used in this paper. It is known that for all t ≥ 3, we need d ≥
√
n/2 to have a perfect TKt-packing in

G; see [52]. It would be interesting to determine the exact degree threshold at which a perfect TKt-packing can be

guaranteed in regular graphs.

1.3 Organization of the paper

The rest of the paper is organized as follows. In Section 2 we give a detailed sketch of our proof of Theorem 1.2. In

Section 3, we introduce the notation and the two notions of expansion used throughout the paper, along with the

required probabilistic tools. In Section 4, we develop methods for finding expanders with good regularity properties

and prove our first key lemma, Lemma 4.1, which shows that one can cover nearly all vertices of a regular graph with

such expanders. In Section 5, we prove Lemma 5.1 which shows that a collection of vertex-disjoint pairs of vertices

(satisfying a certain expansion property) can be joined using vertex-disjoint paths through a random vertex subset

of a sublinear expander. In Section 6, we develop methods for constructing nearly Hamilton cycles in sublinear

expanders and use them to prove our second key lemma, Lemma 6.1, which shows that any sufficiently regular

sublinear expander contains an almost-spanning F -subdivision. In Section 7, we put everything together to prove

Theorem 1.2. In Section 8, we present two additional applications of our methods: one addressing the conjecture of

Magnant and Martin [63], and the other concerning the existence of a cycle with many chords [16].

2 Proof sketch

In this section, we sketch the main ideas in our proof of Theorem 1.2. Let F be a given graph and let G be a

d-regular graph of sufficiently large order n. Our strategy involves covering nearly all vertices of G with vertex-

disjoint sublinear expanders that are close to regular and finding an almost-spanning subdivision of F within each

such expander. Specifically, we proceed as follows.

Step 1. Find a collection H of vertex-disjoint sublinear expanders with good regularity properties (that is, with average

degree very close to the maximum degree), covering nearly all vertices of G.

Step 2. Show that each expander H ∈ H contains a nearly Hamilton path PH .

Step 3. Find a subdivision of F in each expander H ∈ H containing the nearly Hamilton path PH .
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It is easy to see that the F -subdivisions given by Step 3 together cover nearly all vertices of G. A key contribution of

our paper is the development of novel techniques for finding nearly Hamilton paths and cycles in sublinear expanders

with good regularity properties. Such expanders are also useful for various other applications. The meta-problem

of finding sublinear expanders with good regularity properties was therefore raised in [14] by Chakraborti, Janzer,

Methuku and Montgomery. Our work here also makes progress towards this problem.

A natural strategy for constructing a nearly Hamilton path in a sublinear expander H ∈ H is to start with a small

collection of vertex-disjoint paths P1, . . . Pr in H, that together cover almost all vertices in H, and connect these

paths through a small random set V0 ∈ V (H) of reserved vertices. Here we need V0 to be small enough because the

vertices of V0 that are not used in the connecting paths are left uncovered by the nearly Hamilton path that we aim

to find.

More precisely, we start by partitioning V (H) into random sets V0, X1, . . . , Xt such that V0 = o(|V (H)|) and the

sets X1, . . . , Xt have roughly the same size. Then we obtain the paths P1, . . . , Pr, by finding a largest matching

Mi between each pair of sets Xi, Xi+1, 1 ≤ i ≤ t − 1, taking the union of these matchings, and letting P1, . . . , Pr

be the connected components in the union that intersect all sets Xi (so that each of the paths P1, . . . , Pr contains

exactly one vertex from each Xi). In order for the matchings Mi to be large enough so that the paths P1, . . . , Pr

cover nearly all of the vertices of H, it is crucial that H has very good regularity properties. In particular, we need

the following property.

(P) If H ∈ H is a sublinear expander with average degree at least d(1− ε) and maximum degree d, then ε ≪ 1
t .

Indeed, using Vizing’s theorem and standard concentration inequalities, it is easy to show that with high probability

|Mi| ≥ |Xi|(1−2ε) for each 1 ≤ i ≤ t−1. This implies that the paths P1, . . . , Pr cover all but at most 2ε|V (H)−V0|
vertices from each Xi, so that up to 2εt proportion of the vertices in V (H)− V0 may be left uncovered by the paths

P1, . . . , Pr. To make this a small enough proportion of the vertices of H, we need ε ≪ 1
t as stated in (P).

For connecting the paths P1, . . . , Pr using paths through the random set V0, we use some ideas from recent work

of Bucić and Montgomery [13] and Tomon [71], showing that random vertex subsets in sublinear expanders with

polylogarithmic average degree are likely to inherit some expansion properties. These ideas were slightly refined

in [14] (see, e.g., [14, Lemma 8]) to show that a collection of vertex-disjoint pairs of vertices can be connected

through a random subset of vertices of a sublinear expander (using vertex-disjoint paths) provided that the size of

the random subset is sufficiently large compared to the number of pairs of vertices. Crucially, this means that for

connecting the paths P1, . . . , Pr through the random set V0, we need the sets X1, . . . , Xt to be much smaller than

V0. Since |Xi| ≈ |V (H)|/t and V0 must be small, this implies that 1/t must be very small, which, in turn, requires

ε to be small enough for (P) to hold. This explains why we need the sublinear expanders H ∈ H to have extremely

good regularity properties.

In any d-regular graph G on n vertices, it is easy to find a sublinear expander with an average degree at least

d(1−2λ log n) and an expansion factor of λ = O
(

1
logn

)
, using standard methods such as iteratively removing sparse

cuts. In fact, one can cover nearly all vertices of our d-regular graph G with such sublinear expanders. By choosing λ

sufficiently small, these expanders indeed exhibit the desired strong regularity properties. However, these expanders

may contain only a small number of vertices of G, so the expansion characterized by this λ might be too weak

for following the aforementioned strategy to complete Step 2. To address this, we introduce a refining procedure,

detailed at the end of this section, that begins with these expanders and gradually enhances their expansion while

essentially preserving their strong regularity properties. Roughly speaking, this enables us to prove the following

lemma; for a precise statement, see Lemma 4.1.

Lemma 2.1. For any c1 ≥ 2, there is a constant c2 > 0 such that the following holds. Nearly all vertices of every

d-regular graph G with sufficiently large degree can be covered by vertex-disjoint (robust) sublinear expanders H with

an average degree of at least d(1− 1
(log |V (H)|)c1 ) and an expansion factor of 1

(log |V (H)|)c2 .

This lemma shows that by taking c1 sufficiently large, we can obtain sublinear expanders H with sufficiently strong

regularity (although at the expense of slightly weaker expansion). Unfortunately, this improved regularity of our
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expanders H is still insufficient to satisfy (P) because the methods of [13, 14] require each of the sets X1, . . . , Xt to

be significantly smaller than V0 (depending on the parameter c1) – see, e.g., the proof of [14, Lemma 8]. Therefore,

Lemma 2.1 still does not allow us to directly connect the paths P1, . . . , Pr through the random set V0, making the

construction of a nearly Hamilton path challenging with the strategy described above. To overcome this difficulty,

our main idea is to iteratively connect the paths P1, . . . , Pr through V0 using a procedure that, in each iteration,

either directly connects a good proportion of the paths or identifies a well-expanding subset of their leaves (see

Figure 1). More precisely, in each iteration of the procedure, we first greedily connect the paths through V0 using as

many vertex-disjoint paths of length two as possible (a similar idea for connecting paths, in a different context, was

recently used in [65]). Crucially, when it is no longer possible to connect using vertex-disjoint paths of length two,

we can identify a small subset S of the leaves of the paths P1, . . . , Pr that expands very well into V0. The improved

regularity of expanders H (provided by Lemma 2.1) together with a variant of a lemma from [56] is now sufficient

to connect the paths whose leaves lie in the subset S (through V0). This allows us to join a good proportion of the

paths P1, . . . , Pr through V0 in each iteration. By iterating this process Θ(log |V (H)|) times, we eventually obtain

a nearly Hamilton path PH in H, completing Step 2.

X1 X2 X3 Xt

S

V0

Figure 1: If we cannot find sufficiently many connecting paths of length two (shown in
blue), we identify a set S of leaves that expands very well into V0 and connect vertices in S
using paths (shown in red) through V0.

Since the procedure requires Θ(log |V (H)|) iterations to connect the paths P1, . . . , Pr through V0, the sets X1, . . . , Xt

must be at least Θ(log |V (H)|) times smaller than V0. This constraint demands an even smaller choice of ε to satisfy

(P). Nevertheless, by selecting c1 sufficiently large in Lemma 2.1, we can still apply the iterative procedure to

connect the paths and construct a nearly Hamilton path, even when the expanders H possess slightly weaker

expansion properties. This yields the following lemma (see Lemma 6.1 for the precise formulation).

Lemma 2.2. Let c > 0 be fixed, let 0 < ε < 1
(logn)4 , let n be sufficiently large, and let d ≥ (log n)10c+51. Then,

every n-vertex (robust) sublinear expander H with an expansion factor of 1
(logn)c , average degree at least d(1 − ε)

and maximum degree at most d, contains a cycle (and thus a path PH) of length at least n− n
logn .

Next, we absorb the vertices of the path PH into a subdivision of F that is found within a small random subset

R of vertices in each of our expanders H (as illustrated in Figure 2). (Here, we use the aforementioned techniques

for connecting vertex pairs, together with a classical result for finding subdivisions [10, 45].) This yields the desired

almost-spanning subdivision of F in each of the expanders H ∈ H, thus completing Step 3 and the proof of

Theorem 1.2.

As discussed earlier, sublinear expanders with strong regularity properties hold potential for a wide range of appli-

cations (some of which are discussed in Section 8). Given this independent interest, we conclude this section with

a sketch of the proof of Lemma 2.1, showing that almost all vertices of a nearly regular graph can be covered with

vertex-disjoint nearly regular expanders. We note that this lemma, together with known methods for ‘regularising’
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a graph, imply the existence of a nearly regular expander in every graph with sufficiently large average degree (see

Corollary 4.2), a potentially very useful tool for applications.

A refining procedure. Let G be a graph with an average degree at least d(1 − ε) and a maximum degree d.

By repeatedly removing sparse cuts, it is easy to find an expander in G with an expansion factor of λ = O( 1
logn )

and an average degree of at least d(1− 2λ log n). By iteratively finding such expanders, removing their vertices and

continuing with the remaining graph, we can cover nearly all vertices of the graph G using a collection H1 of vertex-

disjoint expanders with an average degree of at least d(1− ε log n) and an expansion factor of ε
logn (see Lemma 4.4).

However, since these expanders may contain very few vertices compared to n = |V (G)|, the expansion factor ε
logn

may represent only very weak expansion. Such a weak expansion is insufficient for most applications; in particular,

we require a much stronger expansion to construct a nearly Hamilton cycle within these expanders. Let C be a

large constant. If ε = 1
(logn)C−1 , then the expanders in H1 have an average degree of at least d

(
1− 1

(logn)C−2

)
and

an expansion factor of 1
(logn)C

. This means that, although the expanders in H1 may exhibit very weak expansion,

they possess excellent regularity properties. We introduce a refining procedure that begins with the expanders in

H1 and iteratively improves their expansion while largely preserving their strong regularity properties, ultimately

producing expanders with both good expansion and regularity properties.

The main idea of this refining procedure is as follows. We carefully choose certain ‘thresholds’ nt ≤ · · · ≤ n1 = n

for vertex sizes, where log ni+1 = (log ni)
C−2
C−1 , and regularity thresholds ϵ1 ≤ · · · ≤ ϵt, where ϵi = 1

(logni)C−2 =
1

(logni+1)C−1 . We iteratively construct a sequence of collections Hi, 1 ≤ i ≤ t, of expanders where each collection

covers nearly all vertices of G, such that for each i, the expanders in Hi+1 have slightly better expansion and

only slightly weaker regularity properties compared to the expanders in the collection Hi. We achieve this by

‘refining’ any expander H ∈ Hi that has too few vertices (using the aforementioned fact that any graph with

average degree at least d(1 − ε) and maximum degree d can be covered with vertex-disjoint expanders having an

average degree of at least d(1− ε log n) and an expansion factor of ε
logn ). More precisely, we replace any expander

H ∈ Hi that has fewer than ni+1 vertices with a new collection Hi+1(H) of vertex-disjoint expanders that have

improved expansion (and only slightly weaker regularity properties) covering nearly all vertices of H, and we let

Hi+1 =
⋃

H∈Hi
Hi+1(H) be the resulting collection of expanders. Crucially, the parameters are set up so that, if

H ∈ Hi and |V (H)| < ni+1, then the expanders in Hi+1(H) have an improved expansion factor of 1
(logni+1)C

while

maintaining an average degree at least d(1 − εi+1). By repeating this refining procedure we eventually obtain a

collection Ht = H of expanders that cannot be refined further. This means that for every expander H ∈ H, there

is a step j at which it was last refined, where nj > |V (H)| ≥ nj+1 and H ∈ Hj −Hj−1. It is then easy to see that

H has an expansion factor of 1
(lognj)C

= 1
(lognj+1)C(C−1)/(C−2) ≥ 1

(log |V (H)|)C(C−1)/(C−2) , and an average degree of at

least d(1− εj) = d(1− 1
(lognj)C−2 ) ≥ d(1− 1

(log |V (H)|)C−2 ), as desired, proving Lemma 2.1.

3 Preliminaries

3.1 Notation

We write c = a± b if a− b ≤ c ≤ a+ b. For a set U ⊆ V (G), let U denote the set V (G)− U . For a set S ⊆ V (G),

let G − S denote the subgraph of G induced by V (G) − S. By e(G), we denote the number of edges of G, and for

S ⊆ V (G), we denote by eG(S) the number of edges of G induced by S. For two disjoint sets A,B ⊆ V (G), let

eG(A,B) denote the number of edges of G which are incident to both A and B.

For a graph G, we denote by d(G) its average degree, by δ(G) its minimum degree and by ∆(G) its maximum degree.

For a vertex v ∈ V (G), we denote its degree by dG(v) and the set of its neighbours by NG(v). For a set of vertices

X ⊆ V (G), and an integer i ≥ 0, let NG(X) denote the set of vertices outside of X that are adjacent to at least

one vertex of X, and we write Bi
G(X) to be the set of vertices at distance at most i from X in G. We often omit

subscripts and write, e.g. N(X) instead of NG(X), if it is clear from the context which graph we are working with.

Given vertices x, y, an (x, y)-path is a path from x to y.

All logarithms in this paper are base 2. When dealing with large numbers, we often omit floor and ceiling signs

whenever they are not crucial.
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3.2 Expansion

In this paper, we use two different notions of expansion that are closely related to each other. Here, we introduce

these two notions and then prove a lemma that relates them. We will use the following standard notion of edge

expansion.

Definition 3.1 (λ-expander). Let λ > 0. We say that a graph H is a λ-expander if every set U ⊆ V (H) with

|U | ≤ 1
2 |V (H)| satisfies e(U,U) ≥ λd(H)|U |.

We will mostly use the following notion of vertex expansion, which is a generalization of the notion of expansion

introduced by Bucić and Montgomery [13]. Related notions of expansion were recently developed by Shapira and

Sudakov [69], by Haslegrave, Kim, and Liu [35], and by Sudakov and Tomon [70].

Definition 3.2 ((ε, c, s)-expander). An graphH is called an (ε, c, s)-expander if, for every U ⊆ V (H) and F ⊆ E(H)

with 1 ≤ |U | ≤ 2
3 |V (H)| and |F | ≤ s|U |, we have

|NH−F (U)| ≥ ε

(log |V (H)|)c
· |U |. (1)

Expanders as in Definition 3.2 are sometimes called as robust sublinear expanders, referring to the graph F (Komlós

and Szemerédi’s definition of sublinear expanders did not include this feature). Notice that the expander becomes

more ‘robust’ the larger s is.

The main difference between the notion of expansion we use (as given in Definition 3.2) and the one used in [13] is

that we use an additional parameter c for our expanders (which is set to 2 in [13]). This parameter measures the rate

of expansion, where larger values of c correspond to weaker expansion. Our approach in this paper relies crucially on

expanders with excellent regularity properties, specifically those with average degree very close to maximum degree.

In Lemma 4.3, we construct such expanders, which allows us to enhance their regularity by increasing the parameter

c which, however, leads to a slight weakening of the expansion.

The following lemma connects the two notions of expansion.

Lemma 3.3. Let 0 < ε ≤ 1/4, c > 0, let n be large and let λ = 1
(logn)c . Let H be an n-vertex λ-expander with

∆(H) ≤ d and d(H) ≥ d(1− ε). Then H is a ( 18 , c,
λd
4 )-expander.

Proof. Let U ⊆ V (H) with 1 ≤ |U | ≤ 2
3n, and let F ⊆ E(H) with |F | ≤ λd

4 |U |.

First consider the case when 1 ≤ |U | ≤ n/2. Then, since H is a λ-expander, we have eH(U,U) ≥ λd(H)|U |.
Therefore, eH−F (U,U) ≥ (λd(H)− λd

4 )|U | ≥ (λd(1− ε)− λd
4 )|U | ≥ λd

4 |U |. Since ∆(H) ≤ d, this implies that

|NH−F (U)| ≥ λ

4
|U | ≥ |U |

8(log n)c
.

Now consider the case when n/2 ≤ |U | ≤ 2n/3. So |U |/2 ≤ n/3 ≤ |U | ≤ n/2. Then, eH−F (U,U) ≥ λd(H)|U | −
λd
4 |U | ≥ λd(H)

2 |U | − λd
4 |U | ≥ (λd(1−ε)

2 − λd
4 )|U | ≥ λd

8 |U |. Since ∆(H) ≤ d, we have

|NH−F (U)| ≥ λ

8
|U | = |U |

8(log n)c
.

Therefore, H is a ( 18 , c,
λd
4 )-expander, proving the lemma.

3.3 Probabilistic tools

We will often use a basic version of Chernoff’s inequality for the binomial random variable (see, for example, [7, 72]).

Theorem 3.4 (Chernoff’s bound). Let n be an integer, let 0 ≤ p ≤ 1, let X ∼ Bin(n, p), and let µ = EX = np.

Then the following hold.
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(i) If 0 < δ < 1, then

P(X ≤ (1− δ)µ) ≤ e−
δ2µ
2 .

(ii) If δ ≥ 0, then

P(X ≥ (1 + δ)µ) ≤ e−
δ2µ

(2+δ) .

Additionally, we use the following martingale concentration result (see Chapter 7 in [7]). We say that a function

f :
∏n

i=1 Ωi → R, where Ωi are arbitrary sets, is k-Lipschitz if |f(u)− f(v)| ≤ k for every u, v ∈
∏n

i=1 Ωi that differ

on at most one coordinate.

Lemma 3.5. Let X1, . . . , Xn be independent random variables, with Xi taking values in a set Ωi for i ∈ [n], and

write X = (X1, . . . , Xn). Suppose that f :
∏n

i=1 Ωi → R is k-Lipschitz. Then,

P
(
|f(X)− Ef(X)| > t

)
≤ 2 exp

(
−t2

2k2n

)
.

3.4 A regularisation theorem

Our main theorem (Theorem 1.2) is stated for regular graphs G with sufficiently large degree. However, for other

applications of our methods (such as the one discussed in Section 8), the graph G does not need to be regular. In

such cases, it is useful to extract a regular subgraph whose degree remains close to the average degree of G. We

achieve this using a result by Chakraborti, Janzer, Methuku, and Montgomery [15].

Theorem 3.6. There exists a constant γ such for all positive integers r, n with r ≤ n/2, every n-vertex graph with

average degree at least γr log(n/r) contains an r-regular subgraph.

In [15], Theorem 3.6 and a related result for the case when r is small relative to n were used to resolve a problem of

Rödl and Wysocka [68] from 1997 for almost all r and to obtain tight bounds for the Erdős-Sauer problem [25] (up

to an absolute constant factor), improving the recent breakthrough of Janzer and Sudakov [38], who had resolved

the problem up to a constant depending on r. For our application in this paper, it suffices to find an almost-regular

subgraph with a large degree rather than a fully regular subgraph. This can be achieved, at the cost of an additional

polylogarithmic factor, using a simple lemma by Bucić, Kwan, Pokrovskiy, Sudakov, Tran, and Wagner [12], which

builds on methods developed by Pyber [67].

4 Packing a regular graph with nearly regular expanders

In this section, we prove our first key lemma, Lemma 4.1, which shows that one can find sufficiently regular, vertex-

disjoint expanders covering almost all vertices of any regular graph with sufficiently large degree. An important

feature of this lemma is that it allows us to control the regularity properties of the expanders we obtain (via the

parameter C), which is crucial for constructing a nearly Hamilton cycle in each of these expanders (as explained

in the proof sketch, see Section 2). As mentioned earlier, expanders with good regularity properties are useful for

various other applications, and the question of finding such expanders was raised by Chakraborti, Janzer, Methuku,

and Montgomery in [14]. Our lemma below makes progress on this problem.

Lemma 4.1. Let α > 0 be a fixed real number, let ε, C, n, d satisfy d ≥ 2 log n, 0 ≤ ε ≤ (log n)−(C−1), C ≥
max{28α+ 3, 56α+ 1} and let n be large enough. Let c = C(C−1)

C−28α−1 .

Suppose that G is an n-vertex graph with ∆(G) ≤ d and d(G) ≥ d(1 − ε). Then there is a collection H of

vertex-disjoint subgraphs of G such that every H ∈ H is a ( 18 , c, sH)-expander satisfying d(H) ≥ d(1 − εH) and

δ(H) ≥ d(H)/2, where sH := d
4(log |V (H)|)c , and εH := (log |V (H)|)−(C−28α−1). Moreover,

∑
H∈H |V (H)| ≥

(1− (log log logn)2

(log logn)α )n.
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Note that increasing the parameter C in Lemma 4.1 improves the regularity properties of the expanders we obtain

at the cost of slightly weakening their expansion. Indeed, in our proof we let α = 1
28 (though this choice is somewhat

arbitrary), so that c = C(C−1)
C−2 . Hence, as C increases, it is easy to see that εH = (log |V (H)|)−(C−2) decreases

(improving the regularity properties of our expanders) and c increases (making their expansion weaker).

In certain cases, we do not require the full strength of Lemma 4.1 and instead seek a single expander that is nearly

regular. In such situations, we can actually remove the near-regularity assumption on G at the cost of a slightly

worse lower bound on the average degree of G, as shown below.

Corollary 4.2. There is a constant γ such that the following holds for all sufficiently large n and for C, d satisfying

C ≥ 4, d ≥ 2 log n. Suppose that G is an n-vertex graph with d(G) ≥ γd log n. Then there is a subgraph H ⊆ G

which is a ( 18 , c, s)-expander satisfying ∆(H) ≤ d, d(H) ≥ d(1 − µ) and δ(H) ≥ d(H)/2, where c := C(C−1)
C−2 ,

s := d
4(log |V (H)|)c , and µ := (log |V (H)|)−(C−2).

Proof of Corollary 4.2 using Lemma 4.1. Apply the regularisation theorem, Theorem 3.6, to G to obtain a

d-regular subgraph G′. Now apply Lemma 4.1 to the graph G′ (with α = 1
28 and ε = 0), and let H be any graph in

the collection H guaranteed by the lemma. Then, it is easy to see that H has the desired properties.

Remark. Notice that in the proof of Corollary 4.2 we used Theorem 3.6, due to Chakraborti, Janzer, Methuku and

Montgomery [15], which gives a tight bound on the number of edges in an n-vertex graph needed to guarantee the

existence of a d-regular subgraph. It is possible to use more elementary tools to prove a slightly weaker version

of Corollary 4.2 (where d(G) is required to be at least 5d(log n)C instead of γd log n). Indeed, using [12, Lemma

2.2] due to Bucić, Kwan, Pokrovskiy, Sudakov, Tran and Wagner, one can prove that every n-vertex graph with

sufficiently large average degree contains a subgraph which is close to being d-regular, similarly to the proof of [12,

Lemma 2.1].

We prove Lemma 4.1 by combining Lemma 3.3 with the following variant of Lemma 4.1 for edge expanders (rather

than vertex expanders).

Lemma 4.3. Let α > 0 be a fixed real number, let ε, C, n, d satisfy d ≥ 2 log n, 0 ≤ ε ≤ (log n)−(C−1), C ≥
max{28α+ 3, 56α+ 1}, and let n be large enough. Let c = C(C−1)

C−28α−1 .

Let G be an n-vertex graph with ∆(G) ≤ d and d(G) ≥ d(1 − ε). Then there is a collection H of vertex-disjoint

subgraphs of G such that every H ∈ H is a λH-expander satisfying d(H) ≥ d(1 − εH) and δ(H) ≥ d(H)/2, where

λH := (log |V (H)|)−c and εH := (log |V (H)|)−(C−28α−1). Moreover,
∑

H∈H |V (H)| ≥ (1− (log log logn)2

(log logn)α )n.

The rest of this section is dedicated to proving Lemma 4.3. To that end, in Section 4.1, we first construct an almost-

perfect packing using expanders that may exhibit very weak expansion but possess excellent regularity properties.

Then, in Section 4.2, we introduce a refining procedure that begins with these expanders and iteratively improves

their expansion while largely preserving their strong regularity properties, ultimately producing expanders with both

good expansion and regularity properties, thereby proving Lemma 4.3.

4.1 Packing with very weak expanders

In this subsection, we prove the following lemma which shows that one can cover almost all vertices of an n-vertex

graph G (with average degree at least d(1 − ε) and maximum degree d) using vertex-disjoint λ-expanders having

expansion factor λ = O( ε
logn ) and having average degree very close to that of G. Since these expanders could have

very few vertices compared to n, this λ may indicate very weak expansion (which is not sufficient for our purpose),

but crucially, these expanders have good regularity properties if we pick ε small enough. This is crucial to our

refining procedure in Section 4.2 which starts with these expanders and iteratively improves their expansion while

only slightly weakening their regularity properties.

Lemma 4.4. Let α > 0 be a fixed real number and let ε, λ, n satisfy λ log n ≤ min{ 1
10 , ε} and let n be sufficiently

large. Let G be an n-vertex graph with ∆(G) ≤ d and d(G) ≥ d(1 − ε). Then there exists a collection H of

vertex-disjoint λ-expanders in G such that d(H) ≥ d(1 − ε(log n)28α) and δ(H) ≥ d(H)/2 for every H ∈ H and∑
H∈H |V (H)| ≥ (1− 1

(logn)α )n.
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We build up to the proof of Lemma 4.4 using a sequence of lemmas as follows. First, in Lemma 4.5, we show

how to find one λ-expander in a sufficiently regular graph G using standard methods (see, e.g., [22, 69]). Then,

by iteratively applying Lemma 4.5, we show how to cover a good proportion of vertices of G with vertex-disjoint

λ-expanders in Lemma 4.6. Finally, by iteratively applying Lemma 4.6 we show how to cover almost all vertices of

G with vertex-disjoint λ-expanders (with average degree very close to that of G), proving Lemma 4.4.

Lemma 4.5. Let G be an n-vertex graph with d(G) = d, and let λ log n ≤ 1
10 . Then G contains a λ-expander H

with d(H) ≥ d(1− 2λ log n) and δ(H) ≥ d(H)/2.

Proof. We perform a procedure which finds the desired λ-expander H in G. Before we can describe the procedure,

we need the following claim.

Claim 4.5.1. Let F be a subgraph of G that is not a λ-expander. Then there is a non-empty set U ⊆ V (F ) with

|U | ≤ |V (F )|
2 such that either d(F [U ]) ≥ d(F ) or d(F [U ]) ≥ (1− 2λ)d(F ).

Proof of claim. Since F is not a λ-expander, there is a non-empty set U ⊆ V (F ) with |U | ≤ |V (F )|
2 such that

e(U, Ū) < λd(F )|U |. We will show that U is the desired subset. Suppose for a contradiction that d(F [U ]) < d(F )

and d(F [U ]) < (1 − 2λ)d(F ). Then, using the bound on e(U, Ū), we have e(F ) = eF (U) + eF (U,U) + eF (U) <

|U |d(F )
(
1−2λ

2 + λ
)
+ |U |d(F )

2 = |V (F )|d(F )
2 = e(F ), which is a contradiction.

Let us now describe the procedure. We start the procedure with F = G. At every step of the procedure, we consider

a subgraph F of G and do the following.

• If F is a λ-expander with δ(F ) ≥ d(F )/2, then we letH := F be the desired λ-expander and stop the procedure.

• If F has a vertex v with degree less than d(F )/2, we remove it and define F ′ := F − v. Note that in this case

d(F ′) ≥ d(F ). Now we repeat the procedure with F ′ playing the role of F .

• Otherwise, by Claim 4.5.1, there is a non-empty set U ⊆ V (F ) with |U | ≤ |V (F )|
2 such that either d(F [U ]) ≥

d(F ) or d(F [U ]) ≥ (1 − 2λ)d(F ). In the former case, let F ′ := F [U ], and in the latter case, let F ′ := F [U ].

Then, we repeat the procedure with F ′ playing the role of F .

Note that at any step of our procedure, we can have d(F ′) < d(F ) only if |V (F ′)| ≤ |V (F )|/2 and d(F ′) ≥
(1 − 2λ)d(F ). Furthermore, since |V (F ′)| ≤ |V (F )|/2 can only occur for at most log n steps, at any step of the

procedure the subgraph F we consider satisfies d(F ) ≥ (1−2λ)lognd(G) ≥ (1−2λ log n)d(G) ≥ 4d(G)/5. Combining

this with the fact that the number of vertices of F strictly decreases after each step, it follows that the procedure

eventually stops with a non-empty subgraph H which is a λ-expander satisfying d(H) ≥ (1 − 2λ log n)d(G) and

δ(H) ≥ d(H)/2. This proves the lemma.

By repeatedly applying Lemma 4.5, we obtain the following lemma which shows that one can cover a good proportion

of the vertices of any (sufficiently regular) graph G with vertex-disjoint λ-expanders (whose average degree is very

close to that of G).

Lemma 4.6. Let ε, λ, n satisfy λ log n ≤ min{ 1
10 , ε}. Let G be an n-vertex graph with ∆(G) ≤ d and d(G) ≥ d(1−ε).

Then there exists a collection H of vertex-disjoint λ-expanders in G such that d(H) ≥ d(1−10ε) and δ(H) ≥ d(H)/2

for every H ∈ H and
∑

H∈H |V (H)| ≥ n/4.

Proof. Let H be a maximal collection of vertex-disjoint λ-expanders in G with average degree at least d(1− 10ε).

Let U :=
⋃

H∈H V (H). If |U | ≥ n/4, then the λ-expanders in H satisfy the desired properties, proving the lemma.

So suppose |U | < n/4. Then e(U) + e(U,U) ≤ d|U | − e(U) ≤ d|U | − d(1−10ε)
2 |U | ≤ d(1+10ε)

2 |U |. Hence,

e(U) ≥ e(G)−
(
e(U) + e(U,U)

)
≥ d(1− ε)

2
n− d(1 + 10ε)

2
|U |

=
d

2

(
(1− ε)n− (1 + 10ε)|U |

)
=

d

2

(
|U | − εn− 10ε|U |

)
≥ d

2

(
|U | − εn− 10ε

n

4

)
≥ d

2

(
|U | − 8ε|U |

)
=

d

2
(1− 8ε)|U |.
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Therefore, d(U) ≥ d(1 − 8ε). Hence, by applying Lemma 4.5 to G[U ], we obtain a λ-expander H with d(H) ≥
d(U)(1−2λ log n) ≥ d(1−8ε)(1−2λ log n) ≥ d(1−8ε−2λ log n) ≥ d(1−10ε) and δ(H) ≥ d(H)/2. This contradicts

the maximality of the collection H of vertex-disjoint λ-expanders. Therefore, |U | ≥ n/4, proving the lemma.

Finally, we prove Lemma 4.4 by repeatedly applying Lemma 4.6.

Proof of Lemma 4.4. Let C = 100. For every i ≥ 1, let εi = Ciε, and let Hi be a collection of vertex-disjoint

λ-expanders with average degree at least d(1 − εi) in G − (
⋃

H∈H1∪...∪Hi−1
V (H)) that maximises the number of

vertices covered by expanders in Hi among all such collections. For all i ≥ 1, let Vi :=
⋃

H∈Hi
V (H).

Claim 4.6.1. For all i ≥ 1,
∑i

k=1 |Vk| ≥ (1− ( 34 )
i)n.

Proof of claim. We prove the claim by induction. For i = 1, the claim immediately follows by applying Lemma 4.6

to G to obtain a collection H1 of vertex-disjoint λ-expanders covering at least n/4 vertices and satisfying d(H) ≥
d(1− 10ε) ≥ d(1− Cε) = d(1− ε1) and δ(H) ≥ d(H)/2 for every H ∈ H1. This shows that |V1| ≥ n/4, as desired.

Now suppose that for all 1 ≤ j ≤ i, we have
∑j

k=1 |Vk| ≥ (1− ( 34 )
j)n. We will show that

∑i+1
k=1 |Vk| ≥ (1− ( 34 )

i+1)n.

Let U := V1 ∪ . . . ∪ Vi. Since for each 1 ≤ k ≤ i, the average degree of the λ-expanders in Hk (whose union spans

the vertex set Vk) is at least d(1− εk), we have e(U) ≥
∑i

k=1
d
2 (1− εk)|Vk| = d

2 |U | − d
2

∑i
k=1 εk|Vk|. Hence,

e(U) + e(U,U) ≤ d|U | − e(U) ≤ d

2
|U |+ d

2

i∑
k=1

εk|Vk|. (2)

Note that under the constraints ε1 ≤ . . . ≤ εi and
∑j

k=1 |Vk| ≥ (1 −
(
3
4

)j
)n for 1 ≤ j ≤ i, the sum

∑i
k=1 εk|Vk| is

maximised if, for each 1 ≤ k ≤ i, the size of Vk is chosen to be as large as possible, assuming the sizes of Vk+1, . . . , Vi

were already chosen to be as large as possible. Since
∑i−1

k=1 |Vk| ≥ (1 − ( 34 )
i−1)n, the largest possible size of Vi is

( 34 )
i−1n. Given this, the largest possible size of Vi−1 is (1−( 34 )

i−1)n−(1−( 34 )
i−2)n = (( 34 )

i−2−( 34 )
i−1)n = ( 34 )

i−2 n
4 ,

using
∑i−2

j=1 |Vj | ≥ (1− ( 34 )
i−2)n. Similarly, for each 1 ≤ k ≤ i− 1, the largest possible size of Vk is ( 34 )

k−1 n
4 . Hence,

i∑
k=1

εk|Vk| ≤
i−1∑
k=1

εk|Vk|+ εi|Vi| ≤
i−1∑
k=1

εk

(
3

4

)k−1
n

4
+ εi

(
3

4

)i−1

n

≤
i∑

k=1

4

3
ε

(
3C

4

)k

n ≤
4
3ε

3C
4 − 1

(
3C

4

)i+1

n.

(3)

Combining (2) and (3), we have

e(U) + e(U,U) ≤ d

2
|U |+

2
3εd

3C
4 − 1

(
3C

4

)i+1

n.

Therefore,

e(U) ≥ e(G)− (e(U) + e(U,U)) ≥ 1

2
nd(1− ε)− d

2
|U | −

2
3εd

3C
4 − 1

(
3C

4

)i+1

n

≥ d

2
|U | − 1

2
ndε− 8εd

9C − 12

(
3C

4

)i+1

n.

(4)
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Since
∑i

k=1 |Vk| ≥ (1− ( 34 )
i)n, we have |U | ≤ ( 34 )

in. Thus, by (4),

d(U) =
2e(U)

|U |
≥ d

(
1−

(
4

3

)i

ε

(
1 +

16

9C − 12

(
3C

4

)i+1
))

= d

(
1− ε

((
4

3

)i

+
48Ci+1

36C − 48

))
.

Note that since C = 100, we have
(
4
3

)i
+ 48Ci+1

36C−48 ≤ Ci+1

10 , so

d(U) ≥ d

(
1− εCi+1

10

)
= d

(
1− εi+1

10

)
.

Now, note that λ log |U | ≤ λ log n ≤ min{ 1
10 , ε} ≤ min{ 1

10 ,
Ci+1ε
10 } = min{ 1

10 ,
εi+1

10 }, where in the last inequality

we used C = 100. Hence, by Lemma 4.6, there exists a collection Hi+1 of vertex-disjoint λ-expanders in G[U ]

with d(H) ≥ d(1 − εi+1), and δ(H) ≥ d(H)/2 for every H ∈ Hi+1 such that, if Vi+1 =
⋃

H∈Hi+1
V (H), then

|Vi+1| = |
⋃

H∈Hi+1
V (H)| ≥ |U |/4. Therefore, n−

∑i+1
k=1 |Vk| ≤ 3

4 |U |. Since |U | ≤ ( 34 )
in, we have n−

∑i+1
k=1 |Vk| ≤

3
4 |U | ≤ ( 34 )

i+1n. This shows that
∑i+1

k=1 |Vk| ≥ (1− ( 34 )
i+1)n, proving the claim.

Let t = min{i | ( 34 )
i+1 ≤ 1

(logn)α }. Then ( 34 )
t ≥ 1

(logn)α , so ( 43 )
t ≤ (log n)α which implies that t ≤ α

log(4/3) log logn ≤
3α log log n. Thus, Ct+1 ≤ C3α log logn+1 ≤ C4α log logn ≤ 228α log logn = (log n)28α.

Now consider the collection of λ-expanders H := H1 ∪ . . . ∪ Ht+1. Every H ∈ H is a λ-expander with d(H) ≥
d(1− εt+1) = d(1− εCt+1) ≥ d(1− ε(log n)28α), δ(H) ≥ d(H)/2, and by Claim 4.6.1, these expanders cover at least∑t+1

k=1 |Vk| ≥ (1− ( 34 )
t+1)n ≥ (1− 1

(logn)α )n vertices of G, proving the lemma.

4.2 Refining procedure

To prove Lemma 4.3 we use a refining procedure that gradually improves the expansion of the expanders given

by Lemma 4.4 without significantly weakening their regularity. This is achieved through repeated applications of

Lemma 4.4. The main idea of the refining procedure is described in the proof sketch at the end of Section 2.

Proof of Lemma 4.3. For convenience, let β := 28α and γ := C−β−1
C−1 . Note that by the assumptions of the lemma,

γ ≥ 1/2. Let n1 = n, and for every i ≥ 1, let ni+1 satisfy log ni+1 = (log ni)
γ (so that log ni+1 = (log n)γ

i

). Let

ε0 = (log n1)
−(C−1), and for every i ≥ 1, let εi = (log ni)

−(C−β−1) and λi = (log ni)
−C .

Let H0 := {G}. Since d(G) ≥ d(1− ε0), and λ1 log n1 = (log n1)
−(C−1) = ε0 ≤ 1

10 , applying Lemma 4.4 with G,λ1,

α and ε0 playing the roles of G,λ, α and ε respectively, we obtain a collection H1 of λ1-expanders with d(H) ≥
d(1− ε0(log n1)

28α) = d(1− ε1) and δ(H) ≥ d(H)/2 for every H ∈ H1 such that
∑

H∈H1
|V (H)| ≥ (1− 1

(logn)α )n.

Note that H1 is defined above. Now, we define a sequence H2,H3, . . ., as follows. For every i ≥ 1 such that εi ≤ 1
10 ,

assuming that Hi was already defined, we do the following for each H ∈ Hi.

(a)i If |V (H)| ≤ ni+1 and d(H) ≥ d(1−εi), then let Hi+1(H) be a collection of vertex-disjoint λi+1-expanders in H

satisfying d(F ) ≥ d(1−εi(log |V (H)|)28α), and δ(F ) ≥ d(F )/2 for every F ∈ Hi+1(H), and
∑

F∈Hi+1(H) |V (F )| ≥
(1 − 1

(log |V (H)|)α )|V (H)|, obtained by applying Lemma 4.4 with H,λi+1, α and εi playing the roles of G,λ,

α and ε respectively. Note that Lemma 4.4 is indeed applicable because λi+1 log |V (H)| ≤ λi+1 log ni+1 =

(log ni+1)
−(C−1) = (log ni)

−γ(C−1) = (log ni)
−(C−β−1) = εi ≤ 1

10 .

(b)i Otherwise, let Hi+1(H) = {H}.

Then we define Hi+1 :=
⋃

H∈Hi
Hi+1(H). We will now show that the following claim holds.
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Claim 4.6.2. For every i ≥ 1, if εi−1 ≤ 1
10 , then the following holds.

(A)i For every H ∈ Hi, we have d(H) ≥ d(1− εi) and δ(H) ≥ d(H)/2.

(B)i
∑

H∈Hi
|V (H)| ≥ (1− i

(log logn)α )n.

Proof of claim. We prove the claim by induction. By our choice of H1 as discussed above, we know that (A)1
holds, and that

∑
H∈H1

|V (H)| ≥ (1− 1
(logn)α )n ≥ (1− 1

(log logn)α )n, so (B)1 holds as well. Now suppose (A)i and

(B)i hold for i = k for some k ≥ 1, and we will show that they hold for i = k + 1. Suppose that εk ≤ 1
10 (otherwise

there is nothing to prove).

Indeed, for every H ∈ Hk with |V (H)| > nk+1, it follows from (b)k that Hk+1(H) = {H}. So we have d(H) ≥
d(1 − εk) ≥ d(1 − εk+1) and δ(H) ≥ d(H)/2 by (A)k. For every H ∈ Hk with |V (H)| ≤ nk+1, it follows from (a)k
and (A)k that d(F ) ≥ d(1− εk(log |V (H)|)28α) and δ(F ) ≥ d(F )/2 for every F ∈ Hk+1(H). Moreover, notice that

we have

εk(log |V (H)|)28α ≤ εk(log nk+1)
28α

= (log nk)
−(C−β−1)(log nk+1)

β

= (log nk+1)
− (C−β−1)

γ (log nk+1)
β = (log nk+1)

−(C−β−1) = εk+1.

Therefore, for every F ∈ Hk+1(H), we have d(F ) ≥ d(1− εk+1) in both cases. This proves that (A)k+1 holds. Now

our goal is to prove (B)k+1. Note that

∑
H∈Hk+1

|V (H)| =
∑

H∈Hk

∑
F∈Hk+1(H)

|V (F )| ≥
∑

H∈Hk

(
1− 1

(log |V (H)|)α

)
|V (H)|, (5)

where, in the last inequality we used (a)k in the case when |V (H)| ≤ nk+1, and in the case when |V (H)| > nk+1,

(b)k trivially implies that
∑

F∈Hk+1(H) |V (F )| = |V (H)|. Now note that, for every H ∈ Hk we have |V (H)| ≥
d(H) ≥ d(1− εk) ≥ 9d

10 ≥ log n. Hence, 1− 1
(log |V (H)|)α ≥ 1− 1

(log logn)α . Therefore, by (5), and our assumption that

(B)k holds, we have

∑
H∈Hk+1

|V (H)| ≥
(
1− 1

(log log n)α

)(
1− k

(log log n)α

)
n ≥

(
1− k + 1

(log log n)α

)
n.

This proves that (B)k+1 holds, and completes the proof of the claim.

Let t = max{i | log ni ≥ 4}. Then 4 ≥ log nt+1 = (log nt)
γ ≥ (log nt)

1/2 ≥ 2. In particular, nt+1 ≤ 16. Since, by the

assumptions of Lemma 4.3, C ≥ β+3, we have εt = (log nt)
−(C−β−1) ≤ 4−(C−β−1) ≤ 1

10 . Moreover, since εt−1 ≤ εt,

we also have εt−1 ≤ 1
10 , so by (A)t of Claim 4.6.2, for everyH ∈ Ht, we have d(H) ≥ d(1−εt) ≥ d(1− 1

10 ) > 16 ≥ nt+1

and δ(H) ≥ d(H)/2. Therefore, for every H ∈ Ht, we have |V (H)| ≥ d(H) > nt+1 and thus Ht+1 = Ht.

Now let H ∈ Ht, and let j be the smallest index such that H ∈ Hj . Then H is a λj-expander with d(H) ≥ d(1−εj).

We claim that nj ≥ |V (H)| > nj+1. Indeed, the upper bound clearly holds if j = 1. Otherwise, since H /∈ Hj−1,

there exists H ′ ∈ Hj−1 such that |V (H ′)| ≤ nj and H ∈ Hj(H
′). Since H is a subgraph of H ′, it follows that

|V (H)| ≤ nj , as desired. For the lower bound, notice that H ∈ Hj ∩ Hj+1 (otherwise, H would not be in Ht),

showing that |V (H)| > nj+1. Recall that, as defined in the statement of Lemma 4.3, λH = (log |V (H)|)−
C(C−1)

C−28α−1 ,

and εH = (log |V (H)|)−(C−28α−1). Hence,

λj = (log nj)
−C = (log nj+1)

−C/γ = (log nj+1)
−C(C−1)
C−β−1 ≥ (log |V (H)|)

−C(C−1)
C−β−1 = λH ,

and that

εj = (log nj)
−(C−β−1) ≤ (log |V (H)|)−(C−β−1) = εH .
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Hence, every H ∈ Ht is a λH -expander with d(H) ≥ d(1 − εH) and δ(H) ≥ d(H)/2. Finally, since (log n)γ
t−1

=

log nt ≥ 4, we have t ≤ log log logn
log(1/γ) + 1 ≤ (log log log n)2. Thus, by (B)t of Claim 4.6.2, we have

∑
H∈Ht

|V (H)| ≥

(1− t
(log logn)α )n ≥ (1− (log log logn)2

(log logn)α )n. This shows that Ht is a collection of vertex-disjoint subgraphs of G satisfying

the desired properties, completing the proof of Lemma 4.3.

5 Connecting vertex pairs through a random vertex subset of an ex-

pander

In this section, we prove the following generalization of a lemma from [56], which allows for connecting pairs of

vertices (x1, y1), . . . , (xr, yr) in a robust sublinear expander through a random set of vertices using vertex-disjoint

paths, if all subsets of the set {x1, . . . , xr, y1, . . . , yr} expand well. This is a variant of Theorem 16 in [13], which

only requires the paths to be edge-disjoint. The proof follows [13] closely, which, in turn, uses some ideas from

Tomon [71].

Lemma 5.1. Let 2−9 ≤ ε < 1, c > 0, 0 < q < 1, s ≥ 2(logn)9c+21

q10 , and let n be sufficiently large. Suppose that G is

an n-vertex (ε, c, s)-expander, and let V be a random subset of V (G) obtained by including each vertex independently

with probability q. Then, with probability at least 1 − 1
n , the following holds. If x1, . . . , xr, y1, . . . , yr are distinct

vertices not contained in V such that |N(X)| ≥ 100(logn)7c+19

q6 |X| for every X ⊆ {x1, . . . , xr, y1, . . . , yr}, then there

is a sequence of paths P1, . . . , Pr of length at most (log n)c+4, such that for each i ∈ [r], Pi is a path from xi to yi
with internal vertices in V , and the paths P1, . . . , Pr are pairwise vertex-disjoint.

We will introduce the relevant preliminaries in Section 5.1, and then prove Lemma 5.1 in three steps, as detailed in

Sections 5.2 to 5.4.

5.1 Preliminaries

We will use the following two propositions, both of which show that every vertex set U (which is not too large)

in an expander either ‘expands well’, meaning that it has a large neighbourhood, or ‘expands robustly’, meaning

that there are many vertices in N(U) with many neighbours in U . These two propositions are slight variations of

propositions from [13]. The main difference is that here we do not have a set of forbidden edges (because we will

not need this feature) and we have a new parameter c that controls the rate of expansion of our expanders.

First, we adapt Proposition 12 from [13]. For any graph G, parameter d, and U ⊆ V (G), let NG,d(U) := {v ∈
V (G)− U : |NG(v) ∩ U | ≥ d} i.e., NG,d(U) is the set of vertices in G outside U which have degree at least d in U .

Proposition 5.2. Let ε, c > 0, and let 0 < d ≤ s. Suppose that G is an n-vertex (ε, c, s)-expander. Then for every

set U ⊆ V (G) with |U | ≤ 2n
3 , either

a) |NG(U)| ≥ s|U |
2d

, or b) |NG,d(U)| ≥ ε|U |
(log n)c

.

Proof. Suppose a) is not satisfied, so that |NG(U)| < s|U |
2d . Let X = NG(U) − NG,d(U), so that |X| < s|U |

2d . Let

F be the edges of G between U and X, so that |F | < |X|d ≤ s|U |/2. Note that, by the definition of F , we have

NG,d(U) = NG−F (U). As G is an (ε, c, s)-expander, we have

|NG,d(U)| = |NG−F (U)| ≥ ε|U |
(log n)c

,

and therefore b) holds, as required.

Now we adapt Proposition 13 from [13] which shows that more structure can be found in both outcomes of the

above proposition.
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Lemma 5.3. There is an n0 such that the following holds for all n ≥ n0, 2
−9 < ε < 1, c > 0, r, t ≥ (log n)2 and

s ≥ 20rt. Let G be an n-vertex (ε, c, s)-expander, let U ⊆ V (G) satisfy |U | ≤ 2n/3. Then, in G we can find either

(a) |U |
10r pairwise vertex-disjoint stars of size t, whose centers are in U and whose leaves are in V (G)− U , or

(b) a bipartite subgraph H with vertex classes U and X ⊆ V (G)− U such that

• |X| ≥ ε|U |
2(logn)c and

• every vertex in X has degree at least r in H and every vertex in U has degree at most 2t in H.

Proof. Take a maximal collection C of pairwise vertex-disjoint stars in G with t leaves, centres in U and leaves

outside of U . Let C ⊆ U be the set of centres of these stars and L ⊆ V (G) − U be the set consisting of all their

leaves. Suppose a) does not hold. Then we can assume that |C| ≤ |U |
10r and thus |L| = |C| · t ≤ |U |

10r · t, and, by the

maximality of C, that there is no vertex in U − C with at least t neighbours in G in V (G)− (U ∪ L). Thus,

|NG(U − C)| ≤ |C|+ |L|+ |U − C| · t ≤ |U |
10r

+ |C| · t+ |U − C| · t < 2|U | · t. (6)

We now construct a set X ⊆ V (G)−U and a bipartite subgraph H with vertex classes U and X using the following

process, starting withX0 = ∅ and settingH0 to be the graph with vertex set U∪X0 and no edges. Let k = |V (G)−U |
and label the vertices of V (G) − U arbitrarily as v1, . . . , vk. For each i ≥ 1, if possible, pick a star Si in G with

centre vi and r leaves in U such that the vertices in U in the graph Hi−1 ∪ Si have degree at most 2t, and let

Hi = Hi−1 ∪ Si and Xi = Xi−1 ∪ {vi}, while otherwise we set Hi = Hi−1 and Xi = Xi−1. Finally, let H = Hk and

X = Xk = V (Hk)− U . We will now show that b) holds for this choice of H (with vertex classes U and X).

Firstly, observe that every vertex of U has degree at most 2t in Hi for each i ∈ [k] by construction, and that every

vertex vi in X has degree exactly r in H, so the second condition in b) holds. Thus, we only need to show that

|X| ≥ ε|U |
2(logn)c holds.

To see this, let U ′ be the set of vertices in U − C with degree exactly 2t in H. As each vertex in U − C has fewer

than t neighbours in G in X − L (due to the maximality of the collection of stars C), the vertices in U ′ must have

at least t neighbours in H in X ∩ L. As each vertex in X ∩ L has r neighbours in H, we have

|U ′| ≤ r|X ∩ L|
t

≤ r

t
· |L| ≤ r

t
· |U | · t

10r
=

|U |
10

.

Let B = C ∪ U ′, so that

|B| ≤ |U |
10r

+
|U |
10

≤ |U |
2

,

and, thus, |U −B| ≥ |U |
2 .

Then, by Proposition 5.2 applied to U − B with d = r, we have either |NG(U − B)| ≥ s|U−B|
2r or |NG,r(U − B)| ≥

ε|U−B|
(logn)c . As

s|U −B|
2r

≥ s|U |
4r

≥ 5t|U |,

the former inequality contradicts (6), so we have that |NG,r(U −B)| ≥ ε|U−B|
(logn)c . Every vertex vi in NG,r(U −B) has

at least r neighbours in G in U −B, and vertices of U −B must all have degree strictly less than 2t in H (as they

are not in U ′). This implies that every vi in NG,r(U −B), satisfies vi ∈ X, since we could add it along with some r

of its neighbours while constructing H. Hence, NG,r(U −B) ⊆ X, and

|X| ≥ |NG,r(U −B)| ≥ ε|U −B|
(log n)c

≥ ε|U |
2(log n)c

,

as required.
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As in [13], we also need the following hypergraph version of Hall’s theorem, due to Aharoni and Haxell [1].

Theorem 5.4 (Aharoni–Haxell [1]). Let ℓ, r ≥ 1 be integers, and let H1, . . . ,Hr be hypergraphs on the same vertex

set with edges of size at most ℓ. Suppose that, for every I ⊆ [r], there is a matching in
⋃

i∈I Hi of size at least

ℓ(|I| − 1). Then, there is an injective function f : [r] 7→
⋃

i∈[r] E(Hi) such that f(i) ∈ E(Hi) for each i ∈ [r] and

{f(i) : i ∈ [r]} is a matching with r edges.

5.2 Expansion into a random vertex set

The following lemma shows that, given a sufficiently robust expander G and a random set of vertices V ⊆ V (G),

any (sufficiently large) set U expands well in V , while avoiding a given small set of vertices Z, with high probability.

This lemma is a variant of Lemma 17 in [13]. The main difference is that instead of a forbidden set of edges we have

a forbidden set of vertices. Moreover, we have an additional parameter c that controls the rate of expansion of our

expanders and another parameter q that controls the sampling probability for the random set V .

Lemma 5.5. Let 2−9 ≤ ε < 1, 0 < q < 1, c > 0, s ≥ 100(logn)2c+6

q3 and let n be large. Suppose that G is an n-vertex

(ε, c, s)-expander and let U,Z ⊆ V (G) be sets satisfying |U | ≥ (logn)4c+9

q5 and |Z| ≤ εq|U |
107(logn)c . Let V be a random

subset of V (G), obtained by including each vertex independently with probability q. Then, with probability at least

1− exp
(
−Ω

(
q5|U |

(logn)4c+8

))
, ∣∣∣B(logn)c+2

G[V ′] (U ∩ V ′)
∣∣∣ > |V |

2
,

where V ′ := V − Z.

Proof. Let ℓ = (log n)c+2 and let p be such that 1−(1−p)ℓ(1− q
20 )(1−0.9q) = q, i.e., that (1−p)ℓ = 1−q

(1− q
20 )(1−0.9q) ,

so that

p ≥ q

100ℓ
. (7)

Let V1, . . . , Vℓ, V
∗, V ∗∗ be random sets, where for each 1 ≤ i ≤ ℓ, Vi is obtained by including each vertex with

probability p, independently, V ∗ is obtained by including each vertex with probability q
20 , independently, and V ∗∗

is obtained by including each vertex with probability 0.9q, independently. Notice that each vertex is in V1 ∪ . . . ∪
Vℓ ∪ V ∗ ∪ V ∗∗ with probability q, and so we may think of the random set V as the union V1 ∪ . . . ∪ Vℓ ∪ V ∗ ∪ V ∗∗.

Define U∗ = (U ∩ V ∗) − Z. Then, by the Chernoff bound, with probability 1 − exp (−Ω(q|U |)), we have that

|U∗| ≥ q
25 |U | − |Z| ≥ q

50 |U |; condition on this being this case. Define B0 := U∗ and, for i ≥ 1, let Bi be the set of

vertices in G that can be reached by a path in G−Z that starts in U∗, has length at most i, and its internal vertices

are in V1 ∪ . . .∪ Vi. Let us emphasise that Bi is only required to be disjoint from Z, and need not be a subset of Vi.

Notice that Bi ⊆ Bi+1 for every i ≥ 0, implying that for all i ≥ 0, we have

|Bi| ≥ |U∗| ≥ q

50
|U |.

Claim 5.5.1. For each 1 ≤ i ≤ ℓ − 1, if |U∗| ≥ q
50 |U | and |Bi| ≤ 2

3n, then, with probability at least 1 −
exp

(
−Ω

(
q5

ℓ4 |U |
))

,

|Bi+1 −Bi| ≥
ε|Bi|

105(log n)c
.

Proof. Notice that a vertex in N(Bi)−Z is in Bi+1−Bi if at least one of its neighbours in Bi is sampled into Vi+1.

Consider the two possible outcomes obtained by applying Lemma 5.3 with Bi playing the role of U and with r = ℓ
q

and t =
(

ℓ
q

)2
· 5
(logn)c . (Note that the lemma indeed applies because r, t ≥ ℓ ≥ (log n)2 and s ≥ 100(logn)2c+6

q3 = 20rt.)

Suppose that the first outcome of Lemma 5.3 holds, so there are |Bi|
10r pairwise vertex-disjoint stars of size t with

centres in Bi and leaves in N(Bi). By the Chernoff bound, with probability at least 1 − exp
(
−Ω

(
p|Bi|
10r

))
=
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1− exp
(
−Ω

(
q3

ℓ2 |U |
))

, at least p|Bi|
20r centres of these stars are included in Vi+1, implying that

|Bi+1 −Bi| ≥
pt|Bi|
20r

− |Z| ≥ |Bi|
20

· q

100ℓ
· 5ℓ2

q2(log n)c
· q
ℓ
− |Z|

≥ |Bi|
400(log n)c

− |Z| ≥ ε|Bi|
105(log n)c

,

using that |Z| ≤ εq|U |
107(logn)c ≤ |Bi|

105(logn)c (since |Bi| ≥ q
50 |U | and ε ≤ 1).

Now suppose that the second outcome of Lemma 5.3 holds, so there is a bipartite subgraph H ⊆ G with parts Bi

and X ⊆ V (G) − Bi, with |X| ≥ ε|Bi|
2(logn)c , such that vertices in X have degree at least r in H while vertices in Bi

have degree at most 2t in H. Let Y be the set of vertices in X that do not have an H-neighbour in Vi+1. Note that

E|Y | ≤ |X|(1− p)r ≤ |X|e−pr ≤ 0.999|X|. Note also that |Y | is 2t-Lipschitz, since the outcome of the sampling of

any single vertex in Bi affects the outcome of at most 2t vertices in X. Thus, by Lemma 3.5,

P (|Y | > 0.9991|X|) ≤ P
(
|Y | > E|Y |+ |X|

104

)
≤ 2 exp

(
− |X|2

2 · 108(2t)2|Bi|

)
= exp

(
−Ω

(
q|U |

t2(log n)2c

))
= exp

(
−Ω

(
q5

ℓ4
|U |
))

.

Hence, in this case, with probability at least 1 − exp
(
−Ω

(
q5

ℓ4 |U |
))

, we have |Bi+1 − Bi| ≥ 0.0009|X| − |Z| ≥
ε|Bi|

104(logn)c − |Z| ≥ ε|Bi|
105(logn)c since |Z| ≤ εq|U |

107(logn)c ≤ ε|Bi|
105(logn)c .

By repeatedly applying Claim 5.5.1, we obtain that with probability at least

1− exp (−Ω(q|U |))− ℓ · exp
(
−Ω

(
q5

ℓ4
|U |
))

= 1− exp

(
−Ω

(
q5

ℓ4
|U |
))

,

we have |U∗| ≥ q
50 |U | and for all i ∈ [ℓ] such that |Bi| ≤ 2

3n, the following holds.

|Bi| ≥
(
1 +

ε

105(log n)c

)i

|U∗|.

This implies that |Bℓ| ≥ 2
3n with probability at least 1− exp

(
−Ω

(
q5

ℓ4 |U |
))

.

To complete the proof, note that any vertex in Bℓ that gets sampled into V ∗∗ (or that is already in V1∪ . . .∪Vℓ∪V ∗)

is in the set B′ := B
(logn)c+2

G[V ′] (U ∩ V ′). Hence, conditioning on the event that |Bℓ| ≥ 2
3n, by the Chernoff bound,

at least 17
30qn vertices of Bℓ are in V , and |V | ≤ 31

30qn with probability at least 1− exp(−Ω(qn)). This implies that

|B′| > 1
2 |V | with probability at least 1−exp

(
−Ω

(
q5

ℓ4 |U |
))

−exp(−Ω(qn)) = 1−exp
(
−Ω

(
q5

ℓ4 |U |
))

, as required.

Next, we prove the following corollary by boosting the probability that a given set U expands into V (as compared

to the probability in Lemma 5.5), so that we can apply the union bound to show that all sets U (of size at most

2n/3) expand into V at the expense of a slightly smaller upper bound on |Z|. This is a variant of Lemma 19 in [13].

Corollary 5.6. Let 2−9 ≤ ε < 1, c > 0, 0 < q < 1, s ≥ 2(logn)9c+21

q10 , and let n be large. Suppose that G is an

n-vertex (ε, c, s)-expander, and let V be a random subset of V (G), obtained by including each vertex independently

with probability at least q. Then, with probability at least 1 − 1
n2 , for every U,Z ⊆ V (G) with |U | ≤ 2

3n and

|Z| ≤ q5|U |
(logn)5c+11 , we have ∣∣∣B(logn)c+2

G[V ′] (N(U) ∩ V ′)
∣∣∣ > |V |

2
, (8)

where V ′ := V − Z.
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Proof. We say that a set U ⊆ V (G) expands well if |N(U)| ≥ |U |(logn)4c+10

q5 . Given a (non-empty) set U which

expands well, and a set Z with |Z| ≤ |U |, Lemma 5.5 (applied with N(U) playing the role of U) shows that (8)

holds, with probability at least 1− exp
(
−Ω

(
|U |(log n)2

))
.

By the union bound, it follows that the probability that (8) fails for some pair (U,Z), where U expands well and

|Z| ≤ |U |, is at most

n∑
u=1

(u+ 1)n2u exp
(
−Ω

(
u(log n)2

))
≤

n∑
u=1

exp
(
3u log n− Ω

(
u(log n)2

))
=

n∑
u=1

exp
(
−Ω

(
u(log n)2

))
≤ 1

n2
.

For the rest of the proof of Corollary 5.6 we condition on the event that (8) holds for all pairs (U,Z) where U

expands well and |Z| ≤ |U |. From this, we will deduce that (8) holds for all pairs (U,Z), where U need not expand

well, |U | ≤ 2
3n, and |Z| ≤ q5|U |

(logn)5c+11 . Fix such a pair of sets (U,Z).

Write d := (logn)5c+11

q5 . By Proposition 5.2, either |N(U)| ≥ s|U |
2d , or |Nd(U)| ≥ ε|U |

(logn)c (using the notation Nd(U)

introduced before the proposition). Notice that the first outcome implies that U expands well (using the assumption

on s and the definition of d) and so we already know that (8) holds. Hence, we may assume that the second outcome

holds, and write W := Nd(U). Let U ′ be a subset of U of size |U |
d , chosen uniformly at random. For a fixed w ∈ W ,

the probability that w has no neighbours in U ′ is at most(|U |−d
|U |/d

)( |U |
|U |/d

) ≤
(
|U | − d

|U |

)|U |/d
≤ e−1.

It follows that E[|W ∩N(U ′)|] ≥ (1 − e−1)|W | ≥ ε|U |
2(logn)c ≥ |U ′|(logn)4c+10

q5 . In particular, there is a subset U ′ ⊆ U

of size |U |
d with |N(U ′)| ≥ |U ′|(logn)4c+10

q5 . Since U ′ expands well, and |Z| ≤ q5|U |
(logn)5c+11 = |U ′|, (8) holds for (U ′, Z)

and thus it also holds for (U,Z), completing the proof of the corollary.

5.3 A path connection through a random set

For proving Lemma 5.1, our end goal is to be able to connect r pairs of vertices through a random set V (using

internally vertex-disjoint paths), provided that any subset of these vertices expands well. The following lemma shows

that at least one pair of vertices can be joined while avoiding a small set of forbidden vertices. This is a variant of

Proposition 8 in [13], where in addition to forbidding vertices instead of edges, we impose an expansion property on

the vertices we wish to connect, and we use additional parameters c and q that control the rate of expansion of our

expanders and the sampling probability of the random set V , respectively.

Lemma 5.7. Let 2−9 ≤ ε < 1, c > 0, 0 < q < 1, s ≥ 2(logn)9c+21

q10 , and let n be large. Suppose that G is an

n-vertex (ε, c, s)-expander, and let V be a random subset of V (G), obtained by including each vertex independently

with probability q. Then, with probability at least 1 − 1
n , the following holds for every r: If x1, . . . , xr, y1, . . . , yr

are distinct vertices, satisfying |N(X)| ≥ 100(logn)7c+19

q6 |X| for every subset X ⊆ {x1, . . . , xr, y1, . . . , yr}, and Z is

a set of size at most 2r(log n)2c+8 which is disjoint from {x1, . . . , xr, y1, . . . , yr}, then for some i ∈ [r] there is an

(xi, yi)-path in G whose internal vertices are in V − Z and whose length is at most (log n)c+4.

Proof. Let V ′ := V − Z. It is easy to see that by Corollary 5.6 and the Chernoff bound (Theorem 3.4) together

with a union bound, the following three properties hold simultaneously with probability at least 1− 1
n .

(T1) For every U ⊆ V (G) satisfying |U | ≤ 2n
3 and |Z| ≤ q5|U |

(logn)5c+11 , (8) holds.

(T2) We have |V | ≥ qn
2 .

19



(T3) For every X ⊆ {x1, . . . , xr, y1, . . . , yr} with |X| ≥ r
2 , we have |N(X) ∩ V ′| ≥ 48(logn)7c+19

q5 |X|.

Indeed, by Corollary 5.6, (T1) holds with probability at least 1− 1
n2 . Moreover, (T2) holds with probability at least

1−exp(−Ω(qn)) ≥ 1− 1
n2 by the Chernoff bound. To see why (T3) holds, note that for a givenX, the probability that

|N(X) ∩ V | ≥ q|N(X)|/2 ≥ 50(logn)7c+19

q5 |X| is at least 1 − exp(−Ω(q|N(X)|)) ≥ 1 − exp(−Ω((log n)7c+19/q5)|X|).
Hence by a union bound, for all X ⊆ {x1, . . . , xr, y1, . . . , yr} with |X| ≥ r/2, we have |N(X)∩V ′| ≥ q|N(X)|

2 −|Z| ≥
50(logn)7c+19

q5 |X| − |Z| ≥ 48(logn)7c+19

q5 |X| with probability at least 1− 1
n2 .

Fix an outcome of V such that the properties (T1)–(T3) hold simultaneously. Write ℓ := (log n)c+2 + 1. For a set

of vertices X and integer d ≥ 1, define Rd(X) := Bd
G[V ′](N(X)∩ V ′). Let X1 be the set of vertices x in {x1, . . . , xr}

satisfying |Rℓ logn(x)| ≤ |V |
2 .

Claim 5.7.1. |X1| < r
2 .

Proof. Suppose that |X1| ≥ r
2 . We will first show that there is a sequence (Xi)i≥1, such that for every i ≥ 1,

Xi+1 ⊆ Xi, |Xi+1| ≤ max{1, |Xi|
2 }, and ∣∣Riℓ(Xi)

∣∣ > |V |
2

. (9)

Indeed, notice that |N(X1) ∩ V ′| ≥ 48(logn)7c+19

q5 |X1| ≥ r
2 · 4(logn)7c+19

q5 ≥ (logn)5c+11

q5 |Z|, by the third item above

and since |X1| ≥ r
2 and |Z| ≤ 2r(log n)2c+8. Thus, by the first item, |R(logn)c+2

(N(X1) ∩ V ′)| > |V |
2 , showing that

|Rℓ(X1)| > |V |
2 , proving that (9) holds for i = 1. (Notice that (8) is only applicable here if |N(X1) ∩ V ′| ≤ 2n

3 , but

if this fails then (9) holds trivially for i = 1.)

Now suppose that X1 ⊇ . . . ⊇ Xi is a sequence, such that for all j ∈ [i], |Xj | ≤ max{1, |Xj−1|
2 } and (9) holds. If

|Xi| = 1 we take Xi+1 = Xi (which clearly satisfies the required properties). Otherwise, by partitioning Xi into at

most three sets of size at most |Xi|
2 , there is a subset Xi+1 ⊆ Xi of size at most |Xi|

2 satisfying |Riℓ(Xi+1)| ≥ |V |
6 . We

will show that Xi+1 satisfies (9). Indeed, consider the set U := Riℓ(Xi+1). Then (9) trivially holds if |U | ≥ 2n
3 , so

suppose otherwise. We have |U | ≥ |V |
6 ≥ qn

12 ≥ q
12 ·r ·

100(logn)7c+19

q6 ≥ (logn)5c+11

q5 |Z|, where the third inequality follows

from the assumption that |N({x1, . . . , xr})| ≥ r · 100(logn)7c+19

q6 (and by the trivial inequality n ≥ |N({x1, . . . , xr})|).
Thus, by the first item, ∣∣∣B(logn)c+2

G[V ′] (N(U) ∩ V ′)
∣∣∣ > |V |

2
.

Notice that

B
(logn)c+2

G[V ′] (N(U) ∩ V ′) ⊆ Bℓ
G[V ′](U) = R(i+1)ℓ(Xi+1),

so Xi+1 has the required properties. This completes the proof of the existence of a sequence (Xi)i≥1 with the desired

properties.

Fix such a sequence, and take i := log n. Then |Xi| ≤ max{1, 2− logn|X1|} = 1. This means |Rℓ logn(x)| > |V |
2 for

the single vertex x in Xi, contradicting the choice of X1, and completing the proof of the claim.

Take Y1 to be the set of vertices y ∈ {y1, . . . , yr} satisfying |Rℓ logn(y)| ≤ |V |
2 . Then, analogously to Claim 5.7.1,

|Y1| < r
2 . Hence, there exists i ∈ [r] such that |Rℓ logn(xi)|, |Rℓ logn(yi)| > |V |

2 , showing that, with probability at least

1 − 1
n , there is an (xi, yi)-path of length at most 2ℓ log n + 2 ≤ (log n)c+4, with internal vertices in V ′, completing

the proof of Lemma 5.7.

5.4 Many vertex-disjoint path connections through a random set

Finally, we are ready to prove Lemma 5.1, which shows that given a sufficiently robust expander G and a random

subset of vertices V , then with high probability for any set {x1, . . . , xr, y1, . . . , yr} of vertices outside of V , whose

subsets all expand well, the pairs (xi, yi), i ∈ [r], can be connected using vertex-disjoint paths through V .
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Proof of Lemma 5.1. Fix an outcome of V for which the conclusion of Lemma 5.7 holds. For each i ∈ [r], let Hi

be the hypergraph on the vertex set V where each edge is the set of internal vertices of P , for all (xi, yi)-paths P of

length at most ℓ := (log n)c+4 with internal vertices in V .

We will apply Theorem 5.4. Fix a subset I ⊆ [r]. We wish to show that there is a matching of size at least ℓ(|I| − 1)

in H′ :=
⋃

i∈I Hi. Suppose that no such matching exists. Let M′ be a maximal matching in H′, and let Z be the

set of vertices in M′. Then |M′| < ℓ(|I| − 1), every edge in H′ intersects Z, and |Z| ≤ ℓ2(|I| − 1) ≤ |I|(log n)2c+8.

Hence, by applying Lemma 5.7 (with I playing the role of [r]) we obtain that for some i ∈ I there is an (xi, yi)-path

P of length at most ℓ whose internal vertices are in V − Z. But this means that V (P ) − {xi, yi} is an edge in H′

that does not intersect Z, a contradiction.

Therefore, the assumptions in Theorem 5.4 are satisfied, showing that there is a matching M of size r in
⋃

i∈[r] Hi,

such that the i-th edge of the matching is in Hi. Let Pi be the path corresponding to the i-th edge in M. Then,

for each i ∈ [r], Pi is an (xi, yi)-path with internal vertices in V . The internal vertex sets of the paths P1, . . . , Pr

are pairwise disjoint and are disjoint from {x1, . . . , xr, y1, . . . , yr}, as it is assumed that the vertices in this set are

not contained in V , thereby proving the lemma.

6 Finding an almost-spanning F -subdivision in a nearly regular ex-

pander

In this section we prove our second key lemma (Lemma 6.1) which shows that any sufficiently regular expander

contains an almost-spanning subdivision of any given (non-empty) graph F .

Lemma 6.1. Let c, ε, d, s, n be parameters such that c > 0 is fixed, n is sufficiently large, 0 < ε ≤ 1
(logn)4 ,

d ≥ (log n)10c+51 and s ≥ d
4(logn)c . Let F be a non-empty graph on at most

√
d

(logn)2 vertices, and let H be an n-vertex

( 18 , c, s)-expander such that ∆(H) ≤ d, d(H) ≥ d(1 − ε) and δ(H) ≥ d(H)
2 . Then H contains a subdivision of F

covering all but at most n
logn vertices of H.

Lemma 6.1 implies that every sufficiently regular expander contains a nearly Hamilton cycle. Indeed, by letting F

be a triangle in the lemma, we obtain that H contains a cycle C covering all but at most n
logn vertices of H. This

statement is of independent interest and is likely to have other applications.

For instance, we can use it to prove that nearly all vertices of any d-regular graph of order n, with d ≥ (log n)130,

can be covered by at most n
d+1 vertex-disjoint cycles. Recently, Montgomery, Müyesser, Pokrovskiy and Sudakov

[65] proved a similar result, showing that nearly all vertices of every d-regular graph of order n can be covered by

at most n
d+1 vertex-disjoint paths, thus making progress on a conjecture of Magnant and Martin [63] (which states

that all vertices can be covered by the same number of vertex-disjoint paths). Their result is stronger than ours in

that it applies for all d, but ours is also slightly stronger in that it finds vertex-disjoint cycles rather than paths.

Additionally, combining Lemma 6.1 with Corollary 4.2, we derive a recent result of Draganić, Methuku, Munhá

Correia, and Sudakov [22] on finding a cycle with many chords, albeit with a slightly larger logarithmic factor. We

elaborate on both applications in Section 8.

In the rest of this section, we prove Lemma 6.1. Let us first provide a brief outline of the structure of the proof. We

start by taking a random partition of the vertex set of our ( 18 , c, s)-expander H into sets V0, X1, . . . , Xt, R, where the

sizes of these random sets are chosen carefully in Section 6.1. In particular, we ensure that X :=
⋃t

i=1 Xi contains

nearly all vertices of H and the size of V0 is sufficiently larger than the sizes of the sets X1, . . . , Xt, R. In Section 6.2,

we show that, with high probability, there exists a small collection of paths P1, . . . , Pr contained in X, with leaves

in X1 ∪ Xt, that covers nearly all vertices of H. Then, in Section 6.3, we iteratively connect these paths through

V0 to construct a nearly Hamilton path P . More precisely, in each iteration, we join a constant proportion of the

paths P1, . . . , Pr via V0 using the following strategy: first, we greedily connect as many paths as possible through

V0 using vertex-disjoint paths of length two. When this is no longer possible, we show that there is a small subset

S of the leaves of P1, . . . , Pr that expands well into V0, allowing us to apply Lemma 5.1 to connect the paths whose
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leaves lie in S via V0 (see Claim 6.1.2). Finally, in Section 6.4, we find a subdivision of F in H that contains the

nearly Hamilton path P , yielding the desired almost spanning F -subdivision in H (see Figure 2).

X1 X2 X3 Xt R

v2v1

v3

v4

u1

u2

V ′ V1 V2

V0

Figure 2: The figure shows how to construct an almost spanning F -subdivision in H (when
F = K4).

6.1 Setting up the parameters

Throughout the section, we let c, ε, d, s, n be as in the statement of Lemma 6.1, and we let H be an n-vertex

( 18 , c, s)-expander with s ≥ d
4(logn)c such that ∆(H) ≤ d, d(H) ≥ d(1− ε) and δ(H) ≥ d(H)

2 . Moreover, throughout

this section, we let

q1 :=
1

3 log n
, q2 :=

6

(log n)3
, ε0 :=

1

(log n)4
, t :=

1

6
(log n)3 − 1

18
(log n)2 − 1.

We make some quick observations that will be used in the rest of the proof. Note that d(H) ≥ d(1− ε) ≥ d(1− ε0)

since ε ≤ 1
(logn)4 = ε0. Also note that q1 + (t + 1)q2 = 1, that q2 ≤ q1

4000 logn and that t ≤ 1
q2
. Moreover,

d ≥ (log n)10c+51 ≥ 8(logn)10c+21

(2q2)10
, ε0 ≥ 2d−1/4, and ε0

q2
= 1

6 logn .

Let us define a random partition {V0, X1, . . . , Xt, R} of V (H) as follows. Independently, for each vertex v ∈ V (H),

the probability that v is included in V0 is q1, the probability that v is included in Xi is q2 for each i ∈ [t], and

the probability that v is included in R is also q2. (Notice that these probabilities sum to q1 + (t + 1)q2 = 1.) For

convenience, let X :=
⋃t

i=1 Xi, so that V (H) = V0 ∪X ∪R.

6.2 Finding vertex-disjoint paths P1, . . . , Pr covering most of the vertices of X

In the next claim, we show that, with high probability, there is a small number of paths in X, with leaves in X1∪Xt,

that cover nearly all vertices in H. In Section 6.3, we will join these paths to form a nearly Hamilton path in H.

Claim 6.1.1. With probability at least 1 − exp
(
−Ω(log n)2

)
, there exists a collection of vertex-disjoint paths

P1, . . . , Pr satisfying the following properties.

(P1)
⋃

i∈[r] V (Pi) ⊆ X.

(P2) For i ∈ [r], the leaves of Pi are in X1 ∪Xt.
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(P3) |X −
⋃r

i=1 V (Pi)| ≤ 1
2 logn |X|.

Proof of claim. Let us first show that the following three properties hold simultaneously with probability 1 −
exp

(
−Ω

(
(log n)2

))
.

(X1) eH(Xi, Xi+1) ≥ d(1− ε)nq22 − dq22n
2/3 for all i ∈ [t− 1].

(X2) |Xi| = (1± n−1/3)q2n for each i ∈ [t].

(X3) ∆(H[Xi, Xi+1]) ≤ q2d(1 + d−1/3) for all i ∈ [t− 1].

To show this, it suffices to prove that each of the properties (X1)–(X3) holds with probability 1−exp
(
−Ω

(
(log n)2

))
.

For (X1), note that for any i ∈ [t − 1], we have E[eH(Xi, Xi+1)] = e(H) · 2q22 ≥ d(1 − ε)n · q22 since for any edge

uv ∈ E(H), the probability that u ∈ Xi, v ∈ Xi+1 or v ∈ Xi, u ∈ Xi+1 is 2q22 . Now note that changing the outcome

of whether a certain vertex v ∈ V (H) belongs to Xi, Xi+1, or neither, changes eH(Xi, Xi+1) by at most ∆(H) ≤ d,

so eH(Xi, Xi+1) is d-Lipschitz. Hence, by Lemma 3.5,

P
[
eH(Xi, Xi+1) < d(1− ε)nq22 − dq22n

2/3
]
≤ 2 exp

(
−Ω(q42n

1/3)
)
.

Therefore, by the union bound, since t ≤ n, (X1) holds with probability at least 1 − 2t exp
(
−Ω(q42n

1/3)
)
≥ 1 −

exp
(
−Ω(log n)2

)
, as desired.

For (X2), note that we have E[|Xi|] = q2n for each i ∈ [t]. Then, by the Chernoff bound (Theorem 3.4), the

probability that |Xi| = (1 ± n−1/3)q2n is at least 1 − exp
(
−Ω(q2n

1/3)
)
. Again, by the union bound, since t ≤ n,

(X2) holds with probability at least 1− t exp
(
−Ω(q2n

1/3)
)
≥ 1− exp

(
−Ω(log n)2

)
, as desired.

Finally, for (X3), note that since |NH(v)| ≤ d for any v ∈ V (H), we have E[|NH(v) ∩ Xi|] ≤ q2d. Hence, by

the Chernoff bound (Theorem 3.4), for any v ∈ V (H), |NH(v) ∩ Xi| ≤ q2d(1 + d−1/3) with probability at least

1− exp
(
−Ω(log n)2

)
. Therefore, by the union bound, for every v ∈ V (H) and i ∈ [t], |NH(v)∩Xi| ≤ q2d(1+ d−1/3)

with probability at least 1− tn exp
(
−Ω(log n)2

)
≥ 1− exp

(
−Ω(log n)2

)
, implying that (X3) holds with the required

probability. This shows that (X1)–(X3) hold simultaneously with probability 1− exp
(
−Ω

(
(log n)2

))
, as desired.

We now assume that (X1)–(X3) hold, and use this to deduce that the paths P1, . . . , Pr satisfying (P1)–(P3) exist

with the required probability. By Vizing’s theorem, for every i ∈ [t − 1], there is a matching Mi in H[Xi, Xi+1]

satisfying

|Mi| ≥
eH(Xi, Xi+1)

∆(H[Xi, Xi+1]) + 1
≥ d(1− ε)nq22 − dq22n

2/3

q2d(1 + d−1/4)

≥ q2n(1− ε− n−1/3)(1− d−1/4)

≥ |Xi|
(1 + n−1/3)

· (1− ε− n−1/3)(1− d−1/4)

≥ |Xi|(1− n−1/3)(1− ε− n−1/3)(1− d−1/4)

≥ |Xi|(1− ε− 2n−1/3 − d−1/4)

≥ |Xi|(1− ε0 − 2d−1/4) ≥ |Xi|(1− 2ε0).

Let M ′
1 := M1, and for each 2 ≤ i ≤ t−1, let M ′

i ⊆ Mi be the subset of edges of Mi which are incident to an edge of

M ′
i−1. Then, for each 2 ≤ i ≤ t− 1, since |Mi| ≥ |Xi|(1− 2ε0), we have |M ′

i | ≥ |M ′
i−1| − 2ε0|Xi|. This implies that

|M ′
t−1| ≥ |M1|−2ε0(

∑t−1
j=2 |Xj |) ≥ |X1|−2ε0(

∑t−1
j=1 |Xj |) ≥ |X1|−2ε0|X|. Now, since every edge of M ′

i is incident to

an edge ofM ′
i−1 for every 2 ≤ i ≤ t−1, it follows that each edge ofM ′

t−1 lies on a path fromX1 toXt inM1∪. . .∪Mt−1

which contains exactly one vertex from each Xj (for j ∈ [t]), such that the paths are vertex-disjoint. Let us denote

these paths by P1, . . . , Pr, where r := |M ′
t−1|. Then, it is easy to see that (P1) and (P2) hold. For (P3), notice
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that since (X2) holds, t|X1| ≥ t(1− n−1/3)q2n = t(1 + n−1/3)q2n · 1−n−1/3

1+n−1/3 ≥ |X|(1− 2n−1/3) ≥ |X|(1− ε0). Thus,∑r
i=1 |V (Pi)| = rt ≥ (|X1| − 2ε0|X|)t ≥ |X|(1− 3ε0t). Hence, |X −

⋃r
i=1 V (Pi)| ≤ 3ε0t|X| ≤ 3ε0

q2
|X| = 1

2 logn |X|, as
desired. This proves the claim.

6.3 Iteratively connecting the paths P1, . . . , Pr through V0 to construct a nearly Hamil-

ton path

In this subsection, our aim is to construct a nearly Hamilton path in H with high probability. We do this in

Claim 6.1.3 by repeatedly applying the following claim which shows that if V and W are two random sets, with W

only slightly smaller than V , then with high probability one can find vertex-disjoint paths (with internal vertices in

V ) that connect a positive proportion of the vertices in any given subset of W . Note that, as discussed in Section 2,

although the task becomes easier when W is significantly smaller than V (depending on c), it is crucial for our

argument that W is allowed to be only slightly smaller than V .

Claim 6.1.2. Let 0 < p1, p2 < 1 such that p2 ≤ p1

100 , let d ≥ 8(logn)10c+21

p10
2

. Let V,W ⊆ V (H) be disjoint random sets

such that, independently, for each vertex v ∈ V (H), the probability that v is included in V is p1, and the probability

that v is included in W is p2. Then, with probability at least 1 − 2
n , for every Y ⊆ W of size k ≥ 2, there are at

least k
10 pairwise vertex-disjoint paths of length at most (log n)c+4 whose internal vertices belong to V and whose

endpoints lie in Y .

Proof of claim. We claim that the following three properties hold simultaneously with probability at least 1− 2
n .

(SP1) For any vertex v ∈ V , we have |NH(v) ∩W | ≤ 2p2d.

(SP2) For any vertex v ∈ W , we have |NH(v) ∩ V | ≥ p1d
5 .

(SP3) If x1, . . . , xr, y1, . . . , yr ∈ V (H) − V are distinct vertices such that every subset X ⊆ {x1, . . . , xr, y1, . . . , yr}
satisfies |NH(X)| ≥ 100(logn)7c+19

p6
1

|X|, then there are pairwise vertex-disjoint paths Q1, . . . , Qr of length at

most (log n)c+4 with internal vertices in V , such that Qi is a path joining xi and yi.

Indeed, since ∆(H) ≤ d, for any vertex v ∈ V , we have E[|NH(v) ∩ W |] ≤ p2d, so by the Chernoff bound (Theo-

rem 3.4), we have |NH(v)∩W | ≤ 2p2d with probability at least 1−exp(−Ω(p2d)) ≥ 1−exp(−Ω(log n)2). Therefore,

by the union bound, (SP1) holds with probability at least 1 − exp(−Ω(log n)2). Since δ(H) ≥ d(H)
2 ≥ d

4 , for any

v ∈ W , we have E[|NH(v) ∩ V |] ≥ p1d
4 , so by the Chernoff bound, we have |NH(v) ∩ V | ≥ p1d

5 with probability at

least 1− exp(−Ω(p1d)) ≥ 1− exp(−Ω(log n)2). Therefore, by the union bound, (SP2) holds with probability at least

1− exp(−Ω(log n)2). For (SP3), notice that H is a ( 18 , c, s)-expander with s ≥ d
4(logn)c ≥ 2(logn)9c+21

p10
2

≥ 2(logn)9c+21

p10
1

,

so we can apply Lemma 5.1 with H, p1 playing the roles of G, q respectively. Thus, (SP3) holds with probability at

least 1− 1
n . By the union bound, (SP1)–(SP3) hold simultaneously, with probability at least 1− 2

n .

In the rest of the proof of this claim, we assume that (SP1)–(SP3) hold and prove that for every Y ⊆ W of size k ≥ 2,

there are at least k
10 pairwise vertex-disjoint paths of length at most (log n)c+4 whose internal vertices are in V and

whose leaves are in Y . Indeed, let Y ⊆ W be a set of size k ≥ 2. Let C be a maximal collection of vertex-disjoint

paths in H of the form abc with b ∈ V and a, c ∈ Y . If |C| ≥ k/10, then C is the collection of vertex-disjoint paths

required by the claim. So we may suppose |C| < k/10.

Let Y ′ ⊆ Y be the set of vertices in Y which are not contained in any of the paths in C. Then |Y ′| ≥ |Y | − 2|C| ≥
|Y |−k

5 = 4k
5 . Let Y ′′ be the set of vertices in Y ′ which have at least p1d

30 neighbours (inH) in the set S := {b | abc ∈ C}.
Note that S ⊆ V . We claim that |Y ′′| ≤ k

10 . Indeed, for every v ∈ V , |NH(v) ∩W | ≤ 2p2d by (SP1) and Y ′′ ⊆ W ,

so we have |NH(v) ∩ Y ′′| ≤ 2p2d. Thus,

|Y ′′| · p1d
30

≤ eH(Y ′′, S) ≤ |S| · 2p2d = |C| · 2p2d ≤ k

10
· 2p2d.

Hence, using that p2 ≤ p1/100, we have |Y ′′| ≤ 6k · p2

p1
≤ k

10 , as desired.

24



Let Y ∗ := Y ′−Y ′′. Then, since |Y ′| ≥ 4k
5 and |Y ′′| ≤ k

10 , we have |Y
∗| ≥ 4k

5 − k
10 ≥ 7k

10 , and for every vertex v ∈ Y ∗, we
have |NH(v)∩S| < p1d

30 by the choice of Y ∗. Thus, for every v ∈ Y ∗ ⊆ W , we have |NH(v)∩(V −S)| ≥ p1d
5 − p1d

30 = p1d
6

since |NH(v) ∩ V | ≥ p1d
5 by (SP2). Moreover, by the maximality of the collection C, for any two distinct vertices

u, v ∈ Y ∗, we have (NH(u)∩ (V − S))∩ (NH(v)∩ (V − S)) = ∅. In particular, this implies that for any Z ⊆ Y ∗, we
have |NH(Z)| ≥ |Z|p1d

6 .

Let Y ∗
even ⊆ Y ∗ be a subset of size at least |Y ∗| − 1 such that |Y ∗

even| is even. Note that for every Z ⊆ Y ∗
even, we have

|NH(Z)| ≥ |Z|p1d
6 ≥ |Z| 100(logn)7c+19

p6
1

. Thus, using (SP3), with Y ∗
even playing the role of {x1, . . . , xr, y1, . . . , yr}, we

obtain r =
|Y ∗

even|
2 ≥ |Y ∗|−1

2 ≥ k
10 pairwise vertex-disjoint paths of length at most (log n)c+4 whose internal vertices

are in V , and whose leaves are in Y ∗ ⊆ Y . This proves that the claim holds with probability at least 1 − 2
n , as

desired.

Recall that {V0, X1, . . . , Xt, R} is a random partition of V (H), and X =
⋃t

i=1 Xi. In the next claim we repeatedly

apply Claim 6.1.2 to join the paths P1, . . . , Pr (guaranteed by Claim 6.1.1) through the set V0 to obtain a nearly

Hamilton path in H with leaves in X1 ∪Xt.

Claim 6.1.3. Let V ′ be a random subset of V0 obtained by including each vertex of V0 in V ′ with probability 1/2.

Then, with probability at least 1 − 21 logn
n , there is a path P in H such that V (P ) ⊆ V ′ ∪ X, the leaves of P are

contained in X1 ∪Xt, and |X − V (P )| ≤ 1
2 logn |X|.

Proof. Since every vertex v ∈ V (H) belongs to V0 with probability q1, every vertex v ∈ V (H) is included in V ′

with probability q1
2 . Let ℓ := 10 log n and let q3 := q1

2ℓ . Note that since q2 ≤ q1
4000 logn = q1

400ℓ , we have q2 ≤ q3
200 .

Let V ′ :=
⋃ℓ

i=1 V
′
i be a random partition of V ′ so that every vertex v ∈ V (H) is included in V ′

i with probability

q3, for every i ∈ [ℓ]. In the rest of the proof of the claim, we condition on the existence of paths P1, . . . , Pr

satisfying (P1)–(P3) of Claim 6.1.1, and on the conclusion of Claim 6.1.2 holding with V ′
i , X1 ∪Xt, q3, 2q2, playing

the roles of V,W, p1, p2, respectively, for each i ∈ [ℓ]. (Note that Claim 6.1.2 is applied ℓ times in the latter

statement using that 2q2 ≤ q3
100 and d ≥ 8(logn)10c+21

(2q2)10
.) Indeed, the former statement holds with probability at least

1 − exp
(
−Ω

(
(log n)2

))
, and the latter statement holds with probability at least 1 − 2ℓ

n , so both statements hold

simultaneously with probability at least 1− 21 logn
n .

Let P1, . . . , Pr be paths satisfying (P1)– (P3) of Claim 6.1.1, and let T0 be the linear forest whose components

are P1, . . . , Pr. We will iteratively construct linear forests T1, . . . , Tℓ such that the number of leaves, say ti, in Ti

decreases quickly as i grows. More precisely, we claim that there is a sequence of linear forests T1, . . . , Tℓ such that

for every i ∈ {1, . . . , ℓ}, Ti satisfies the following properties.

(F1) V (Ti) ⊆ V (T0) ∪ V ′
1 ∪ . . . ∪ V ′

i ,

(F2) The number of leaves ti in Ti satisfies 2 ≤ ti ≤ max{2, 9
10 ti−1}, and

(F3) the leaves of Ti are contained in X1 ∪Xt.

To prove this, we use induction on i. For i = 0, note that (F1) and (F2) are vacuously true, and (F3) holds due to

the choice of the paths P1, . . . , Pr. Now, let us assume that there is a sequence of linear forests T0, . . . , Tj such that

Tj satisfies (F1)–(F3), and show that there is a linear forest Tj+1 satisfying (F1)–(F3).

If tj = 2, define Tj+1 = Tj ; it is then easy to check that Tj+1 satisfies (F1)–(F3). So we may assume that

tj > 2. Then, in fact, tj ≥ 4 as the number of leaves in a linear forest is always even. Now, let Y be a set

of leaves in Tj obtained by taking exactly one leaf from each path of Tj , so that |Y | = tj/2 ≥ 2. Note that

since Tj satisfies (F3), Y ⊆ X1 ∪ Xt. Thus, by the assumption that the conclusion of Claim 6.1.2 holds (with

V ′
j+1, X1 ∪ Xt, q3, 2q2 playing the roles of V,W, p1, p2, respectively), there is a collection P of at least

tj/2
10 =

tj
20

vertex-disjoint paths of length at most (log n)c+4 whose internal vertices are contained in V ′
j+1, and whose leaves

are contained in Y . Let Tj+1 be the linear forest obtained by adding the edges of the paths in P to Tj . Note that

since each path in P joins two different paths in Tj , it reduces the number of leaves in Tj by exactly 2, so we have
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tj+1 = tj − 2|P| ≤ max{2, tj − 2(tj/20)} = max{2, 9tj/10}, showing that Tj+1 satisfies (F2). Since the set of leaves

of Tj+1 is a subset of the set of leaves in Tj and Tj satisfies (F3), it follows that Tj+1 satisfies (F3). Finally, since

V (Tj+1) ⊆ V (Tj)∪ V ′
j+1 ⊆ V (T0)∪ V ′

1 ∪ . . .∪ V ′
j+1, Tj+1 satisfies (F1). This shows that there is a linear forest Tj+1

satisfying (F1)–(F3), as desired.

Hence, by repeatedly using (F2) for 1 ≤ i ≤ ℓ, we obtain that 2 ≤ tℓ ≤ max{2, ( 9
10 )

ℓ t0}. Since ℓ = 10 log n, we

have ( 9
10 )

ℓ t0 ≤ e−
ℓ
10 t0 ≤ e− logn n = 1. So tℓ = 2. Therefore, the linear forest Tℓ is actually a path. Moreover,

V (Tℓ) ⊆ V (T0) ∪ V ′
1 ∪ . . . ∪ V ′

ℓ ⊆ V ′ ∪X by (F1), and the leaves of Tℓ are contained in X1 ∪Xt by (F3). Finally,

|X − V (Tℓ)| ≤ |X −
⋃r

i=1 V (Pi)| ≤ 1
2 logn |X| since

⋃r
i=1 V (Pi) = V (T0) ⊆ V (Tℓ) and P1, . . . , Pr satisfy (P3). This

shows that Tℓ is a path P as required by the claim.

6.4 Finding an F -subdivision in H containing the nearly Hamilton path P

In this subsection we complete the proof of Lemma 6.1 by finding a subdivision of F that contains the nearly

Hamilton path P guaranteed by Claim 6.1.3 with high probability. In fact, we will find a copy of a subdivision of

the complete subgraph Kf with f := |V (F )| such that a path P ′ containing the nearly Hamilton path P is one of

the
(
f
2

)
paths defining this copy. This is indeed sufficient to prove Lemma 6.1 because F is contained in Kf and we

may assume that P ′ joins two vertices which are adjacent in F . To that end, we will need the following well-known

result.

Theorem 6.2 (Bollobás-Thomason [10], Komlós-Szemerédi [45]). Let p be a positive integer. Then every graph with

average degree at least 512p2 contains a subdivision of the complete graph Kp.

We are now ready to put everything together to complete the proof of Lemma 6.1.

Let V0 := V ′ ∪ V1 ∪ V2 be a random partition of V0 such that each v ∈ V0 is independently included in V ′ with
probability 1/2, in V1 with probability 1/4, and in V2 with probability 1/4. We claim that with probability at least

1− 22 logn
n the following five properties hold simultaneously.

(S1) For every v ∈ R, we have |NH(v) ∩R| ≥ q2d
5 .

(S2) |V0| ≤ 1.01q1n.

(S3) |R| ≤ 1.01q2n.

(S4) There is a path P in H such that V (P ) ⊆ V ′ ∪X, the leaves of P , denoted u1, u2, are contained in X1 ∪Xt,

and |X − V (P )| ≤ 1
2 logn |X| ≤ n

2 logn .

(S5) For every pair of distinct vertices u, v ⊆ X1 ∪Xt ∪R, there is a path in H joining the vertices u and v whose

internal vertices are in V1, and there is another path in H joining the vertices u and v whose internal vertices

are in V2.

Indeed, for (S1), recall that every vertex v ∈ V (H) is included in R with probability q2, and that δ(H) ≥ d(H)
2 ≥ d

4 .

Therefore, for any given vertex v ∈ R, we have E[|NH(v) ∩ R|] ≥ q2d
4 . Thus, (S1) holds with probability at least

1−exp
(
−Ω

(
(log n)2

))
, by the Chernoff bound and the union bound. Since each vertex v ∈ V (H) is included in in V0

with probability q1, and in R with probability q2, (S2) and (S3) hold with probability at least 1−exp
(
−Ω

(
(log n)2

))
,

by the Chernoff bound. Moreover, by Claim 6.1.3, (S4) holds with probability at least 1 − 21 logn
n . Finally, (S5)

holds with probability at least 1− 4
n , by applying Claim 6.1.2 twice (with k = 2 and Vi, X1 ∪Xt ∪R, q1

4 , 3q2 playing

the roles of V,W, p1, p2, respectively, for i ∈ [2]) using that 3q2 ≤ q1
400 and d ≥ 8(logn)10c+21

(3q2)10
. This shows that the

properties (S1)–(S5) hold simultaneously with probability at least at least 1− 22 logn
n , as desired.

To prove Lemma 6.1, we now condition on the properties (S1)–(S5) holding, and show how to find a subdivision of

F covering all but at most n
logn vertices of H.
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Let f denote the number of vertices of F . By (S1), the average degree of H[R] is at least q2d
5 ≥ d

(logn)3 ≥ 512d
(logn)4 .

Therefore, by Theorem 6.2, H[R] contains a subdivision K of the complete graph of order
√
d

(logn)2 ≥ f . In other

words, there are f vertices v1, . . . , vf ∈ V (K) ⊆ R, and
(
f
2

)
paths Pi,j in H[R], for 1 ≤ i < j ≤ f , such that Pi,j

joins vi and vj , and the interiors of the paths Pi,j are pairwise vertex-disjoint and disjoint of {v1, . . . , vf}.

Recall that, by (S4), there is a path P in H joining vertices u1, u2 ∈ X1 ∪ Xt such that V (P ) ⊆ V ′ ∪ X and

|X − V (P )| ≤ n
2 logn . Our plan is to replace the path P1,2 joining v1 and v2 in the subdivision K with a path that

contains P as a subpath. By (S5), we know that there is a path P ′
u1v1 in H joining the vertices u1 and v1 whose

internal vertices are in V1, and there is a path P ′
u2v2 in H joining the vertices u2 and v2 whose internal vertices are in

V2. Now let P ′
1,2 := P ∪P ′

u1v1 ∪P ′
u2v2 . Observe that P ′

1,2 is a path in H joining v1 and v2, and V (P ′
1,2)∩R = {v1, v2}

since V (P ) ⊆ V ′ ∪X by (S4). Hence, (V (P ′
1,2)− {v1, v2}) ∩ V (Pi,j) = ∅ for every 1 ≤ i < j ≤ f .

Let K ′ be the subgraph of H obtained by replacing the path P1,2 in the subdivision K with the path P ′
1,2 (see

Figure 2). Then K ′ is also a subdivision of the complete graph of order
√
d

(logn)2 ≥ f . It is easy to see that (using

that F is non-empty) by omitting some of the paths Pi,j if necessary, but keeping the path P ′
1,2, we can obtain a

subdivision F ′ of F , we have

|V (H)− V (F ′)| ≤ |V0|+ |X − V (P )|+ |R| ≤ 1.01q1n+
n

2 log n
+ 1.01q2n

=
1.01n

3 log n
+

n

2 log n
+

6 · 1.01n
(log n)3

≤ n

log n
,

(10)

where we used that the omitted paths are contained in R and (S2)–(S4) for the second inequality. This completes

the proof of Lemma 6.1.

7 Packing a regular graph with F -subdivisions

In this section we prove our main result (Theorem 1.2) by combining Lemma 4.1 and Lemma 6.1. The former lemma

shows that one can cover almost all vertices of any regular graph with sufficiently regular expanders, and the latter

lemma guarantees an almost-spanning F -subdivision within each of these expanders.

Proof of Theorem 1.2. Let G be a d-regular graph of order n with d ≥ (log n)130. First, we plan to apply

Lemma 4.1 to G. To that end, let α = 1
28 , C = 6, so that c = C(C−1)

C−28α−1 = 7.5 and C−28α−1 = 4. Let ε = (log n)−5

so that 0 < ε = (log n)−(C−1). Since G is d-regular, we have d(G) = d ≥ d(1 − ε) and ∆(G) ≤ d. Moreover, note

that C−28α−1
C−1 = 4

5 ≥ 1
2 , and C ≥ 28α + 3 = 4. Hence, by Lemma 4.1, there is a collection H of vertex-disjoint

subgraphs of G such that every H ∈ H is a ( 18 , c, sH)-expander satisfying d(H) ≥ d(1− εH) and δ(H) ≥ d(H)
2 , where

sH = d
4(log |V (H)|)c , and εH = (log |V (H)|)−4. Moreover,

∑
H∈H

|V (H)| ≥
(
1− (log log log n)2

(log log n)1/28

)
n. (11)

Let H ∈ H be an arbitrary member of the collection H. Since G is d-regular and H is a subgraph of G, we have

∆(H) ≤ d. Hence, by applying Lemma 6.1 to H with εH and sH playing the roles of ε and s, respectively, we obtain

a copy KH of an F -subdivision in H such that

|V (KH)| ≥
(
1− 1

log |V (H)|

)
|V (H)| ≥

(
1− 1

log d(H)

)
|V (H)|

≥
(
1− 1

log log n

)
|V (H)|.

(12)

Note that Lemma 6.1 is indeed applicable because d ≥ (log n)130 ≥ (log |V (H)|)10c+51. Now consider the collection
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{KH | H ∈ H} of vertex-disjoint copies of F -subdivisions in G. By (11) and (12), we have

∑
H∈H

|V (KH)| ≥
(
1− 1

log log n

)(
1− (log log log n)2

(log log n)1/28

)
n ≥

(
1− 1

(log log n)1/30

)
n.

Hence {KH | H ∈ H} is the desired TF-packing in G, covering all but at most n
(log logn)1/30

vertices of G. This

completes the proof of Theorem 1.2.

Remark. Note that the proof of Theorem 1.2 actually shows that it suffices for a graph to be nearly regular (rather

than regular) to find a TF-packing covering almost all of its vertices. More precisely, it shows that any graph G

such that d(G) ≥ d(1 − 1
(logn)5 ), ∆(G) ≤ d and d ≥ (log n)130 contains a TF-packing which covers all but at most

n
(log logn)1/30

vertices of G.

8 Applications

In this section, we present two applications of our methods to other problems, each described in a separate short

subsection as follows. Both applications rely on the fact that every sufficiently regular expander with large enough

average degree contains a nearly Hamilton cycle – a simple consequence of our methods (obtained by letting F be

a triangle in Lemma 6.1).

8.1 Cycle partitions of regular graphs

Our first application concerns the well-known conjecture of Magnant and Martin [63], asserting that every d-regular

graph contains a collection of at most n
d+1 pairwise vertex-disjoint paths that cover all vertices. We establish an

asymptotic version of this conjecture in a stronger form for sufficiently large d, allowing for o(n) uncovered vertices

but covering the vertices with cycles instead of paths.

Theorem 8.1. Let G be a d-regular graph of order n, where n is large enough and d ≥ (log n)130. Then there is a

collection of at most n
d+1 vertex-disjoint cycles covering all but at most O

(
n

(log logn)1/30

)
vertices of G.

Recently, Montgomery, Müyesser, Pokrovskiy and Sudakov [65] proved a similar result to Theorem 8.1. Their result

is stronger than Theorem 8.1 in that it does not impose a lower bound on d, but it yields a slightly weaker conclusion,

giving a collection of paths rather than cycles.

Proof of Theorem 8.1. Write C := 6 and c := C(C−1)
C−2 = 7.5. We apply Lemma 4.1 to the graphG with parameters

α = 1
28 , ε = 0, n, d, C and c. Let H be the resulting collection of expanders guaranteed by the lemma, so that

every H ∈ H is a ( 18 , c, sH)-expander satisfying d(H) ≥ (1 − εH)d and δ(H) ≥ d(H)/2, where sH := d
4(log |V (H)|)c

and εH := (log |V (H)|)−(C−2) = (log |V (H)|)−4, and, moreover,
∑

H∈H |V (H)| ≥ (1 − (log log logn)2

(log logn)1/28
)n. Note that

d ≥ (log n)130 ≥ (log |V (H)|)10c+51.

Next, we apply Lemma 6.1 to each H ∈ H, with c, εH , d, sH , and |V (H)| taking the roles of c, ε, d, s, and

n, respectively (noting that these parameters satisfy the lemma’s requirements), and with F being a triangle.

For each H ∈ H, this yields a cycle CH in H that covers all but at most |V (H)|
log |V (H)| vertices of H, meaning that

|CH | ≥ (1 − 1
log |V (H)| )|V (H)|. Since |V (H)| ≥ d(H) ≥ (1 − εH)d = (1 − 1

(log |V (H)|)4 )d, this implies that |CH | ≥
(1 − 1

log |V (H)| −
1

(log |V (H)|)4 )d ≥ (1 − 1
log logn )d (where in the last inequality we used that log |V (H)| ≥ log(d/2) ≥

2 log log n). Then, C := {CH : H ∈ H} is a collection of vertex-disjoint cycles of length at least (1 − 1
log logn )d,
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covering all but at most O
(

n
(log logn)1/30

)
vertices of G as shown by the following.

∑
H∈H

|V (H)|
log |V (H)|

+

(
n−

∑
H∈H

|V (H)|

)
≤
∑
H∈H

|V (H)|
log log n

+
n(log log log n)2

(log log n)1/28

≤ n

(
1

log log n
+

(log log log n)2

(log log n)1/28

)
= O

(
n

(log log n)1/30

)
.

(13)

Let C′ ⊆ C be a subcollection of cycles consisting of min{ n
d+1 , |C|} cycles in C. We claim that C′ covers all but

O( n
(log logn)1/30

) vertices in G. Indeed, this is clear from the choice of C and (13) if |C′| = |C| (i.e. if C′ = C).
Otherwise, C′ is a collection of n

d+1 vertex-disjoint cycles of length at least (1− 1
log logn )d, implying that the cycles

in C′ cover at least (1− 1
log logn )d ·

n
d+1 ≥ (1− 2

log logn )n = n−O( n
log logn ) vertices of G, as desired.

8.2 Cycles with many chords

Our next application is about finding a cycle with many chords, addressing an old question of Chen, Erdős and

Staton [16].

Corollary 8.2. If n is sufficiently large, then every n-vertex graph with at least n(log n)130 edges contains a cycle

C with at least |C| chords.

This gives a different proof of a recent result of Draganić, Methuku, Munhá Correia, and Sudakov [22], who proved

this result with a smaller polylogarithmic factor. Specifically, they showed that cn(log n)8 edges are sufficient to

find a cycle C with at least |C| chords.

We now prove Corollary 8.2 by combining Corollary 4.2, which shows the existence of a nearly regular expander in

a graph with sufficiently large average degree, with Lemma 6.1, which finds a nearly Hamilton cycle within such an

expander.

Proof of Corollary 8.2. Let G be an n-vertex graph with at least n(log n)130 edges. Applying Corollary 4.2,

with C = 6 and d = (log n)126, we obtain a subgraph H ⊆ G which is a ( 18 , c, s)-expander satisfying ∆(H) ≤ d,

d(H) ≥ (1− µ)d and δ(H) ≥ d(H)/2, where c = 7.5, s := d
4(logm)c , µ = (logm)−4, and m := |V (H)|.

Applying Lemma 6.1 to H with K3 playing the role of F , we obtain a cycle C in H such that

|V (H)− V (C)| ≤ m

logm
.

(Note that Lemma 6.1 is indeed applicable here because d = (log n)126 = (log n)10c+51 ≥ (logm)10c+51.) Hence,

at most dm
logm edges of H are incident to vertices of H not contained in C. This implies that the number of edges

spanned by C is at least
d(1− µ)m

2
− dm

logm
≥ dm

4
≥ 2|C|.

(Here, we rely on the fact that m is large, which follows from m ≥ d(H) ≥ (1 − µ)d = Ω((log n)126) and the

assumption that n is sufficiently large.) This shows that C is a cycle with at least |C| chords, completing the proof

of Corollary 8.2.
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