
Packing subgraphs in regular graphs

Shoham Letzter∗ Abhishek Methuku† Benny Sudakov‡

Abstract

An H-packing in a graph G is a collection of pairwise vertex-disjoint copies of H in G. We prove that for every

c > 0 and every bipartite graph H, any ⌊cn⌋-regular graph G admits an H-packing that covers all but a constant

number of vertices. This resolves a problem posed by Kühn and Osthus in 2005. Moreover, our result is essentially

tight: the conclusion fails if G is not both regular and sufficiently dense, it is in general not possible to guarantee

covering all vertices of G by an H-packing, and if H is non-bipartite then G need not contain any copies of H.

We also prove that for all c > 0, integers t ≥ 2, and sufficiently large n, all the vertices of every ⌊cn⌋-regular
graph can be covered by vertex-disjoint subdivisions of Kt. This resolves another problem of Kühn and Osthus

from 2005, which goes back to a conjecture of Verstraëte from 2002.

Our proofs combine novel methods for balancing expanders and super-regular subgraphs with a number of

powerful techniques including properties of robust expanders, regularity lemma, and blow-up lemma.

1 Introduction

Given two graphs H and G, an H-packing (or an H-tiling) in G is a collection of pairwise vertex-disjoint copies of

H in G. An H-packing in G is called perfect if it covers all the vertices of G. Note that when H consists of a single

edge, an H-packing is a graph matching. Tutte’s theorem characterizes those graphs which have a perfect H-packing

if H is an edge, but no such characterisation is known for other connected graphs H. In fact, it is known [19] that

the decision problem of whether a graph G has a perfect H-packing is NP-complete if and only if H has a component

which contains at least three vertices. So it is natural to seek simple sufficient conditions that guarantee the existence

of a perfect H-packing in a given graph.

A fundamental result in this area is the Hajnal–Szemerédi theorem [13] from 1970 which states that every graph whose

order n is divisible by t and whose minimum degree is at least (1− 1
t )n contains a perfect Kt-packing. For arbitrary

graphs, Komlós, Sárközy and Szemerédi [22] showed that for every graph H, there exists a constant C = C(H) such

that every graph G whose order n is divisible by |V (H)| and whose minimum degree is at least (1 − 1
χ(H) )n + C

contains a perfect H-packing. It turns out that there are graphs H for which the bound on the minimum degree

can be improved significantly i.e., one can often replace χ(H) by a smaller parameter called the critical chromatic

number χcr(H) of H, which is defined as χcr(H) := (χ(H) − 1) |H|
|H|−σ(H) . Here σ(H) denotes the minimum size of

the smallest colour class in an optimal colouring of H. It is easy to see that χ(H) − 1 < χcr(H) ≤ χ(H). In 2000,

Komlós [20] showed that the critical chromatic number is the parameter that governs the existence of almost perfect

packings in graphs of large minimum degree. Finally, in 2009, Kühn and Osthus [32] determined, up to an additive

constant, the minimum degree of a graph G that ensures the existence of a perfect H-packing in G, for every graph

H. More precisely, they proved that for every graph H, either its critical chromatic number or its chromatic number

is the parameter which governs the existence of perfect H-packings in graphs of large minimum degree (where the

exact classification depends on a parameter called the highest common factor of H).
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1.1 H-packings in dense regular graphs

In view of the above results, rather surprisingly, Kühn and Osthus [31] showed that if we restrict our attention to

packings in regular graphs, then any linear bound on the degree guarantees an almost perfect H-packing.

Theorem 1.1 (Kühn and Osthus [31]). For every bipartite graph H and every 0 < c, α ≤ 1, there exists n0 =

n0(H, c, α) such that every d-regular graph G of order n, where d ≥ cn and n ≥ n0, has an H-packing that covers all

but at most αn vertices of G.

It is easy to see that the restriction to (sufficiently) regular graphs G in Theorem 1.1 is necessary. Indeed, if G is, say,

a complete bipartite graph Kn/4,3n/4 and H is an edge, then it is clearly impossible to find an H-packing covering

almost all the vertices of G. The restriction to bipartite graphs H in Theorem 1.1 is also necessary because if c ≤ 1/2,

then G could be a bipartite graph (in which case it cannot contain any subgraph H which is non-bipartite).

This raises the natural question of whether the bound αn on the number of uncovered vertices in Theorem 1.1 can be

lowered significantly to obtain an H-packing which is close to being perfect. Indeed, Kühn and Osthus [31] proposed

the following general problem in 2005.

Problem 1.2 (Kühn and Osthus [31]). Is it true that, for every bipartite graph H and every 0 < c ≤ 1, there is a

constant C = C(H, c) such that every d-regular graph G of order n, where d ≥ cn, has an H-packing that covers all

but at most C vertices of G?

Kühn and Osthus [31] resolved Problem 1.2 in the special case when the parts of H have unequal sizes. More precisely,

they showed the following.

Theorem 1.3 (Kühn and Osthus [31]). For every bipartite graph H whose vertex classes have different size and for

every 0 < c ≤ 1, there is a constant C = C(H, c) such that every d-regular graph G of order n, where d ≥ cn, has an

H-packing which covers all but at most C vertices of G.

Despite extensive research on graph packings, this problem (Problem 1.2) remained open for nearly twenty years.

Our main result is a complete resolution of Problem 1.2 as follows.

Theorem 1.4. For every bipartite graph H and every 0 < c ≤ 1, there is a constant C = C(H, c) such that every

d-regular graph G of order n, where d ≥ cn, has an H-packing that covers all but at most C vertices of G.

As noted in [31], it is necessary to allow for uncovered vertices in Theorem 1.4, and the upper bound C on the number

of uncovered vertices must depend on c and H (even if n is divisible by |V (H)|), in sharp contrast to the result of

Komlós, Sárközy and Szemerédi [22] mentioned earlier. Indeed, for instance, if G is the vertex-disjoint union of cliques

of order k|V (H)| − 1 = d + 1 (for some positive integer k), then G is d-regular, and it is easy to see that we must

have at least (|V (H)| − 1) · n
d+1 uncovered vertices in any H-packing of G. Moreover, this example also shows that d

must be linear in n in order for the number of uncovered vertices to be bounded by a constant C, so the requirement

that the vertex degrees of G are linear in n in Theorem 1.4 is also necessary.

It is easy to reduce Theorem 1.4 to the special case when H is a complete bipartite graph Kt,t. This follows, for

example, from the fact that any bipartite graph H can be perfectly packed into the complete bipartite graph K|H|,|H|.

To prove Theorem 1.4 when H = Kt,t, we start by partitioning the vertex set of our dense regular graph G into a

small number of expanders using a structural decomposition result from the work of Gruslys and Letzter [11], which

goes back to the work of Kühn, Lo, Osthus and Staden [27, 28] on Hamilton cycles in dense regular graphs. These

expanders are, in turn, closely related to a powerful notion called robust expanders that was introduced by Kühn,

Osthus and Treglown [34] and has since been used to prove several longstanding conjectures (see, e.g., [29, 30, 33]).

One of the key contributions of our paper is a novel method for ‘balancing’ these expanders. This method enables us

to obtain expanders that are either balanced bipartite or far from bipartite by removing a carefully constructed, small

Kt,t-packing. Our main idea is to track a certain subgraph, which initially consists of the edges between expanders.

We then sequentially move vertices between expanders and update the subgraph accordingly, ensuring that by the

end, it has bounded maximum degree while still containing enough edges to construct a Kt,t-packing that balances

2



the expanders (up to an additive constant, which is sufficient for our purposes). Note that while balancing expanders

also plays a key role in [27, 28]—in resolving a problem of Bollobás and Häggkvist on Hamilton cycles in regular

graphs—and in [11], which proves a conjecture of Magnant and Martin [39] for dense graphs, our approach differs

significantly from the methods used in these works, so it is of independent interest. See Section 2.1 for further details

on our balancing procedure.

After balancing the expanders, the original problem reduces to finding an almost perfect Kt,t-packing either in a

balanced bipartite expander or in an expander that is far from bipartite. To address the latter case, our first goal is

to apply the regularity lemma to obtain vertex-disjoint super-regular pairs covering all but a small set of exceptional

vertices. For this, rather than directly seeking a perfect matching in the reduced graph, we exploit the Hamiltonicity

of expanders to find a perfect fractional matching (inspired by [16, 17, 25]). This fractional matching is used to

construct a collection of edges and odd cycles covering all vertices of the reduced graph. We then refine the clusters

by splitting them each into two equal parts and then remove a small number of vertices from the new clusters to

obtain vertex-disjoint super-regular pairs covering all but a small exceptional set of vertices, as required.

Second, we cover the exceptional vertices with a Kt,t-packing, while also ensuring that none of the super-regular

pairs are overused. Third, we construct another small Kt,t-packing, whose purpose is to ensure that the number of

remaining vertices in each part of every super-regular pair is divisible by t. Ideally, at this point, one could attempt

to complete the proof by applying the blow-up lemma to find a perfect Kt,t-packing covering the uncovered portion

of each super-regular pair. However, this is not immediately feasible because the number of remaining vertices in

the two parts of a super-regular pair may differ. To address this, we introduce another novel balancing strategy:

we construct a suitable matching within a small subgraph induced by the uncovered vertices, once again exploiting

the Hamiltonicity of expanders. This matching serves as a ‘template’ for constructing a carefully designed balancing

Kt,t-packing, whose removal allows us to find a perfect Kt,t-packing covering all remaining vertices using the blow-up

lemma, as intended. We give a detailed sketch of this balancing strategy in Section 2.2, and a more detailed outline

of our methods in Section 2.

1.2 Packing subdivisions in dense regular graphs

Given a graph F , a subdivision of F , denoted by TF, is a graph obtained by replacing the edges of F with pairwise

internally vertex-disjoint paths between the corresponding ends, whose interiors avoid the vertices of F . In this case,

we refer to the vertices of F as the branch vertices of TF. For instance, a subdivision TKt of the complete graph of

order t consists of t (branch) vertices {v1, . . . , vt} and
(
t
2

)
pairwise internally vertex-disjoint paths Pi,j , 1 ≤ i < j ≤ t,

such that Pi,j joins vi and vj and avoids all other vertices in {v1, . . . , vt}.

The notion of subdivisions has played an important role in topological graph theory since the seminal result of

Kuratowski [35] from 1930 showing that a graph is planar if and only if it does not contain a subdivision of K5 or

K3,3. One of the most classical results in this area is due to Mader [38], who showed that there is some d = d(t)

such that every graph with average degree at least d contains a subdivision of the complete graph Kt. Mader [38],

and independently Erdős and Hajnal [9] conjectured that d(t) = O(t2). In the 1990s, Komlós and Szemerédi [23,

24], and independently, Bollobás and Thomason [4] confirmed this conjecture. Since then, various extensions and

strengthenings of this result have been studied, see, e.g., [10, 37, 40].

Given graphs F and G, a TF-packing in G is a collection of pairwise vertex-disjoint copies of subdivisions of F in G

(which are not required to be isomorphic). In 2002, Verstraëte [44] made the following conjecture.

Conjecture 1.5 (Verstraëte [44]). For every graph F and every η > 0, there exists d0 = d0(F, η) such that, for all

integers d ≥ d0, every d-regular graph G of order n contains a TF-packing which covers all but at most ηn vertices of

G.

Quite a lot of research has established Conjecture 1.5 in several natural special cases. A result of Kelmans, Mubayi

and Sudakov [18] proved the conjecture when F is a tree, and in 2003, Alon [1] proved it when F is a cycle. In

2005, Kühn and Osthus [31] observed that when G is dense (i.e., d = Ω(n)) the conjecture follows from their results

on packings in dense regular graphs. Making significant progress towards the general case, Letzter, Methuku and
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Sudakov [36] applied their work on nearly-Hamilton cycles in sublinear expanders to show that the conjecture holds

for all graphs F when G has degree at least polylogarithmic in n. Finally, very recently, Montgomery, Petrova,

Ranganathan and Tan [42] resolved the conjecture in full.

For subdivisions of complete graphs Kt, Kühn and Osthus [31] went even further and showed that one can actually

guarantee perfect packings in dense regular graphs for t = 4 and t = 5. More precisely, they showed that for every

0 < c ≤ 1, there is a positive number n0 = n0(c) such that every d-regular graph G of order n, with d ≥ cn and

n ≥ n0, has a perfect TKt-packing for t = 4 and t = 5. By a result of Gruslys and Letzter [11], this also holds for

t = 2 and t = 3.

In 2005, Kühn and Osthus asked whether the same holds for t ≥ 6.

Problem 1.6 (Kühn and Osthus [31]). Given t ≥ 6 and 0 < c ≤ 1, does every d-regular graph G of order n, where

d ≥ cn and n is sufficiently large, have a perfect TKt-packing?

Kühn and Osthus’s result [31] actually guarantees a perfect TKt-packing, with t ∈ {4, 5}, even when G is only assumed

to be almost regular. In contrast, for t = 3 or t ≥ 6, the restriction to regular graphs G in Problem 1.6 is necessary.

Indeed, it is easy to see that the complete bipartite graph Km,m+1 does not have a perfect TKt-packing if t = 3 (note

that in this case a TK3-packing corresponds to a cycle partition, i.e., a collection of pairwise vertex-disjoint cycles

covering all vertices). Interestingly, Kühn and Osthus showed that Km,m+1 also does not have a perfect TKt-packing

if t ≥ 6 (see Proposition 5.1 in [31]).

Our second result is the complete resolution of Problem 1.6. In fact, we prove a stronger result, showing that there

is a perfect TF-packing, for every graph F .

Theorem 1.7. For every graph F and 0 < c ≤ 1, there is a positive number n0 = n0(c) such that every d-regular

graph G of order n, where d ≥ cn and n ≥ n0, has a perfect TF-packing.

It is unclear whether the requirement that the vertex degrees in G are linear in n in Theorem 1.7 is necessary. In this

direction, Kühn and Osthus [31] gave an example showing that for all t ≥ 3 the vertex degrees in G must be at least√
n/2 to guarantee a perfect TKt-packing in G, even if G is regular. Interestingly, the case t = 2 is different. It is a

simple exercise to show that every d-regular graph admits a perfect TK2-packing, i.e., its vertex set can be partitioned

into vertex-disjoint paths of positive length. (In fact, if d is even, then by Petersen’s 2-factor theorem [43] it also

admits a perfect TK3-packing.) It is therefore natural to ask how few paths are required to achieve such a partition.

In this direction, Magnant and Martin [39] conjectured that the vertices of every d-regular graph on n vertices can be

covered by at most n/(d + 1) pairwise vertex-disjoint paths. This conjecture of Magnant and Martin was confirmed

for d ≤ 5 by Magnant and Martin themselves and for dense graphs G by Gruslys and Letzter [11]. Montgomery,

Müyesser, Pokrovskiy and Sudakov [41] showed that almost all vertices of every n-vertex d-regular graph can be

covered by at most n/(d + 1) vertex-disjoint paths. Very recently, Christoph, Draganić, Girão, Hurley, Michel and

Müyesser [6] proved that every d-regular graph can be covered by at most 2n/(d + 1) vertex-disjoint paths, thereby

proving the Magnant–Martin conjecture up to a constant factor and confirming a conjecture of Feige and Fuchs (see

also [5]).

To prove Theorem 1.7, we begin by partitioning the vertex set of the dense regular graph G into a small number of

expanders, following the approach used in the proof of Theorem 1.4. In this setting, however, we employ a lemma

from [11] that provides a small linear forest H that balances the expanders, ensuring that each expander contains

either zero or two leaves of H. We then modify this linear forest so that at most one component of the new linear

forest is associated with each expander, with both leaves of the component contained within that expander. Next,

we construct a pair of small, vertex-disjoint F -subdivisions in each expander, while also ensuring that their union

remains balanced. Finally, we absorb the components of H, along with any remaining uncovered vertices in each

expander, into these F -subdivisions. This absorption step again relies on the Hamiltonicity of expanders and a robust

connectivity property, which guarantees that any two vertices can be joined by a short path that avoids a small set

of forbidden vertices. See Section 7 for a more detailed sketch of these ideas.
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1.3 Organisation of the paper

In the next subsection, we present the notation used throughout the paper. In Section 2, we outline a detailed proof

sketch of our main result, Theorem 1.4, on almost perfect packings in dense regular graphs. In Section 3 we collect

some tools and lemmas that are used throughout the paper. Key to our proof of Theorem 1.4 are two lemmas –

Lemma 4.1 (for balancing expanders) and Lemma 5.1 (for packing Kt,t’s in expanders). We prove Lemma 4.1 in

Section 4 and Lemma 5.1 in Section 5, and complete the proof of Theorem 1.4 in Section 6. In Section 7, we prove

our second result, Theorem 1.7, which addresses perfect packings of subdivisions in dense regular graphs. A detailed

sketch of its proof is given at the beginning of Section 7.

1.4 Notation

Let [m] denote the set {1, . . . ,m}. We write c = a ± b if a − b ≤ c ≤ a + b. We use the ‘≪’ notation to state many

of our results. We write a ≪ b to mean that there exists a non-decreasing function f : (0, 1] 7→ (0, 1] such that the

subsequent result holds for all a, b ∈ (0, 1] with a ≤ f(b). We will not calculate these functions explicitly. Hierarchies

with more constants are defined in a similar way and are to be read from right to left.

For a graph G, let e(G) denote the number of edges in G and, for two sets X,Y ⊆ V (G), we let G[X,Y ] denote the

subgraph of G with the vertex set X ∪ Y , whose edges are the edges of G with one end in X and the other end in

Y , and we let eG(X,Y ) denote the number of edges in G[X,Y ]. If X = Y , for convenience, we write G[X] instead

of G[X,X], and eG(X) instead of eG(X,X). The maximum degree of a graph G is denoted by ∆(G). For a vertex

v ∈ V (G), let NG(v) denote the set of neighbours of v in G. For a set S ⊆ V (G) and v ∈ V (G), let dG(v, S) denote the

number of edges in G between v and S. If the host graph is clear from the context, sometimes we drop the subscript

and write e(X,Y ), e(X), d(v, S), N(v) instead of eG(X,Y ), eG(X), dG(v, S), NG(v) respectively. For a set U ⊆ V (G),

let U denote the set V (G)− U , and let G− U denote the subgraph of G induced by V (G)− U .

For a graph G, a cut of G is a partition {X,Y } of V (G), where X and Y are both non-empty. We say that a cut

{X,Y } is α-sparse if eG(X,Y ) ≤ α|X||Y |. If G is an n-vertex graph, we say that G is α-almost-bipartite if there

exists a partition {X,Y } of V (G) such that G has at most αn2 edges that are not in G[X,Y ]. Otherwise we say that

G is α-far-from-bipartite.

For a graph G and vertices x, y in G, an (x, y)-path in G is a path with ends x and y. If P is an (x, y)-path and Q is

a (y, z)-path, we denote by xPyQz the concatenation of the paths P and Q.

Using a slight abuse of notation, for a collection K of subgraphs in a graph G, we denote the set of vertices covered

by these subgraphs as V (K). Throughout this paper, we often omit floor and ceiling signs when dealing with large

numbers, whenever they are not crucial.

2 Sketch of the proof of Theorem 1.4

In this section, we present a sketch of the proof of our main result, Theorem 1.4. At a high level, our approach begins

by partitioning the vertex set of the regular graph G into subsets with certain expansion properties, which we refer to

as expanders. We then move some vertices between these expanders and remove a carefully constructed collection of

Kt,t’s to ‘balance’ these expanders, using our first key lemma (Lemma 4.1). Next, we find almost perfect Kt,t-packings

in each of the resulting expanders with the help of our second key lemma (Lemma 5.1). However, several significant

challenges arise in implementing this approach, which we now address in detail.

Let H be a bipartite graph, and let 0 < c ≤ 1. Let G be a d-regular graph of order n, where d ≥ cn. Let t = |V (H)|.
Recall that Theorem 1.4 aims to find an H-packing that covers all but at most a constant number of vertices. It is

easy to see that in order to find such a packing, it suffices to find a Kt,t-packing in G covering all but at most C

vertices of G for some constant C = C(t, c) because Kt,t has a perfect H-packing.

Our proof begins by partitioning the vertex set of the regular graph G into a small number of subsets Z1, . . . , Zr such

that each induced subgraph G[Zi], for i ∈ [r], has strong expansion properties, and the number of edges between

different sets Zi is small. (See Lemma 3.2 for the precise statement.)
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2.1 Balancing the expanders

Given the partition {Z1, . . . , Zr} of the vertices of G, a natural strategy for obtaining an almost perfect Kt,t-packing

in G is to find an almost perfect Kt,t-packing in each of the expanders G[Zi]. However, it is possible that some of

these expanders are rather imbalanced bipartite graphs, rendering this plan impossible. To overcome this obstacle, in

our first key lemma (Lemma 4.1), we modify the sets Zi, and remove a small collection of vertex-disjoint Kt,t-copies

and a very small number of additional vertices, so that the remainder of each modified set Zi spans an expander

which is either close to a balanced bipartite graph, or is far from being bipartite.

If the graph consisting of edges between expanders has small maximum degree, then it is relatively easy to realise

this plan. Indeed, one can iteratively find vertex-disjoint Kt,t-copies in G between pairs of expanders, so that the

number of Kt,t’s between a given pair of expanders is proportional to the number of edges between them, using an

unbalanced variant of the Kővári–Sós–Turán theorem. Removing these Kt,t-copies results in expanders that are either

close enough to being balanced bipartite, or are far from being bipartite. Of course, it is possible that the maximum

degree of edges between expanders is large, even after moving some vertices between expanders. Nevertheless, we

emulate the small minimum degree situation as follows. We initially set H to be the subgraph of edges with ends

in distinct sets Zi, i ∈ [r], and then follow a carefully designed procedure (see Section 4.1) that moves vertices of

high degree between expanders, and modifies H so as to satisfy certain invariants. After performing this procedure,

H ‘essentially’ has small maximum degree1. Moreover, the invariants guarantee that only few vertices are moved

throughout the procedure (which is essential for showing that the modified expanders are, indeed, expanders) and

that H still has enough edges to construct a suitable Kt,t-packing, as described (vaguely) at the beginning of this

paragraph.

Balancing expanders (in a different context) was also a key step in the proofs of Kühn, Lo, Osthus and Staden in [27, 28]

and of Gruslys and Letzter in [11]. However, the method we develop here to construct a balanced Kt,t-packing differs

significantly from these previous approaches, so it is of independent interest.

2.2 Packing Kt,t’s in expanders

Balancing the expanders (using Lemma 4.1) reduces the original problem to the problem of finding an almost perfect

Kt,t-packing (covering all but a constant number of vertices) in an expander G that is either bipartite and balanced

or far from bipartite. We address this reduced problem in our second key lemma, Lemma 5.1, where we construct a

perfect Kt,t-packing under the assumption that the number of vertices is divisible by 2t, using the following approach.

First, we apply the regularity lemma (Lemma 3.5) to G to obtain vertex-disjoint clusters Vi, i ∈ [m], covering all

but a small number of exceptional vertices in G, and a subgraph G′ with vertex set V1 ∪ . . . ∪ Vm. We will then

find vertex-disjoint super-regular subgraphs G′[U2i−1, U2i], i ∈ [m], covering almost all vertices in V1 ∪ . . .∪ Vm, such

that the sets U1, . . . , U2m have the same size; for this, we reply on the Hamiltonicity of expanders to find a perfect

fractional matching in the reduced graph (we explain this in more detail in the next paragraph). Next, we find three

vertex-disjoint collections K1, K2, K3 of vertex-disjoint Kt,t-copies in G such that K1 covers all vertices outside of

U1 ∪ . . . ∪ U2m while using very few vertices from each set Ui, i ∈ [2m]; K2 is very small and is chosen so that the

number of vertices in Ui, i ∈ [2m], not covered by K1 or K2 is divisible by t; and K3 is chosen so that the number of

vertices in Ui that are uncovered by K1 ∪K2 ∪K3 is the same for all i ∈ [2m]. We then apply the blow-up lemma to

find a perfect Kt,t-packing in each super-regular graph G′[U ′
2i−1, U

′
2i], i ∈ [m], where U ′

i denotes the set of uncovered

vertices in Ui. These latter Kt,t-packings, together with K1 ∪ K2 ∪ K3, form the desired perfect Kt,t-packing in G.

For the construction of the sets U1, . . . , U2m, we consider the ‘reduced graph’ Γ whose vertices are V1, . . . , Vm, where Vi

is adjacent to Vj if and only if G′[Vi, Vj ] is ε-regular with large enough density. We will first find a ‘perfect 2-matching’

in Γ, that is, a collection of vertex-disjoint edges and cycles covering the vertices of Γ. This perfect 2-matching then

corresponds to a perfect matching in the ‘lift’ of Γ, so if we partition each cluster Vi into two sets of equal size, then

we obtain a perfect matching in the reduced graph whose vertices are these new clusters. Finally, by moving a small

number of vertices from the new clusters into the exceptional set, we obtain the desired vertex-disjoint super-regular

pairs G′[U2i−1, U2i] for i ∈ [m], covering all but a small fraction of the vertices in V1 ∪ · · · ∪ Vm.

1More precisely, the subgraph of H consisting of edges between any two distinct expanders either has small maximum degree, or it has
very few edges. In particular, the number of large degree vertices in H is at most a constant.
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To find a perfect 2-matching in the reduced graph Γ, it suffices to find a perfect fractional matching (see, e.g.,

Fact 5.4 and its proof). Since G′[V1 ∪ · · · ∪ Vm] is an almost regular expander, this in turn follows from the fact

that almost regular expanders are Hamiltonian (provided they are far from bipartite, or are balanced and bipartite).

The Hamiltonicity of almost regular expanders has many applications; see, for example, [11, 27, 28], and it follows

from the work of Kühn, Osthus, and Treglown [34] on robust expanders. The idea of seeking perfect 2-matchings in

reduced graphs was used previously in, e.g., [16, 17, 25].

One of the main novelties in our proof of the key lemma, Lemma 5.1, is in the construction of the collection K3 of

vertex-disjoint Kt,t-copies in G for ‘balancing’ the number of uncovered vertices in the sets Ui. Our strategy here is to

construct a suitable matching in G and use it as a template to construct the collection K3. More precisely, we consider

a random subgraph H (with vertex set disjoint from V (K1 ∪K2)) such that |V (H)∩Ui| = |Ui|
2t for every i ∈ [2m] and

show that H ‘inherits’ the expansion properties of G. This implies that H is robustly matchable, i.e. that there is a

perfect matching in H even after the removal of any small set of vertices (where the set we remove must balance the

two parts of H if it is bipartite). In particular, if S is a set of vertices in H such that |S ∩ Ui| = |V (K1∪K2)∩Ui|
t for

every i ∈ [2m], then H−S has a perfect matchingM. We now useM as a template to construct the collection K3 of

Kt,t’s, by picking, for every distinct i, j ∈ [2m], as many Kt,t’s between Ui and Uj as there are edges of M between

Ui and Uj . This ensures that, for every i ∈ [2m],

|V (K3) ∩ Ui| = t · |(V (H)− S) ∩ Ui| = t ·
(
|Ui|
2t
− |V (K1 ∪ K2) ∩ Ui|

t

)
=
|Ui|
2
− |V (K1 ∪ K2) ∩ Ui|,

since there are |(V (H)−S)∩Ui| edges inM that are incident to the vertices of Ui. Hence, taking U ′
i := Ui−V (K1 ∪

K2 ∪ K3), we have

|U ′
i | = |Ui| − |V (K1 ∪ K2) ∩ Ui| − |V (K3) ∩ Ui| =

|Ui|
2

,

showing that the sets U ′
i with i ∈ [2m] all have the same size. Now, we can indeed find a perfect Kt,t-packing in each

super-regular graph G′[U ′
2i−1, U

′
2i] using the blow-up lemma. As discussed earlier, these Kt,t-packings together with

K1 ∪ K2 ∪ K3 yield the desired perfect Kt,t-packing in G.

3 Useful lemmas and tools

3.1 Concentration inequality

We need the following concentration inequality for the hypergeometric distribution. Let m,n,N ∈ N such that

max{m,n} < N . Recall that a random variable X has hypergeometric distribution with parameters N,n,m if

X := |S ∩ [m]|, where S is a random subset of [N ] of size n.

Lemma 3.1 (Theorem 2.10 in [14]). Let X ∼ Hypergeo(N,m, n) be a hypergeometric random variable with mean

E[X] = nm/N . Then for all 0 ≤ ε ≤ 3/2, we have

P
(
|X − E[X]| ≥ εE[X]

)
≤ 2e−ε2E[X]/3.

3.2 Expanders in dense regular graphs

We will use the following structural result (Lemma 3.2) due to Gruslys and Letzter [11], which goes back to the work

of Kühn, Lo, Osthus, and Staden [27, 28]. This result serves as the first step in the proofs of both Theorem 1.4 and

Theorem 1.7. It shows that the vertices of a dense regular graph G can be partitioned into a small number of sets

such that the subgraphs induced by these sets exhibit strong expansion properties and have a large minimum degree.

Throughout the remainder of the paper, we refer to these subgraphs as expanders. The notion of expansion used

here is characterized by the absence of sparse cuts. Specifically, a graph G has no ζ-sparse cuts if, for every partition

{X,Y } of V (G), the number of edges between X and Y is at least ζ|X||Y |. This notion of expansion was first

introduced (using different terminology and with ζ as a function of n) in a paper by Conlon, Fox, and Sudakov [7].
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We will distinguish between expanders that are close to bipartite and those that are far from bipartite. Recall that a

graph G on n vertices is said to be γ-almost-bipartite if one can make G bipartite by removing up to γn2 edges, and

otherwise, G is called γ-far-from-bipartite.

Lemma 3.2 (Lemma 2.1 from [11]). Let c ∈ (0, 1) and n0 ∈ N satisfy 1/n0 ≪ c. Let G be a d-regular graph

on n vertices, where n ≥ n0 and d ≥ cn. Then, there exist positive numbers r ≤ ⌈1/c⌉ and η, β, γ, ζ, δ, where

1/n0 ≪ η ≪ β ≪ γ ≪ ζ ≪ δ ≪ c, and a partition {Z1, . . . , Zr} of V (G) that satisfies the following properties.

(E1) G has at most ηn2 edges with ends in distinct Zi’s.

(E2) G[Zi] has minimum degree at least δn, for i ∈ [r].

(E3) G[Zi] has no ζ-sparse cuts, for i ∈ [r].

(E4) G[Zi] is either β-almost-bipartite or γ-far-from-bipartite, for i ∈ [r].

The following lemma is used multiple times throughout the paper. Its proof is very similar to that of Lemma 2.2

in [11], and relies on results concerning Hamiltonicity of robust expanders, due to Kühn, Osthus and Treglown [34].

The lemma shows that expanders far from being bipartite are Hamiltonian and remain Hamiltonian even after the

removal of any small set of vertices. However, expanders that are bipartite may not be Hamiltonian – for example, an

imbalanced bipartite graph cannot be Hamiltonian. In this case, the lemma shows that such expanders still become

Hamiltonian after the removal of any small set of vertices that balances its two parts. We prove Lemma 3.3 in

Appendix B.

Lemma 3.3. Let 1/n ≪ η ≪ ξ ≪ γ, ζ ≪ c, and let d ≥ cn. Suppose G is an n-vertex graph with maximum degree

at most d and average degree at least d − ηn, such that G does not have ζ-sparse cuts. Additionally, assume that G

is bipartite or γ-far-from-bipartite. Then the following holds.

(HC1) If G is bipartite with the bipartition {X,Y }, then, for every subset W ⊆ V (G) of size at most ξn satisfying

|X −W | = |Y −W | and any vertices x ∈ X −W , y ∈ Y −W , there is a Hamilton path in G−W with ends x

and y. In particular, G−W has a Hamilton cycle.

(HC2) If G is γ-far-from-bipartite, then, for every subset W ⊆ V (G) of size at most ξn and any two distinct vertices

x, y ∈ V (G)−W , there is a Hamilton path in G−W with ends x and y. In particular, G−W has a Hamilton

cycle.

We use the following lemma from [11] in the proof of Theorem 1.7. When presented with a partition of a dense regular

graph into expanders (by applying Lemma 3.2), Lemma 3.4 produces a small linear forest (i.e., a small collection of

vertex-disjoint paths) whose removal balances the expanders that are close to being bipartite. A similar linear forest

was also constructed in [27, 28].

Lemma 3.4 (Lemma 2.3 from [11]). Let η, β, ξ, γ, ζ, δ, c ∈ (0, 1) and let n ∈ N satisfy 1/n ≪ η ≪ β ≪ ξ ≪ γ ≪
ζ ≪ δ ≪ c. Let G be a d-regular graph on n vertices, where d ≥ cn. Suppose that {Z1, . . . , Zr} is a partition of V (G)

satisfying properties (E1)– (E4) in Lemma 3.2, where r ≤ ⌈1/c⌉. For i ∈ [r] such that G[Zi] is β-almost-bipartite, let

{Xi, Yi} be a partition of Zi maximising eG(Xi, Yi). Then there is a linear forest H in G with the following properties.

(P1) |V (H)| ≤ ξn.

(P2) H has no isolated vertices.

(P3) For each i ∈ [r], Zi contains either zero or two leaves of H. Moreover, for each i ∈ [r] such that G[Zi] is

β-almost-bipartite and Zi contains two leaves of H, one of the leaves is in Xi and the other leaf is in Yi.

(P4) For each i ∈ [r] such that G[Zi] is β-almost-bipartite, |Xi − V (H)| = |Yi − V (H)|.
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3.3 The regularity lemma and the blow-up lemma

Given a graph G, and sets X,Y ⊆ V (G), let d(X,Y ) := e(X,Y )
|X||Y | . The density of a bipartite graph G with the bipartition

{A,B} is denoted by d(A,B).

Given ε > 0, we say that a bipartite graph G with the bipartition {A,B} is ε-regular if, for all sets X ⊆ A and Y ⊆ B

with |X| ≥ ε|A| and |Y | ≥ ε|B|, we have |d(A,B) − d(X,Y )| < ε. The following is the degree form of Szemerédi’s

Regularity Lemma which can be easily derived from the classical version (see, e.g., [3] and [8]). It is a slight variation

of Lemma 2.4 in [31].

Lemma 3.5 (regularity lemma). For every ε > 0, there exists M = M(ε) such that the following holds. Let 0 ≤ µ ≤ 1,

and let G be an n-vertex graph. Then there is a partition {V0, . . . , Vm} of V (G) and a spanning subgraph G′ of G−V0,

such that the following properties hold.

(R1) m ≤M .

(R2) If G is bipartite, then every Vi with i ∈ [m] is contained in one of the two parts of G.

(R3) |V0| ≤ εn and |V1| = . . . = |Vm| ≤ εn.

(R4) dG′(v) ≥ dG(v)− (µ + ε)n for every v ∈ V (G′).

(R5) eG′(Vi) = 0 for every i ∈ [m].

(R6) For all 1 ≤ i, j ≤ m, the graph G′[Vi, Vj ] is ε-regular with density either 0 or more than µ.

The sets V1, . . . , Vm in Lemma 3.5 are called clusters, and the set V0 is called the exceptional set. Given clusters and

G′ as in Lemma 3.5, the reduced graph Γ is the graph whose vertices are V1, . . . , Vm (note that V0 is omitted here)

and in which Vi is adjacent to Vj whenever G′[Vi, Vj ] is ε-regular and has density more than µ. Thus, ViVj is an edge

of Γ if and only if G′ has an edge between Vi and Vj .

Given ε > 0 and d ∈ [0, 1], a bipartite graph G with the bipartition {A,B} is called (ε, d)-super-regular, if all sets

X ⊆ A and Y ⊆ B with |X| ≥ ε|A| and |Y | ≥ ε|B| satisfy d(X,Y ) > d, and moreover, every vertex in A has degree

more than d|B|, and every vertex in B has degree more than d|A|.

We will need the following special case of the blow-up lemma of Komlós, Sárközy and Szemerédi [21].

Lemma 3.6 (Special case of the blow-up lemma [21]). For every d > 0 and ∆, there exists a positive number

ε0 = ε0(d,∆) such that for all ε ≤ ε0 the following holds. If H is a balanced complete bipartite graph with n vertices

in each part satisfying ∆(H) ≤ ∆, then every (ε, d)-super-regular bipartite graph with n vertices in each part contains

H as a subgraph.

We also need the following standard fact concerning super-regular graphs.

Proposition 3.7 (Proposition 2.3 in [31]). Every ε-regular bipartite graph G with the bipartition {A,B} and density

d > 2ε, can be made into a (ε/(1− ε), d− 2ε)-super-regular graph by removing ε|A| vertices from A and ε|B| vertices
from B.

3.4 The Kővári–Sós–Turán theorem

The following is an unbalanced variant of the well-known Kővári–Sós–Turán theorem [26].

Lemma 3.8. Let t ≥ 2, let δ > 0, let G be a bipartite graph on at most n vertices with the bipartition {X,Y } such

that |X| ≥ 2t
(
e
δ

)t
and every vertex in X has at least δn neighbours in Y . Then G contains a Kt,t.
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Proof. Suppose for a contradiction that G is Kt,t-free. A copy of K1,t in G is called a t-star, the vertex of degree t

in a t-star is called its center, and the t vertices of degree 1 in a t-star are called its leaves. Since G is Kt,t-free, the

number of t-stars in G whose centre is in X and whose t leaves are in Y is at most

(t− 1)

(
|Y |
t

)
≤ t

(
e|Y |
t

)t

≤ (en)t

tt−1
.

On the other hand, since every vertex in X has at least δn neighbours in Y , the number of such t-stars in G is at

least

|X|
(
δn

t

)
≥ |X|

(
δn

t

)t

.

Thus, we obtain |X| ≤ t
(
e
δ

)t
. This is a contradiction, proving the lemma.

4 Balancing the expanders

As discussed in the proof sketch, our proof of Theorem 1.4 starts by partitioning the vertex set of our dense regular

graph G into a small number of expanders (using Lemma 3.2). A natural strategy for finding a Kt,t-packing in G is to

find a Kt,t-packing in each of these expanders. However, if any of these expanders happens to be a rather imbalanced

bipartite graph, then it is impossible to find a Kt,t-packing in it covering all but a constant number of vertices. To

overcome this difficulty, we need the following key lemma which shows that we can partition the vertex set of any

dense regular graph G into a set L that contains a perfect Kt,t-packing, a small set of constant size, and a small

number of expanders, each of which is either far from bipartite or bipartite and balanced. Using Lemma 5.1 we can

then find a Kt,t-packing in each of these expanders covering all but a constant number of its vertices, giving us the

desired Kt,t-packing in G.

Lemma 4.1. Let 0 < c ≤ 1, let t ≥ 2 be an integer, and let n0 be sufficiently large. Suppose that G is a d-regular

graph on n vertices, where d ≥ cn and n ≥ n0. Then there exist positive numbers η, γ, ζ, r, with r ≤ ⌈1/c⌉ and

1/n0 ≪ η ≪ ζ ≪ γ ≪ c, 1/t such that the following holds. There exist pairwise disjoint sets Z1, . . . , Zr, L ⊆ V (G)

and a subgraph G′ ⊆ G with V (G′) = V (G) satisfying the following properties.

(B1) |V (G)− (Z1 ∪ . . . ∪ Zr ∪ L)| ≤ 64r2 · tc ·
(

e
8ζ

)t
.

(B2) For every i ∈ [r], G′[Zi] has average degree at least d− η|Zi|.

(B3) For every i ∈ [r], G′[Zi] has no ζ-sparse cuts.

(B4) For every i ∈ [r], G′[Zi] is either bipartite and balanced, or one needs to remove at least γn2 edges from G′[Zi]

to make it bipartite.

(B5) G[L] has a perfect Kt,t-packing.

Proof of Lemma 4.1. Let c, t, n0, n, d be as in the statement of the lemma, and let G be a d-regular graph on n

vertices, where d ≥ cn. By applying Lemma 3.2 to G (with min{c, 1/t} playing the role of c) we obtain positive

numbers r, η, β, γ, ζ, δ, and a partition {Z1, . . . , Zr} of V (G) satisfying r ≤ ⌈1/c⌉ and (E1)–(E4), such that

1/n0 ≪ η ≪ β ≪ γ ≪ ζ ≪ δ ≪ c, 1/t.

Let σ, ρ be positive numbers satisfying

β ≪ σ ≪ ρ≪ γ.

For every i ∈ [r] such that G[Zi] is β-almost-bipartite, fix {Xi, Yi} to be a partition of Zi that maximises the number

of edges between Xi and Yi. For every i ∈ [r] such that G[Zi] is γ-far-from-bipartite, let {Xi, Yi} be a partition of Zi

satisfying
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(G1) |eG(Xi)− eG(Yi)| ≤ βn2,

(G2) δ(G[Xi, Yi]) ≥ δn/3.

Notice that this can easily be achieved by taking {Xi, Yi} to be a random partition of Zi. Morever, these conditions

are satisfied also when G[Zi] is β-almost-bipartite. Indeed, if G[Zi] is β-almost-bipartite, then eG(Xi)+eG(Yi) ≤ βn2,

implying that (G1) holds. Moreover, since {Xi, Yi} is a partition maximising the number of edges in G[Xi, Yi] and

since the minimum degree in G[Zi] is at least δn (by (E2)), the graph G[Xi, Yi] has minimum degree at least δn/2,

showing (G2).

We claim that the following holds.(
eG(Xi, Zi)− eG(Yi, Zi)

)
+ 2 (eG(Xi)− eG(Yi))− d (|Xi| − |Yi|) = 0. (1)

Indeed, to see that (1) holds, we have the following equations counting the number of edges incident to Xi and Yi,

respectively.

d|Xi| = eG(Xi, Yi) + eG(Xi, Zi) + 2eG(Xi),

d|Yi| = eG(Xi, Yi) + eG(Yi, Zi) + 2eG(Yi).

Subtracting one from the other yields (1).

Let H be the graph obtained from G by removing all edges between Xi and Yi, and also arbitrarily removing

min{eG(Xi), eG(Yi)} edges from each of G[Xi] and G[Yi] for all i ∈ [r]. Then H satisfies the following properties.

(H1)
(
eH(Xi, Zi)− eH(Yi, Zi)

)
+ 2 (eH(Xi)− eH(Yi))− d (|Xi| − |Yi|) = 0,

(H2) eH(Xi, Yi) = 0 for every i ∈ [r],

(H3) H has maximum degree at most d− δn/3,

(H4) e(H) ≤ ηn2 + rβn2 ≤ 2rβn2.

Note that for (H3) we used (G2), and for (H4) we used (E1) and (G1).

In the next subsection, we use a procedure for moving vertices between the expanders G[Zi], i ∈ [r], in order to ensure

that the degrees of vertices in H between the resulting subgraphs of G are appropriately bounded (whenever there

are sufficiently many such edges), while also ensuring that the subgraphs have large minimum degree. More precisely,

we will show that, when the procedure ends, (H1)–(H4) still hold, and (H5) and (H6) below also hold.

4.1 Procedure for moving vertices between the expanders for better degree control

Start with H, (Xi)i∈[r], (Yi)i∈[r], (Zi)i∈[r] satisfying (H1)–(H4), and modify them using the following procedure, by

running it as long as possible. For convenience, in the rest of the proof we denote the values of these quantities before

the start of the procedure by Hstart, (Xstart
i )i∈[r], (Y start

i )i∈[r], (Zstart
i )i∈[r], respectively.

In other words, whenever there are i, j ∈ [r], Wi ∈ {Xi, Yi}, Wj ∈ {Xj , Yj} and v ∈ Wi such that dH(v,Wj) ≥ ρn

and eH(Wi,Wj) ≥ d (see (2)), we move v from Wi to Uj (where {Uj ,Wj} = {Xj , Yj}), we remove d − dH(v) edges

between Wi − {v} and Wj − {v} from H, and we also remove all edges between v and Wj from H. Note that it

is possible to remove d − dH(v) edges between Wi − {v} and Wj − {v} by the assumption that eH(Wi,Wj) ≥ d ≥
d− dH(v) + dH(v,Wj).

Claim 4.2. Throughout the procedure Move-high-degree-vertices, (H1) to (H4) hold.

Proof. Since we never add any edges to H during the procedure and (H3) and (H4) hold at the start, it is obvious

that they hold throughout the procedure. It is also easy to check that (H2) is true, because it is true at the start,
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1: procedure Move-high-degree-vertices
2: Start with H, (Xi)i∈[r], (Yi)i∈[r], (Zi)i∈[r] satisfying (H1)–(H4).
3: while there exist i, j ∈ [r],Wi ∈ {Xi, Yi},Wj ∈ {Xj , Yj} and v ∈Wi such that

dH(v,Wj) ≥ ρn and eH(Wi,Wj) ≥ d. (2)

do
4: Wi ←Wi − {v},
5: Uj ← Uj ∪ {v}, where {Uj ,Wj} = {Xj , Yj},
6: Zi ← Xi ∪ Yi and Zj ← Xj ∪ Yj ,
7: H ← H − (Ei,j ∪EH(v,Wj)), where Ei,j ⊆ H[Wi−{v},Wj −{v}] is a set of exactly d− dH(v) edges, and

EH(v,Wj) is the set of all edges in H between v and Wj .
8: end while
9: end procedure

and after moving a vertex v to Uj , we remove all edges between v and Wj . Hence, it suffices to show that if (H1)

holds for a given H, (Xi)i∈[r], (Yi)i∈[r], then (H1) holds after performing one step of the procedure as well. Let H ′,

(X ′
i)i∈[r], (Y ′

i )i∈[r] denote the corresponding quantities after performing one step of the procedure. We need to show

that for all i ∈ [r],

(eH′(X ′
i, Z

′
i)− eH′(Y ′

i , Z
′
i)) + 2 (eH′(X ′

i)− eH′(Y ′
i ))− d (|X ′

i| − |Y ′
i |) = 0. (3)

Without loss of generality, we first prove it when (Wi,Wj) = (Xi, Yj) with i ̸= j and then we prove it when

(Wi,Wj) = (Xi, Xi). Indeed, by symmetry, this covers all cases since eH(Xi, Yi) = 0, and Xi and Yi play the same

role for every i ∈ [r].

First, consider the case when (Wi,Wj) = (Xi, Yj) with i ̸= j. In this case, note that the following twelve equations

hold.

eH′(X ′
i, Z

′
i)− eH(Xi, Zi) = −(d− dH(v))− dH(v, Zi) + dH(v,Xi)

eH′(Y ′
i , Z

′
i)− eH(Yi, Zi) = 0

eH′(X ′
i)− eH(Xi) = −dH(v,Xi)

eH′(Y ′
i )− eH(Yi) = 0

|X ′
i| − |Xi| = −1

|Y ′
i | − |Yi| = 0.

eH′(X ′
j , Z

′
j)− eH(Xj , Zj) = dH(v, Zj)− dH(v,Xj)

eH′(Y ′
j , Z

′
j)− eH(Yj , Zj) = −(d− dH(v))− dH(v, Yj)

eH′(X ′
j)− eH(Xj) = dH(v,Xj)

eH′(Y ′
j )− eH(Yj) = 0

|X ′
j | − |Xj | = 1

|Y ′
j | − |Yj | = 0.

Multiplying the first six equations by 1,−1, 2,−2,−d, d, respectively, and adding them all up, we find that

(eH′(X ′
i, Z

′
i)− eH′(Y ′

i , Z
′
i)) + 2 (eH′(X ′

i)− eH′(Y ′
i ))− d (|X ′

i| − |Y ′
i |)

=
(
eH(Xi, Zi

)
− eH(Yi, Zi)) + 2 (eH(Xi)− eH(Yi))− d (|Xi| − |Yi|) = 0.
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Similarly, multiplying the last six equations by 1,−1, 2,−2,−d, d, respectively, and adding them up, gives

(eH′(X ′
j , Z

′
j)− eH′(Y ′

j , Z
′
j)) + 2

(
eH′(X ′

j)− eH′(Y ′
j )
)
− d

(
|X ′

j | − |Y ′
j |
)

=
(
eH(Xj , Zj

)
− eH(Yj , Zj)) + 2 (eH(Xj)− eH(Yj))− d (|Xj | − |Yj |) = 0.

It is easy to see that for ℓ ∈ [r] − {i, j}, we have eH′(X ′
ℓ, Z

′
ℓ) = eH(Xℓ, Zℓ), eH′(Y ′

ℓ , Z
′
ℓ) = eH(Yℓ, Zℓ), eH′(X ′

ℓ) =

eH(Xℓ), eH′(Y ′
ℓ ) = eH(Yℓ), |Xℓ| = |X ′

ℓ|, and |Yℓ| = |Y ′
ℓ |, proving (3) in this case.

Now consider the case when (Wi,Wj) = (Xi, Xi). In this case, note that the following six equations hold.

eH′(X ′
i, Z

′
i)− eH(Xi, Zi) = −dH(v, Zi)

eH′(Y ′
i , Z

′
i)− eH(Yi, Zi) = dH(v, Zi)

eH′(X ′
i)− eH(Xi) = −dH(v,Xi)− (d− dH(v))

eH′(Y ′
i )− eH(Yi) = 0

|X ′
i| − |Xi| = −1

|Y ′
i | − |Yi| = 1.

As before, multiplying these equations by 1,−1, 2,−2,−d, d, respectively, and adding up the resulting equations gives

(eH′(X ′
i, Z

′
i)− eH′(Y ′

i , Z
′
i)) + 2 (eH′(X ′

i)− eH′(Y ′
i ))− d (|X ′

i| − |Y ′
i |)

=
(
eH(Xi, Zi

)
− eH(Yi, Zi)) + 2 (eH(Xi)− eH(Yi))− d (|Xi| − |Yi|) = 0.

Again, it is easy to see that for ℓ ∈ [r] − {i}, we trivially have eH′(X ′
ℓ, Z

′
ℓ) = eH(Xℓ, Zℓ), eH′(Y ′

ℓ , Z
′
ℓ) = eH(Yℓ, Zℓ),

eH′(X ′
ℓ) = eH(Xℓ), eH′(Y ′

ℓ ) = eH(Yℓ), |Xℓ| = |X ′
ℓ|, and |Yℓ| = |Y ′

ℓ |, proving (3) in this case and completing the proof

of the claim.

Let us bound the number of steps taken by the procedure Move-high-degree-vertices by the time it ends, that

is, by the time (2) is no longer satisfied by any choice of parameters. Notice that after each step of the procedure,

the number of edges in H decreases by at least d − dH(v) ≥ δn/3 (where the inequality follows because H satisfies

(H3) by Claim 4.2). Since H satisfies (H4) at the beginning of the procedure, this implies that the total number of

steps taken before the procedure ends is at most 2rβn2/(δn/3) = (6rβ/δ)n ≤ ρn/2 (using r ≤ ⌈2/c⌉ and β ≪ ρ, δ, c).

Since at most one vertex is moved at each step of the procedure we obtain the following.

(M) At most (6rβ/δ)n ≤ ρn/2 vertices are moved during the procedure Move-high-degree-vertices.

In the rest of the proof, let (Xi)i∈[r], (Yi)i∈[r], (Zi)i∈[r] and H denote the parts and the graph obtained at the end of

the procedure Move-high-degree-vertices. Then we claim that the following properties hold.

(H5) δ(G[Xi, Yi]) ≥ ρn/2 for i ∈ [r].

(H6) For every i, j ∈ [r], Wi ∈ {Xi, Yi}, Wj ∈ {Xj , Yj} either eH(Wi,Wj) < d or ∆(H[Wi,Wj ]) ≤ ρn.

Indeed, note that for every vertex v in Xi ∪ Yi, there is a step during the procedure Move-high-degree-vertices

where its degree is at least ρn in G[X∗
i , Y

∗
i ], where X∗

i and Y ∗
i denote the parts corresponding to Xi and Yi, respectively,

in that step. (Here we used that if v is moved into X∗
i or Y ∗

i at the previous step, then it has degree at least ρn in

G[X∗
i , Y

∗
i ], and if v has never been moved during the procedure, then we use that (G2) holds at the beginning of the

procedure, and that ρ ≪ δ.) Moreover, by (M), at most ρn/2 vertices are moved during the procedure. Hence, the

degree of v changes by at most ρn/2 when the procedure ends, proving that (H5) holds (note that (H5) pertains to

the degree in G, not in H). Moreover, it is easy to see that (H6) holds, because otherwise the procedure would not

have stopped.

In the next subsection, we carefully construct a small collection of vertex-disjoint copies of Kt,t whose removal makes

the subgraphs G[Xi, Yi], for i ∈ [r], more balanced.
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4.2 Constructing a collection K of Kt,t’s in G for balancing the subgraphs G[Xi, Yi]

In the rest of this proof, let

T :=
4t

c

(
4e

ρ

)t

.

By repeatedly applying an unbalanced variant of the Kővári–Sós–Turán theorem (Theorem 3.8), we prove the following

claim. Recall that the vertex set of a given copy K of Kt,t in G is denoted by V (K), and the set of vertices contained

in a given collection K of copies of Kt,t in G is denoted by V (K).

Claim 4.3. There exists a collection K := ∪1≤i≤j≤r

(
K(Xi, Xj)∪K(Xi, Yj)∪K(Yi, Xj)∪K(Yi, Yj)

)
of pairwise vertex-

disjoint copies of Kt,t in G, such that for every i, j ∈ [r] with i ≤ j and every Wi ∈ {Xi, Yi}, Wj ∈ {Xj , Yj}, the
following two properties hold.

• If eH(Wi,Wj) ≥ Td then
∣∣K(Wi,Wj)

∣∣ =
⌊
eH(Wi,Wj)

d

⌋
and, otherwise, K(Wi,Wj) = ∅. In particular, |K| ≤∑

i≤j
eH(Wi,Wj)

d ≤ e(H)
d .

• Every copy K ∈ K(Wi,Wj) satisfies V (K) ⊆ Zi ∪ Zj, and for every ℓ ∈ {i, j}, we have

|Wℓ ∩ V (K)| − |Uℓ ∩ V (K)| =
{

1 if i ̸= j

2 if i = j,
(4)

where Uℓ = Zℓ −Wℓ.

Proof. Let σ be an ordering of the pairs (Wi,Wj), with 1 ≤ i ≤ j ≤ r and eH(Wi,Wj) ≥ Td, in increasing order

of eH(Wi,Wj). We will show by induction that for every such pair (Wi,Wj) there is a collection K of pairwise

vertex-disjoint copies of Kt,t in G satisfying the following: for every (Wi′ ,Wj′) such that (Wi′ ,Wj′) ≤σ (Wi,Wj), K
consists of exactly

⌊
eH(Wi′ ,Wj′ )

d

⌋
copies K of Kt,t satisfying V (K) ⊆ Zi′ ∪ Zj′ and (4).

To this end, fix (Wi,Wj) such that 1 ≤ i ≤ j ≤ r and eH(Wi,Wj) ≥ Td, and suppose that there is a collection K
of pairwise vertex-disjoint copies of Kt,t in G satisfying the following: for every (Wi′ ,Wj′) such that (Wi′ ,Wj′) <σ

(Wi,Wj), K consists of exactly
⌊
eH(Wi′ ,Wj′ )

d

⌋
copies K of Kt,t satisfying V (K) ⊆ Zi′ ∪Zj′ and (4) (and there are no

other Kt,t-copies). Let f := eH(Wi,Wj), and let K′ be a maximal collection of at most ⌊f/d⌋ copies K of Kt,t that

are pairwise vertex-disjoint and vertex-disjoint from the copies of Kt,t in K and satisfy V (K) ⊆ Zi ∪ Zj and (4).

If |K′| = ⌊f/d⌋, then we are done with the proof of the induction step, so suppose |K′| < ⌊f/d⌋. Let V be the

set of all vertices contained in a copy of Kt,t in K ∪ K′. Then |V | ≤ (2r)2 · (f/d) · 2t = 8r2ft/d because each pair

(Wi′ ,Wj′) that precedes (Wi,Wj) in σ satisfies eH(Wi′ ,Wj′) ≤ f by the choice of σ, and there are at most (2r)2

such pairs (Wi′ ,Wj′). Thus, the number of edges in H[Wi,Wj ] incident to a vertex from V is at most ρn · |V | ≤
ρn · 8r2ft/d ≤ f/2 (using that ∆(H[Wi,Wj ]) ≤ ρn by (H6), that r ≤ ⌈1/c⌉ and that ρ ≪ c, 1/t). This implies that

there is a vertex v in Wi with at least f
2n ≥

Td
2n ≥ 2t

(
4e
ρ

)t
neighbours in Wj − V ; denote the set of these neighbours

by A. Observe that G[Wj − V,Uj − V ] has minimum degree at least ρn/4 because (H5) holds (by Claim 4.2) and

|V | ≤ 2t ·e(H)/d ≤ 2t ·2rβn2/d ≤ ρn/4 because (H4) holds, d ≥ cn and β ≪ ρ, c, 1/t. Thus, by the Kővári–Sós–Turán

theorem (Lemma 3.8), there is a copy of Kt,t−1 in G[A,Uj − V ], with t vertices in A and t − 1 vertices in Uj − V .

Together with v, this copy of Kt,t−1 forms a copy K of Kt,t in G satisfying V (K) ⊆ Zi ∪ Zj and (4), contradicting

the maximality of the collection K′, and proving the claim.

Let K be the collection of copies of Kt,t guaranteed by Claim 4.3. We claim that, for each i ∈ [r], we have

|Xi ∩ V (K)| − |Yi ∩ V (K)| = |Xi| − |Yi| ± 8rT. (5)

Indeed, let us fix i ∈ [r], and note that Claim 4.3 ensures that for every j ∈ [r], Wi ∈ {Xi, Yi}, Wj ∈ {Xj , Yj} such

that eH(Wi,Wj) ≥ Td and Wj ̸= Zi −Wi, there are exactly
⌊
eH(Wi,Wj)

d

⌋
copies K ∈ K satisfying V (K) ⊆ Zi ∪ Zj
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and (4). Therefore, it is easy to see that the following holds (where 1{E} denotes the indicator function of E i.e.,

1{E} = 1 if E holds, and 1{E} = 0, otherwise).

|Xi ∩ V (K)| − |Yi ∩ V (K)|

=
∑

Wj∈{Xj ,Yj}, j∈[r]−{i}

(⌊
eH(Xi,Wj)

d

⌋
1{eH(Xi,Wj) ≥ Td} −

⌊
eH(Yi,Wj)

d

⌋
1{eH(Yi,Wj) ≥ Td}

)

+

(
2

⌊
eH(Xi)

d

⌋
1{eH(Xi) ≥ Td} − 2

⌊
eH(Yi)

d

⌋
1{eH(Yi) ≥ Td}

)
=

∑
Wj∈{Xj ,Yj}, j∈[r]−{i}

(
eH(Xi,Wj)

d
− eH(Yi,Wj)

d

)
+

(
2eH(Xi)

d
− 2eH(Yi)

d

)
± 8rT

=
1

d
·
(
eH(Xi, Zi)− eH(Yi, Zi) + 2eH(Xi)− 2eH(Yi)

)
± 8rT = |Xi| − |Yi| ± 8rT,

where for the last equality we used that (H1) holds (by Claim 4.2). Hence (5) holds.

Note that by (5), for every i ∈ [r], we have

|Xi − V (K)| = |Yi − V (K)| ± 8rT.

For every i ∈ [r], let X ′
i ⊆ Xi − V (K) and Y ′

i ⊆ Yi − V (K) be subsets of equal size, obtained by removing at most

8rT vertices from Xi − V (K) and from Yi − V (K). Write Z ′
i = X ′

i ∪ Y ′
i . Then, since {Z1, . . . , Zr} partition V (G), we

have

|V (G)− (Z ′
1 ∪ . . . ∪ Z ′

r)| ≤ |V (K)|+ 8rT · 2r = |V (K)|+ 64r2 · t
c
·
(

4e

ρ

)t

. (6)

Let G′ be the spanning subgraph of G obtained by removing the edges of G within X ′
i and Y ′

i for all i ∈ [r] such

that G[Zstart
i ] is β-almost-bipartite. This ensures that the subgraph G′[Z ′

i] is bipartite and balanced for all i ∈ [r]

for which G[Zstart
i ] is β-almost-bipartite. (Recall that here the sets Zstart

i for i ∈ [r], are defined before running the

procedure Move-high-degree-vertices.)

Let us make a simple observation concerning the number of vertices added to or removed from the set Zstart
i in

order to form the set Z ′
i for every i ∈ [r]. Note that, for every i ∈ [r], by (M) and the definition of Z ′

i, we have

|Zstart
i − Z ′

i| ≤ (6rβ/δ)n + |V (K)| + 16rT and |Z ′
i − Zstart

i | ≤ (6rβ/δ)n. Moreover, since r ≤ ⌈1/c⌉ and β ≪ σ, c, δ,

we have (6rβ/δ)n ≤ σn/4, and by Claim 4.3, (H4) and the fact that β ≪ σ, c, 1/t, we have |V (K)| ≤ 2t · e(H)
d ≤

2t · 2rβn
2

d ≤ σn/4. Therefore,

|Zstart
i − Z ′

i|, |Z ′
i − Zstart

i | ≤ σn. (7)

4.3 Showing that expansion is preserved after balancing

In this subsection, we will prove the following claim, which shows that the subgraphs G′[Z ′
i] for i ∈ [r] (which are

obtained after balancing) still have good expansion properties.

Claim 4.4. For every i ∈ [r], the graph G′[Z ′
i] has no ρ/8-sparse cuts.

Proof. Fix i ∈ [r], and, for convenience, write Z ′ := Zstart
i and Z := Z ′

i. Consider a partition {A,B} of Z, where A

and B are non-empty and |A| ≥ |B|. We will show that eG′(A,B) ≥ (ρ/8)|A||B|, thereby proving the claim.

Suppose first that |B| ≤ ρn/8. Recall that G[Xi, Yi] has minimum degree at least ρn/2 (by (H5)). Since |Xi −
X ′

i|, |Yi − Y ′
i | ≤ σn ≤ ρn/4, by (7) and σ ≪ ρ, the graph G[X ′

i, Y
′
i ] has minimum degree at least ρn/4. As this is a

spanning subgraph of G′[Z ′
i] = G′[Z], the graph G′[Z] also has minimum degree at least ρn/4. Hence

eG′(A,B) ≥ |B| ·
(
ρn/4− |B|

)
≥ |B| · ρn/8 ≥ (ρ/8) · |A||B|,
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Suppose, instead, that |B| > ρn/8. Write U := Z − Z ′, W := Z ′ − Z, A′ := (A − U) ∪W and B′ := B − U . Then

{A′, B′} is a partition of Z ′. Since G[Z ′] has no ζ-sparse cuts, we have

eG(A′, B′) ≥ ζ|A′||B′| ≥ ζ · |A− U | · |B − U | ≥ ζ · (|A| − σn) · (|B| − σn) ≥ (ζ/4) · |A||B|. (8)

For the last inequality, we used |A| ≥ |B| ≥ ρn/8 ≥ 2σn (using σ ≪ ρ). We now upper bound the number of edges

in G[Z ′] that are not in G′[Z ′]. Write X ′ := Xstart
i , Y ′ := Y start

i , X := Xi and Y := Yi. Recall that if G′[Z] and G[Z]

differ, then eG(X ′) + eG(Y ′) ≤ βn2 and G′[Z] is obtained by removing some of the edges in G[X] and G[Y ] from

G[Z]. Assuming G[Z] and G′[Z] differ, we thus have

eG(Z)− eG′(Z) = eG(X) + eG(Y ) ≤ eG(X ′) + |X −X ′| · n + eG(Y ′) + |Y − Y ′| · n
≤ βn2 + 2σn2 ≤ 3σn2,

(9)

using (7) and β ≪ σ. Hence

eG′(A,B) = eG′(A ∪W,B)− eG′(W,B) ≥ eG′(A′, B′)− σn2

≥ eG(A′, B′)− 4σn2

≥ (ζ/4) · |A||B| − 4σn2 ≥ (ζ/8) · |A||B| ≥ (ρ/8) · |A||B|.

Here we used |W | ≤ σn for the first inequality, (9) for the second one, (8) for the third, (ζ/4)·|A||B| ≥ (ζρ2/256)·n2 ≥
8σn2 for the fourth, and that ρ≪ ζ for the last inequality.

4.4 Putting everything together and completing the proof of Lemma 4.1

To complete the proof of Lemma 4.1, we will show that the following properties hold for all i ∈ [r].

(a) G′[Z ′
i] has no ρ/8-sparse cuts.

(b) Either G′[Z ′
i] is bipartite and balanced, or one needs to remove at least γn2/4 edges from G′[Z ′

i] to make it

bipartite.

(c) The average degree of G′[Z ′
i] is at least d− 144σ

ρ2 |Z ′
i|.

Indeed, Claim 4.4 shows (a).

For proving (b), notice that if G[Zstart
i ] is β-almost-bipartite, then G′[Z ′

i] is indeed bipartite and balanced, by the choice

of X ′
i and Y ′

i . So consider i ∈ [r] such that G[Zstart
i ] is γ-far-from-bipartite. Recall that |Zstart

i − Z ′
i| ≤ σn ≤ γn/4

by (7) and the fact that σ ≪ γ. Suppose for a contradiction that one can remove fewer than γn2/4 edges from

G′[Z ′
i] = G[Z ′

i] to make it bipartite. But this means one can remove fewer than γn2/4+ |Zstart
i −Z ′

i| ·n ≤ γn2/2 edges

from G[Zstart
i ] to make it bipartite. (Indeed, we can remove all edges incident to Zstart

i − Z ′
i, and fewer than γn2/4

edges from G[Zstart
i ∩Z ′

i] to make it bipartite.) This contradicts G[Zstart
i ] being γ-far-from-bipartite, and proves (b).

Finally, for proving (c), first recall that eG(Z ′
i) − eG′(Z ′

i) ≤ 3σn2, by (9). Second, by (7), and since the sets Zstart
i

satisfy (E1), we have

eG(Z ′
i, Z

′
i) ≤ eG(Zstart

i , Zstart
i ) + |Zstart

i − Z ′
i|n + |Z ′

i − Zstart
i |n ≤ ηn2 + 2σn2 ≤ 3σn2.

Combining the above two inequalities we have

d|Z ′
i| − 2eG′(Z ′

i) ≤ eG(Z ′
i, Z

′
i) + 2(eG(Z ′

i)− eG′(Z ′
i)) ≤ 9σn2 ≤ 144σ

ρ2
|Z ′

i|2, (10)

where in the last inequality we used |Z ′
i| ≥ ρn/4, which follows from G[Z ′

i] having minimum degree at least ρn/4,

as pointed out at the beginning of the proof of Claim 4.4. Hence, by (10), the average degree of G′[Z ′
i] is at least

d− 144σ
ρ2 |Z ′

i|, proving (c).
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Using (a), (b) and (c), it is now easy to check that (B2), (B3) and (B4) of the lemma hold with Z ′
i playing the role

of Zi for i ∈ [r], V (K) playing the role of L and with 144σ
ρ2 , ρ/8 and γ/4 playing the roles of η, ζ and γ, respectively

(in particular, notice that these new parameters satisfy η ≪ ζ ≪ γ ≪ c, as σ ≪ ρ≪ γ ≪ c). Since, by definition, K
is a collection of pairwise vertex-disjoint copies of Kt,t in G, (B5) of the lemma immediately follows. Finally, by (6)

and using that ρ/8 plays the role of ζ, we have

∣∣V (G)−
(
Z ′
1 ∪ . . . ∪ Z ′

r ∪ V (K)
)∣∣ ≤ 64r2 · t

c
·
(

e

2ζ

)t

,

proving (B1), and completing the proof of Lemma 4.1.

5 Packing Kt,t’s in expanders

Our second key lemma for proving Theorem 1.4 is as follows. This lemma shows that expanders admit a perfect

Kt,t-packing if their number of vertices is divisible by 2t. It will be used to find a Kt,t-packing that covers all but at

most 2t− 1 vertices in each of the expanders provided by Lemma 4.1.

Lemma 5.1. Let t ≥ 2, n0 be integers, let 0 < c, γ, ζ, η < 1 and suppose that 1/n0 ≪ η ≪ ζ ≪ γ ≪ c, 1/t. Let

n ≥ n0 be an integer divisible by 2t, let d ≥ cn and let G be an n-vertex graph with the following properties.

(Q1) G has average degree at least d− ηn and maximum degree at most d.

(Q2) G has no ζ-sparse cuts.

(Q3) G is either bipartite and balanced, or γ-far-from-bipartite.

Then G has a perfect Kt,t-packing.

Note that the following corollary, where we drop the assumption of divisibility from Lemma 5.1 and allow for up to

2t − 1 uncovered vertices, follows directly from Lemma 5.1. Indeed, given G as in the next corollary, remove up to

2t− 1 vertices to obtain a graph G′ whose number of vertices n′ is divisible by 2t. It is easy to see that the properties

(Q1)– (Q3) above hold for G′, with slightly worse parameters, say, with n0 − 2t, c/2, γ/2, 2η, ζ/2, n′, d in place of

n0, c, γ, η, ζ, n, d respectively.

Corollary 5.2. Let t ≥ 2, n0 be integers, let 0 < c, γ, ζ, η < 1 and suppose that 1/n0 ≪ η ≪ ζ ≪ γ ≪ c, 1/t. Let

n ≥ n0, let d ≥ cn and let G be an n-vertex graph with the following properties.

(1) G has average degree at least d− ηn and maximum degree at most d.

(2) G has no ζ-sparse cuts.

(3) G is either bipartite and balanced, or γ-far-from-bipartite.

Then, G has a Kt,t-packing covering all but at most 2t− 1 vertices.

Let us now proceed with the proof of Lemma 5.1.

Proof of Lemma 5.1. Let ε, µ, ξ be positive numbers satisfying

1/n0 ≪ ε≪ µ≪ η ≪ ξ ≪ ζ.

Apply the regularity lemma (Lemma 3.5) to G with parameters ε and µ, to obtain positive numbers M = M(ε), m

with m ≤M , a subgraph G′ and a partition {V0, . . . , Vm} of V (G) into clusters V1, . . . , Vm and an exceptional set V0

satisfying properties (R1)–(R6). Let Γ be the corresponding reduced graph, namely, it has vertex set {V1, . . . , Vm}
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and ViVj is an edge in Γ if and only if G′[Vi, Vj ] is ε-regular with density more than µ. Equivalently, ViVj is an edge

in Γ if and only if there is an edge of G′ between Vi and Vj (by (R6)).

Notice that if G is bipartite, then both G′ and Γ are bipartite. Indeed, if G is bipartite then G′ is bipartite since it

is a subgraph of G, and Γ is bipartite because every Vi with i ∈ [m] is contained in one of the parts of G by (R2).

In the rest of the proof, we will assume that m is even, and that if G is bipartite and balanced, then both G′ and Γ

are bipartite and balanced. Indeed, since all clusters Vi with i ∈ [m] are equal in size — each of size at most εn by

(R3) — and each Vi lies entirely within one of the two parts of the bipartition of G by (R2), this adjustment can be

made, if necessary, by moving the vertices of a single cluster Vi (for some i ∈ [m]) from G′ into V0. Moreover, after

(potentially) moving these vertices, it still follows from (R3) that

|V0| ≤ 2εn, (11)

and by (R4), for every v ∈ V (G′) we have

dG′(v) ≥ dG(v)− (µ + 2ε)n. (12)

We claim that, after this potential adjustment, G′ satisfies the following properties.

(G’1) G′ has average degree at least d− 3ηn.

(G’2) G′ has no ζ/4-sparse cuts. (In particular, G′ has minimum degree at least ζ/4 · (|V (G′)| − 1) ≥ ζn/5.)

(G’3) If G is bipartite and balanced, then G′ is bipartite and balanced. Otherwise, one needs to remove at least γn2/2

edges from G′ to make it bipartite. (In particular, G′ is γ/2-far-from-bipartite.)

Indeed, (G’1) follows directly from (12) and the fact that the average degree of G is at least d− ηn and ε, µ≪ η. To

prove (G’2), we use (12) together with the fact that G has no ζ-sparse cuts, as follows. For every partition {X,Y } of

V (G′) with |X| ≤ |Y |, we have

eG′(X,Y ) ≥ eG(X,V (G)−X)− |X|(µ + 2ε)n

≥ ζ|X| · (n− |X|)− |X|(µ + 2ε)n

≥
(
ζ

2
− (µ + 2ε)

)
· |X| · n ≥ ζ

4
· |X| · |Y |,

using |X| ≤ n/2 for the third inequality, and ε, µ ≪ ζ for the last inequality. This proves (G’2). Finally, to prove

(G’3), observe that if G is bipartite and balanced, then, as noted before, we can assume that G′ is also bipartite and

balanced. Otherwise, by our assumption in Lemma 5.1, G is γ-far-from-bipartite, in which case we claim that at least

γn2/2 edges need to be removed from G′ to make it bipartite. Indeed, by (11) and (12), the number of edges in G

that are not present in G′ is at most |V0| · n + n · (µ + 2ε)n ≤ (µ + 4ε)n2 ≤ γn2/2. Since G is γ-far-from-bipartite,

at least γn2 edges must be removed to make it bipartite. Therefore, even after accounting for the fact that at most

γn2/2 of these edges are missing in G′, one still needs to remove at least γn2/2 edges from G′, proving (G’3).

5.1 Finding vertex-disjoint super-regular subgraphs that cover all vertices outside V0

Recall that the clusters Vi, i ∈ [m], have the same size by (R3). For each i ∈ [m], if |Vi| is odd, move one vertex from

Vi to V0. Now for each i ∈ [m], partition Vi into two sets V ′
i , V

′′
i of equal size, let Γref be the graph with the vertex

set {V ′
1 , V

′′
1 , . . . , V ′

m, V ′′
m} whose edges are all the pairs AB with A ∈ {V ′

i , V
′′
i }, B ∈ {V ′

j , V
′′
j } where ViVj is an edge

in Γ. (In particular, Γref is the 2-lift of Γ.) Then note that every edge in Γref corresponds to a 3ε-regular subgraph

of G′ with a density more than µ− ε ≥ µ/2.

We claim that Γref contains a perfect matching. To see this, we first prove the following claim. A 2-matching is a

collection of pairwise vertex-disjoint edges and odd cycles. A perfect 2-matching in a graph is a 2-matching covering

all vertices in the graph.
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Claim 5.3. Γ has a perfect 2-matching.

Before we prove the claim, recall that a fractional matching of a graph G is an edge weighting w : E(G)→ [0, 1], such

that
∑

u∈NG(v) w(uv) ≤ 1, for every vertex v in G. A perfect fractional matching is a fractional matching where we

have equality
∑

u∈NG(v) w(uv) = 1 for every vertex v in G. We need the following useful fact.

Fact 5.4. Let G be a graph which has a perfect fractional matching. Then it has a perfect 2-matching.

This is a standard fact, but for completeness we prove it in Appendix A.

Proof of Claim 5.3. By (G’1)–(G’3) and Lemma 3.3, the graph G′ has a Hamilton cycle, which we denote by

C = (v1 . . . vn′), where n′ = |V (G′)|. Let w : E(Γ) → R≥0 be the edge-weighting where w(ViVj) is the number of

edges in C with one end in Vi and the other in Vj , divided by 2|V1|. We claim that w is a perfect fractional matching

in Γ; that is,
∑

j∈[m] w(ViVj) = 1 for every i ∈ [m]. Indeed, for every i ∈ [m], since G′ has no edges with both ends

in Vi, the number of edges in C with an end in Vi is exactly 2|Vi| = 2|V1|, so
∑

j∈[m] w(ViVj) = 1 for every i ∈ [m],

as claimed. By Fact 5.4, this implies that Γ has a perfect 2-matching, as required.

Let M be a perfect 2-matching in Γ. Replace each isolated edge ViVj in M with two vertex-disjoint edges V ′
i V

′′
j

and V ′′
i V ′

j in Γref and each odd cycle (Vi1 , . . . , Vi2k+1
) (for some k ≥ 1) in M with the edges V ′

ij
V ′′
ij+1
∈ E(Γref) for

j ∈ [2k + 1] (where addition in the indices is taken modulo 2k + 1), resulting in a perfect matching Mref in Γref .

Let U1U2, . . . , U2m−1U2m denote the edges of Mref . Since every edge in Γref corresponds to a 3ε-regular subgraph of

G′ with density more than µ/2, it follows that for every i ∈ [m], G′[U2i−1, U2i] is 3ε-regular with density more than

µ/2. Furthermore, by (R6), for all i, j ∈ [2m], the graph G′[Ui, Uj ] is 3ε-regular with density either 0 or more than

µ/2.

By Proposition 3.7, we can move 3ε|Ui| vertices from Ui (for every i ∈ [2m]) into the set V0, so that the resulting

subgraphs G′[U2i−1, U2i] are (4ε, µ/4)-super-regular for every i ∈ [m]. By moving less than 2t additional vertices from

each Ui to V0, we also assume that |Ui| is divisible by 2t for every i ∈ [2m]. We claim that after moving these vertices,

the following properties hold.

(G’4) We have
⋃2m

i=1 Ui = V (G) − V0 = V (G′), |U1| = . . . = |U2m|, and |V0|, |U1|, . . . , |U2m| are divisible by 2t.

Furthermore, if G is bipartite and balanced with the bipartition {X,Y }, then we can assume that
⋃m

i=1 U2i−1 =

X − V0 and
⋃m

i=1 U2i = Y − V0 (and hence G′ is still bipartite and balanced).

(G’5) For every i ∈ [m], G′[U2i−1, U2i] is (5ε, µ/5)-super-regular.

(G’6) For all i, j ∈ [2m], the graph G′[Ui, Uj ] is 5ε-regular with density either 0 or more than µ/5.

Items (G’5) and (G’6) follow easily from the discussion above. To see why (G’4) holds, recall that, by (R3), the

clusters Vi, i ∈ [m] have the same size, and by definition, the sets Ui, i ∈ [2m], had the same size before an equal

number of vertices from each of these sets are moved to V0. Furthermore, if G is bipartite and balanced with the

bipartition {X,Y }, then every cluster Vi, i ∈ [m] is contained in one of the parts of G by (R2), and moreover, as

noted earlier, G′ and the reduced graph Γ are both bipartite and balanced. Hence, the 2-matchingM in Γ is, in fact,

a perfect matching in this case. Hence, Mref is also a perfect matching. Thus, without loss of generality, even after

moving the vertices, we may assume
⋃m

i=1 U2i−1 = X − V0 and
⋃m

i=1 U2i = Y − V0, as desired, proving (G’4).

Since a total of at most m + 3εn + 4tm ≤ 4εn vertices have been moved into V0 from G′, by (11), we have that

|V0| ≤ 6εn, (13)

and, by (G’1), we have that

(G’7) G′ has average degree at least d− 3ηn− 4εn ≥ d− 6ηn.

Furthermore, we claim that the following two properties hold.
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(G’8) G′ has no ζ/12-sparse cuts. Moreover, G′ has minimum degree at least ζn/6.

(G’9) If G is bipartite and balanced, then G′ is bipartite and balanced. Otherwise, one needs to remove at least γn2/4

edges from G′ to make it bipartite.

To see why (G’8) holds, first note that after moving at most 4εn vertices from G′ to V0, the minimum degree of G′ is

at least ζn/5− 4εn ≥ ζn/6 by (G’2). Consider a partition {X,Y } of G′ with |X| ≤ |Y | and note that if |X| ≤ ζn/12,

then, by the minimum degree condition, eG′(X,Y ) ≥ ζn/12 · |X| ≥ ζ/12 · |X| · |Y |, as desired. So we may assume

that |X|, |Y | ≥ ζn/12. But then eG′(X,Y ) ≥ ζ/4 · |X| · |Y | − 4εn2 ≥ ζ/12 · |X| · |Y | since G′ had no ζ/4-sparse cuts

(by (G’2)) and at most 4εn2 edges are removed from G′ by moving at most 4εn vertices from G′ to V0. This shows

that G′ has no ζ/12-sparse cuts, completing the proof of (G’8). Finally, to prove (G’9), note that if G is bipartite and

balanced, then by (G’4) and the above process of moving vertices, G′ remains bipartite and balanced after moving

the vertices. Otherwise, we claim that one needs to remove at least γn2/4 edges from G′ to make it bipartite. Indeed,

this follows from (G’3) and the fact that at most 4εn2 ≤ γn2/4 edges are removed from G′ after moving at most 4εn

vertices to V0, proving (G’9).

5.2 Splitting the super-regular subgraphs

As shown in the previous subsection, the vertices outside V0 can be covered by super-regular subgraphs G′[U2i−1, U2i]

for i ∈ [m]. In this subsection, we will show that if we randomly partition Ui into five sets
{
U

(1)
i , . . . , U

(5)
i

}
of

appropriate sizes for each i ∈ [2m], then the subgraph H of G′ induced by the set
⋃

i∈[2m] U
(3)
i still has good

expansion properties (see (U6)) and, moreover, H is either bipartite and balanced or is far from being bipartite (see

(U7)).

Claim 5.5. For every i ∈ [2m], there is a partition
{
U

(1)
i , . . . , U

(5)
i

}
of Ui satisfying the following properties.

(U1)
∣∣U (1)

i

∣∣ =
∣∣U (2)

i

∣∣ = ξ|Ui| for i ∈ [2m].

(U2)
∣∣U (3)

i

∣∣ = |Ui|
2t for i ∈ [2m].

(U3)
∣∣U (4)

i

∣∣ = 2|Ui|
3 for i ∈ [2m].

(U4)
∣∣U (5)

i

∣∣ = ( 1
3 −

1
2t − 2ξ)|Ui| for i ∈ [2m].

(U5) For every v ∈ V (G), i ∈ [2m] and j ∈ [5], if dG(v, Ui) ≥ ε|Ui|, then
dG

(
v,U

(j)
i

)
dG(v,Ui)

= (1± ε)
|U(j)

i |
|Ui| .

Similarly, for every v ∈ V (G′), i ∈ [2m] and j ∈ [5], if dG′(v, Ui) ≥ ε|Ui| then
dG′
(
v,U

(j)
i

)
dG′ (v,Ui)

= (1± ε)
|U(j)

i |
|Ui| .

(U6) The graph H := G′
[⋃

i∈[2m] U
(3)
i

]
has no ζ

20 -sparse cuts.

(U7) If G is bipartite and balanced, then H = G′
[⋃

i∈[2m] U
(3)
i

]
is also bipartite and balanced. Otherwise, one needs

to remove at least γ
256t2n

2 edges from H to make it bipartite.

Proof of claim. For every i ∈ [2m], let
{
U

(1)
i , . . . , U

(5)
i

}
be a random partition of Ui into sets of sizes ξ|Ui|, ξ|Ui|,

(1/2t)|Ui|, (2/3)|Ui|, (1/3−1/2t−2ξ)|Ui|, respectively. Then (U1)–(U4) hold by definition. Moreover, by Lemma 3.1

and a union bound, (U5) holds with probability at least 1− o(1); fix an outcome such that it holds.

For proving (U6), let {X,Y } be a partition of V (H) with |X| ≤ |Y |. Notice that by (U5) and (G’8), H has minimum

degree at least (ζ/7) · |V (H)|. Thus, if |X| ≤ (ζ/14) · |V (H)|, then every vertex in X has at least (ζ/14) · |V (H)|
neighbours in Y , showing that eH(X,Y ) ≥ |X| · (ζ/14) · |V (H)| ≥ (ζ/14) · |X| · |Y |, as required.
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So suppose that |X| ≥ (ζ/14) · |V (H)|. Let {X ′, Y ′} be a partition of V (G′) such that, for every i ∈ [2m], we have

|X ∩ U
(3)
i |

|U (3)
i |

=
|X ′ ∩ Ui|
|Ui|

. (14)

By (U2) and (14), it follows that |X ∩ Ui| = |X ∩ U
(3)
i | = |X′∩Ui|

2t for every i ∈ [2m]. Thus, |X| = |X′|
2t . Similarly,

|Y | = |Y ′|
2t .

We claim that for any i, j ∈ [2m], we have

eH(X ∩ Ui, Y ∩ Uj) ≥
1

4t2
· eG′(X ′ ∩ Ui, Y

′ ∩ Uj)− 10ε|Ui||Uj | (15)

Indeed, if |X ′ ∩ Ui| ≤ 10tε|Ui| or |Y ′ ∩ Uj | ≤ 10tε|Uj |, this holds trivially, as then the right-hand side of (15) is

at most (1/4t2) · 10tε|Ui||Uj | − 10ε|Ui||Uj | < 0. If, instead, |X ′ ∩ Ui| ≥ 10tε|Ui| and |Y ′ ∩ Uj | ≥ 10tε|Uj |, then

|X ∩ Ui| = |X ∩ U
(3)
i | ≥ 5ε|Ui| and |Y ∩ Uj | = |Y ∩ U

(3)
j | ≥ 5ε|Uj | by (14) and (U2), so by 5ε-regularity of G′[Ui, Uj ]

(see (G’6)), we have
eH(X ∩ Ui, Y ∩ Uj)

|X ∩ Ui| · |Y ∩ Uj |
≥ eG′(X ′ ∩ Ui, Y

′ ∩ Uj)

|X ′ ∩ Ui| · |Y ′ ∩ Uj |
− 10ε.

This implies that

eH(X ∩ Ui, Y ∩ Uj) ≥ eG′(X ′ ∩ Ui, Y
′ ∩ Uj) ·

|X ∩ Ui|
|X ′ ∩ Ui|

· |Y ∩ Uj |
|Y ′ ∩ Uj |

− 10ε · |X ∩ Ui| · |Y ∩ Uj |

(14)

≥ 1

4t2
· eG′(X ′ ∩ Ui, Y

′ ∩ Uj)− 10ε|Ui||Uj |,

as required for (15).

Hence, we obtain the following lower bound on the number of edges between X and Y in H.

eH(X,Y ) =
∑

i,j∈[2m]

eH(X ∩ Ui, Y ∩ Uj)

(15)

≥ 1

4t2
·
∑

i,j∈[2m]

eG′(X ′ ∩ Ui, Y
′ ∩ Uj)− 10ε ·

∑
i,j∈[2m]

(|Ui| · |Uj |)

=
1

4t2
· eG′(X ′, Y ′)− 10ε · |V (G′)|2

(G′8)

≥ 1

4t2
· ζ

12
· |X ′| · |Y ′| − 10εn2

=
ζ

12
· |X| · |Y | − 10εn2

≥ ζ

20
· |X| · |Y |,

using that |X|, |Y | ≥ (ζ/14)|V (H)| ≥ (ζ/56t)n and that ε≪ 1/t, ζ for the last inequality. This proves (U6).

Finally, it remains to prove (U7). Note that by (G’4) and (U2), if G is bipartite and balanced, then H is also bipartite

and balanced, as desired. Now suppose that G is γ-far-from-bipartite. Then, by (G’9), one needs to remove at least

γn2/4 edges from G′ to make it bipartite. Let {X,Y } be an arbitrary partition of V (H). To prove (U7), we need to

show that eH(X) + eH(Y ) ≥ γn2

256t2 . Define the sets X ′, Y ′ as in (14). Then, analogously to (15), for every i, j ∈ [2m],

we have

eH(X ∩ Ui, X ∩ Uj) ≥
1

4t2
· eG′(X ′ ∩ Ui, X

′ ∩ Uj)− 10ε|Ui||Uj |. (16)
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It follows that

eH(X) =
∑

1≤i<j≤2m

eH(X ∩ Ui, X ∩ Uj)

(16)

≥ 1

4t2
·

∑
1≤i<j≤2m

eG′(X ′ ∩ Ui, X
′ ∩ Uj)− 10ε ·

∑
1≤i<j≤2m

(|Ui| · |Uj |)

≥ 1

4t2
· eG′(X ′)− 10εn2.

Analogously, eH(Y ) ≥ 1
4t2 · eG′(Y ′)− 10εn2. Notice that eG′(X) + eG′(Y ) ≥ γn2/4 by (G’9) and the assumption that

G is not bipartite. Hence, altogether, we have

eH(X) + eH(Y ) ≥ 1

4t2
(
eG′(X ′) + eG′(Y ′)

)
− 20εn2 ≥ γ

16t2
· n2 − 20ε · n2 ≥ γ

256t2
· n2,

using ε≪ γ, 1/t for the last inequality. This proves (U7).

5.3 Covering V0 using a well-distributed collection of copies of Kt,t

In the rest of the proof, let U (j) :=
⋃

i∈[2m] U
(j)
i for j ∈ [5]. In this subsection, we find a collection of vertex-disjoint

copies of Kt,t in G
[
V0 ∪ U (1) ∪ U (2)

]
that covers V0 such that the number of uncovered vertices in each Ui is divisible

by 2t. In the rest of the proof, using a slight abuse of notation, we denote the set of vertices contained in a given

collection K of copies of Kt,t in G by V (K).

First, we cover the vertices in V0 using vertex-disjoint Kt,t’s in G
[
V0 ∪ U (1)

]
(ignoring the divisibility requirement).

Claim 5.6. There is a collection K1 of pairwise vertex-disjoint Kt,t’s in G[V0 ∪U (1)] such that V0 ⊆ V (K1) and each

copy of Kt,t in K1 contains exactly one vertex of V0.

Proof. Let K1 be a maximal collection of pairwise vertex-disjoint copies of Kt,t in G[V0 ∪ U (1)], where each copy of

Kt,t contains exactly one vertex from V0. We will show that V0 ⊆ V (K1), proving the claim. Suppose not, and let

v ∈ V0 − V (K1). Write U := U (1) and U ′ := U − V (K1).

We claim that every vertex u in G satisfies dG(u, U ′) ≥ (ξζ/8)n. Indeed, given a vertex u in G, let I be the set of

indices i ∈ [2m] such that dG(u, Ui) ≥ ε|Ui|. Then

dG(u, U) =
∑

i∈[2m]

dG
(
u, U

(1)
i

) (U5)

≥
∑
i∈I

(1− ε) ·
∣∣U (1)

i

∣∣
|Ui|

· dG(u, Ui)

≥ (1− ε) · ξ ·

dG(u)− dG(u, V0)−
∑

i∈[2m]−I

dG(u, Ui)


≥ (1− ε) · ξ ·

ζn

2
− |V0| −

∑
i∈[2m]−I

ε|Ui|


(13)

≥ (1− ε) · ξ ·
(
ζ

2
− 7ε

)
· n ≥ ξζ

4
· n.

For the third inequality we used that G has minimum degree at least ζ(n − 1) ≥ ζ
2n, which follows from the fact

that there are no ζ-sparse cuts in G. Since |V (K1)| ≤ 2t|V0| ≤ 12εtn, every vertex u in G satisfies dG(u, U ′) ≥
dG(u, U)− |V (K1)| ≥ ( ξζ

4 − 12εt)n ≥ (ξζ/8)n, as desired.

Fix a subset W ⊆ N(v, U ′) of size (ξζ/16)n and write Z := U ′ −W . Since every vertex u in G satisfies dG(u, U ′) ≥
(ξζ/8)n, every vertex in W has at least (ξζ/16)n neighbours in Z. By Lemma 3.8, the graph G[W,Z] has a Kt,t, say,

with vertex set A∪B where A ⊆W and B ⊆ Z. Let B′ be a subset of B of size t− 1. Then G[A,B′ ∪ {v}] is a copy
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of Kt,t in G[V0 ∪ U (1)], which is vertex-disjoint from V (K1) and contains exactly one vertex from V0, contradicting

the maximality of K1.

Next, we find a small number of vertex-disjoint Kt,t’s in G[U (2)] that will allow us to achieve the desired divisibility

condition. Recall that the support of a function f : A → B, denoted supp(f), is the set of elements a in A with

f(a) ̸= 0.

Claim 5.7. Let f : [2m]→ {0, . . . , t− 1} be a function such that
∑

i∈[2m] f(i) is divisible by t, and if G is bipartite,

then
∑

i∈[m] f(2i) is also divisible by t. Then there is a collection K2 of pairwise vertex-disjoint Kt,t’s in G[U (2)] such

that |Ui ∩ V (K2)| ≤ 3t · | supp(f)| and |Ui ∩ V (K2)| ≡ f(i) (mod t) for i ∈ [2m].

Proof of claim. We prove the claim by induction on the size of supp(f). If | supp(f)| = 0, then we can take K2 = ∅.
So, suppose that supp(f) ̸= ∅, and let a ∈ [2m] satisfy f(a) ̸= 0. By the assumption that

∑
i∈[2m] f(i) is divisible by

t, there is b ∈ [2m]− {a} such that f(b) ̸= 0, and, if G is bipartite, we may take b to have the same parity as a.

Define f ′ : [2m]→ {0, . . . , t− 1} as follows.

f ′(i) =


f(i) i ̸= a, b,

0 i = a,

f(a) + f(b) i = b.

Notice that
∑

i∈[2m] f
′(i) is divisible by t,

∑
i∈[m] f

′(2i) is also divisible by t if G is bipartite and | supp(f ′)| <
| supp(f)|. Thus, by the induction hypothesis, there is a collection K′ of pairwise vertex-disjoint Kt,t’s in G[U (2)] such

that |Ui ∩ V (K′)| ≤ 3t · | supp(f ′)| and |Ui ∩ V (K′)| ≡ f ′(i) (mod t) for i ∈ [2m].

We claim that there is a walk W of even length from Ua to Ub in Γref that does not visit a vertex more than three

times. Indeed, notice that Γref is connected since G′ has no ζ/12-sparse cuts (see (G’8)). If G is bipartite, any path

in Γref from Ua to Ub suffices: such a path exists by connectivity, and because a and b have the same parity, its length

is necessarily even. If G is not bipartite, then (G’9) (and the fact that µ≪ γ) implies that Γref is also not bipartite.

Let C be an odd cycle in Γref , and let v ∈ V (C). By connectivity of Γref , there are paths Pa and Pb from a to v and

from b to v. If the lengths of Pa and Pb have the same parity, then aPavPbb is a walk of even length visiting each

vertex at most twice. Otherwise, aPavCvPbb is a walk of even length that visits each vertex at most three times, as

desired.

Let W be a walk in Γref as in the previous paragraph, and write W = Ui0 , . . . , Ui2ℓ , where Ui0 = Ua and Ui2ℓ = Ub.

Since W visits each vertex in Γref at most three times and |Ui ∩ V (K′)| ≤ 3t · | supp(f ′)| ≤ 6tm for i ∈ [2m], we

can apply Lemma 3.8 to iteratively choose pairwise vertex-disjoint Kt,t’s in U (2) − V (K′), denoted K1, . . . ,Kℓ, such

that for every j ∈ [ℓ], Kj consists of t vertices in U
(2)
i2j−1

, f(a) vertices in U
(2)
i2j−2

and t − f(a) vertices in U
(2)
i2j

. Write

K2 := K′ ∪ {K1, . . . ,Kℓ}. It is easy to check that K2 satisfies the requirements of the induction hypothesis since

|Ui ∩ V (K2)| ≤ 3t · | supp(f ′)| + 3t ≤ 3t| supp(f)| and |Ui ∩ V (K2)| ≡ f(i) (mod t) for i ∈ [2m]. This completes the

induction step and proves the claim.

Let K1 be a collection of copies of Kt,t as guaranteed by Claim 5.6. For i ∈ [2m], let f(i) := −|Ui ∩ V (K1)|
(mod t) = |U (1)

i ∩ V (K1)| (mod t). Then

−
∑

i∈[2m]

f(i) ≡
∑

i∈[2m]

|Ui ∩ V (K1)| ≡ |V (K1)| − |V0| ≡ 0 (mod 2t), (17)

where the second equality uses that V (G) = V0 ∪U1 ∪ · · · ∪U2m and V0 ⊆ V (K1), and the third follows from the fact

that both |V (K1)| and |V0| are divisible by 2t, with the divisibility of |V0| given by (G’4).

If G is bipartite (and balanced), then, denoting by {X,Y } the bipartition of G with X − V0 =
⋃

i∈[m] U2i−1 and

Y − V0 =
⋃

i∈[m] U2i,

−
∑
i∈[m]

f(2i) ≡
∑
i∈[m]

|U2i ∩ V (K1)| ≡ |(Y − V0) ∩ V (K1)| ≡ |V (K1)| − |V0|
2

≡ 0 (mod t). (18)
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The first equality follows by the definition of f , and the second equality follows from the fact that Y −V0 =
⋃

i∈[m] U2i.

For the third equality, first recall that |U1| = . . . = |U2m| by (G’4), so |X − V0| = |Y − V0|. This implies that

|X ∩ V0| = |Y ∩ V0| since G is bipartite and balanced. Combining this with the fact that V0 ⊆ V (K1), and that

every copy of Kt,t in K1 contains exactly one vertex of V0, we get |(X − V0) ∩ V (K1)| = |(Y − V0) ∩ V (K1)| from

which the third equality follows easily. The final equality follows from |V0| and |V (K1)| being divisible by 2t. Using

(17), (18) and Claim 5.7, we can find a collection K2 of pairwise vertex-disjoint copies of Kt,t in G[U (2)] satisfying

|U (2)
i ∩ V (K2)| ≡ f(i) ≡ −|U (1)

i ∩ V (K1)| (mod t) for i ∈ [2m], which implies that |Ui ∩ V (K1 ∪K2)| is divisible by t,

as desired.

5.4 Covering the remaining vertices of G with vertex-disjoint copies of Kt,t

In this subsection, our aim is to cover the remaining vertices of G with vertex-disjoint copies of Kt,t. To this

end, we will find a collection K3 of copies of Kt,t such that V (K3) ⊆ V (G′) − V (K1 ∪ K2) and such that the sets

U ′
i := Ui − V (K1 ∪K2 ∪K3), i ∈ [2m], have the same size. This allows us to apply the blow-up lemma to find perfect

Kt,t-packings in G′[U ′
2i−1, U

′
2i] for every i ∈ [m], thereby covering all of the remaining vertices, as desired.

Let us now carry out the above strategy. For i ∈ [2m], let U
′(3)
i be an arbitrary subset of U

(3)
i such that

∣∣U ′(3)
i

∣∣ =
∣∣U (3)

i

∣∣− ∣∣Ui ∩ V (K1 ∪ K2)
∣∣

t
. (19)

(Notice that the right-hand-side of (19) is an integer due to the choice of K2.) Recall that U (3) =
⋃

i∈[2m] U
(3)
i . Write

U ′(3) :=
⋃

i∈[2m] U
′(3)
i . In the rest of this section, let H := G′ [U (3)

]
, H ′ := G′ [U ′(3)] and let d′ := d/2t.

Claim 5.8. There is a perfect matching in H ′.

Proof of claim. We claim that the following properties hold.

(a) H has maximum degree at most d′(1 + η).

(b) H has average degree at least d′(1 + η)− 32ηt · |V (H)|.

(c) H has no ζ/20-sparse cuts.

(d) H is either bipartite and balanced, or one needs to remove at least γ
256t2n

2 edges from H to make it bipartite.

(e) |V (H)− V (H ′)| ≤ 8tξ · |V (H)|.

(f) If G is bipartite and balanced, then H ′ is also bipartite and balanced.

Indeed, by (U2) and (U5), any vertex v in H has degree at most
∑

i∈[2m]

(
(1 + ε)dG′ (v,Ui)

2t

)
+ εn ≤ d′(1 + ε) + εn ≤
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d′(1 + η), proving (a). For proving (b), we have the following sequence of inequalities.

2e(H) =
∑

v∈V (H)

∑
i∈[2m]

dG′(v, U
(3)
i )

(U5)

≥ (1− ε)
∑

v∈V (H)

∑
i∈[2m]

dG′(v, Ui) ·
|U (3)

i |
|Ui|

(U2)
=

1− ε

2t

∑
v∈V (H)

dG′(v)

=
1− ε

2t

 ∑
v∈V (G′)

dG′(v)−
∑

v∈V (G′)−V (H)

dG′(v)


(G′7)

≥ 1− ε

2t
·
(

(d− 6ηn) · |V (G′)| − d ·
(
|V (G′)| − |V (H)|

))
=

1− ε

2t
·
(
d · |V (H)| − 6ηn · |V (G′)|

)
≥ d′ · |V (H)| − εd′ · |V (H)| − 6ηn · |V (H)|
= d′(1 + η) · |V (H)| − (εd′ + 6ηn + ηd′) · |V (H)|
≥ d′(1 + η) · |V (H)| − 8ηn · |V (H)|
≥ d′(1 + η) · |V (H)| − 32ηt · |V (H)|2.

It follows that H has average degree at least d′(1 + η)− 32ηt · |V (H)|, as required for (b). Notice that (c) is the same

as (U6) and (d) is the same as (U7). For proving (e), note that |V (H)−V (H ′)| ≤ |U (1)|+ |U (2)| ≤ 2ξn ≤ 8tξ · |V (H)|.
Finally, for proving (f), suppose that G is bipartite and balanced, and denote its bipartition by {X,Y }. Recall that,

by (G’4), |V0 ∩X| = |V0 ∩ Y | (since |X| = |Y |). By the choice of K1 and K2 (see Claim 5.6 and Claim 5.7), we have

|V (G′) ∩ (V (K1 ∪ K2) ∩X)| = |V (G′) ∩ (V (K1 ∪ K2) ∩ Y )|, and thus

|V (H ′) ∩X| =
∑
i∈[m]

(
|U (3)

2i−1| −
|U2i−1 ∩ V (K1 ∪ K2)|

t

)

(U2)
=

∑
i∈[m]

|U2i−1|
2t

− |V (G′) ∩ (V (K1 ∪ K2) ∩X)|
t

(G′4)
=

∑
i∈[m]

|U2i|
2t

− |V (G′) ∩ (V (K1 ∪ K2) ∩ Y )|
t

=
∑
i∈[m]

(
|U (3)

2i | −
|U2i ∩ V (K1 ∪ K2|)

t

)
= |V (H ′) ∩ Y |,

proving that H ′ is balanced, as required for (f).

Thus, by applying Lemma 3.3 with H, d′(1 + η), c/2t, 32ηt, 8tξ, γ/(256t2), ζ/20, V (H)− V (H ′), V (H) playing the

roles of G, d, c, η, ξ, γ, ζ, W , n respectively, we find that there is a Hamilton cycle in H ′, which contains a perfect

matching in H ′ (since |V (H ′)| is even), thus proving the claim.

LetM′ be a perfect matching in H ′ (guaranteed by Claim 5.8). For i, j ∈ [2m], denote by f(i, j) the number of edges

in M′[U
′(3)
i , U

′(3)
j ].

Claim 5.9. There is a collection K3 of pairwise vertex-disjoint copies of Kt,t in G′ [U (4)
]
such that for every i, j ∈

[2m], K3 consists of f(i, j) copies of Kt,t in G′[Ui, Uj ] (and there are no other Kt,t’s).

Proof. Let K3 be a maximal collection of pairwise vertex-disjoint Kt,t’s in G′ [U (4)
]
, such that for every i, j ∈ [2m],

K3 consists of at most f(i, j) copies of Kt,t in G′[U
(4)
i , U

(4)
j ] (and no other copies of Kt,t). Suppose towards a
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contradiction that there exist i, j ∈ [2m] such that the number of copies of Kt,t in K3 that are in G′[Ui, Uj ] is strictly

smaller than f(i, j) (implying that f(i, j) > 0). Write U ′′
ℓ := U

(4)
ℓ − V (K3) for every ℓ ∈ [2m].

We claim that |U ′′
ℓ | ≥ |Uℓ|/6 for every ℓ ∈ [2m]. Indeed, note that for every ℓ ∈ [2m] we have |U (4)

ℓ ∩ V (K3)| ≤
t ·
∑

j∈[2m] f(ℓ, j) = t · |U ′(3)
ℓ | ≤ t · |U (3)

ℓ | = |Uℓ|/2, where in the last equality we used (U2). Thus, by (U3), for every

ℓ ∈ [2m], |U ′′
ℓ | = |U

(4)
ℓ | − |U

(4)
ℓ ∩ V (K3)| ≥ (2/3)|Uℓ| − (1/2)|Uℓ| = |Uℓ|/6, as claimed.

Now recall that, by (G’6), for all i, j ∈ [2m], the graph G′[Ui, Uj ] is 5ε-regular, and it has density more than µ/5 if

it has at least one edge. Hence, we have eG′(U ′′
i , U

′′
j ) > (µ/5− 5ε) · |U ′′

i | · |U ′′
j |, so by the Kővári–Sós–Turán theorem

(Lemma 3.8), there is a Kt,t in G′[U ′′
i , U

′′
j ], contradicting the maximality of K3 and proving the claim.

Let K3 be a collection of copies of Kt,t as guaranteed by Claim 5.9. For i ∈ [2m], write U ′
i := Ui − V (K1 ∪K2 ∪K3).

For i ∈ [2m], by the choice of U
′(3)
i as in (19) and the fact that |Ui ∩ V (K3)| = t ·

∑
j∈[2m] f(i, j) = t · |U ′(3)

i |, we have

|U ′
i | = |Ui − V (K1 ∪ K2 ∪ K3)| = |Ui| −

∣∣Ui ∩ V (K1 ∪ K2)
∣∣− ∣∣Ui ∩ V (K3)

∣∣
= |Ui| −

∣∣Ui ∩ V (K1 ∪ K2)
∣∣− t ·

(∣∣U (3)
i

∣∣− ∣∣Ui ∩ V (K1 ∪ K2)
∣∣

t

)
= |Ui| − t

∣∣U (3)
i

∣∣ =
|Ui|
2

.

Recall that the sets Ui for i ∈ [2m] have the same size, which is divisible by 2t by (G’4). Hence, the sets U ′
i for

i ∈ [2m] have the same size, which is divisible by t. Moreover, by (U4), (U5), (G’5) and the fact that U
(5)
i is a

subset of U ′
i for each i ∈ [2m], we have that G′[U ′

2i−1, U
′
2i] is (10ε, µ/50)-super-regular for i ∈ [m]. Therefore, it

follows from the blow-up lemma (Lemma 3.6) that G′[U ′
2i−1, U

′
2i] has a perfect Kt,t-packing (since ε≪ µ, 1/t). These

perfect Kt,t-packings of G′[U ′
2i−1, U

′
2i] for i ∈ [m], along with K1, K2 and K3, form a perfect Kt,t-packing in G. This

completes the proof of Lemma 5.1.

6 H-packings in dense regular graphs

In this section, we combine Lemma 4.1 and Corollary 5.2 to prove Theorem 1.4, which asserts that for every bipartite

graph H and every constant 0 < c ≤ 1, there is a constant C > 0 such that every d-regular graph G of order n, with

d ≥ cn, has an H-packing that covers all but at most C vertices of G. Denote the sizes of the two parts of H by

a and b, and write t := a + b. Then, it is easy to see that there are two vertex-disjoint copies of H covering all the

vertices of the complete bipartite graph Kt,t. Hence, Theorem 1.4 follows immediately from the following.

Theorem 6.1. Let 0 < c ≤ 1, and let t ≥ 2 be an integer. Then there exists a constant C = C(t, c) such that every

d-regular graph G of order n, where d ≥ cn, has a Kt,t-packing that covers all but at most C vertices of G.

Proof of Theorem 6.1. Let n0 ∈ N be chosen sufficiently large depending on c and t, that is, 1/n0 ≪ c. If n < n0,

then the conclusion holds trivially for a suitably large constant C = C(t, c). So, assume n ≥ n0. Then by applying

Lemma 4.1 to G, we obtain positive numbers η, γ, ζ, r with r ≤ ⌈1/c⌉, a subgraph G′ ⊆ G with V (G′) = V (G) and

pairwise disjoint sets Z1, . . . , Zr, L ⊆ V (G) satisfying properties (B1)–(B5) such that

1/n0 ≪ η ≪ ζ ≪ γ ≪ c, 1/t.

For all i ∈ [r], by (B2), G′[Zi] has average degree at least d − η|Zi|, by (B3), G′[Zi] has no ζ-sparse cuts and, by

(B4), either G′[Zi] is bipartite and balanced, or one needs to remove at least γn2 ≥ γ|Zi|2 edges to make it bipartite,

and d ≥ cn ≥ c|Zi|. Thus, for every i ∈ [r], we can apply Corollary 5.2 with G′[Zi] playing the role of G, to obtain

a Kt,t-packing of G′[Zi] covering all but at most 2t− 1 vertices in Zi. Moreover, G[L] has a perfect Kt,t-packing by

(B5), and |V (G)− (Z1 ∪ . . . ∪ Zr ∪ L)| ≤ 64r2 · tc ·
(

e
8ζ

)t
by (B1). This yields a Kt,t-packing of G covering all but at

most the following number of vertices.

r · (2t− 1) + 64 · r2 · t
c
·
(

e

8ζ

)t

≤ 66 · r2 · t
c
·
(

e

8ζ

)t

≤ 66

(⌈
1

c

⌉)2

· t
c
·
(

e

8ζ

)t

.
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This completes the proof of Theorem 6.1.

7 Packing subdivisions in dense regular graphs

In this section, we prove Theorem 1.7. We start by giving a detailed sketch of its proof here. Let F be a graph, and

let 0 ≤ c ≤ 1. Let G be a d-regular graph of order n, where d ≥ cn. We start, as before, by partitioning the vertex set

of G into sets Z1, . . . , Zr such that the subgraphs G[Zi], i ∈ [r] induced by these sets are expanders with few edges

between them (using Lemma 3.2). Let {Xi, Yi} be a bipartition of G maximising the number of edges in G[Xi, Yi].

Let G′ be the graph obtained from G by removing all edges within Xi and Yi for all i ∈ [r] such that G[Zi] is close to

being bipartite. This ensures that for all i ∈ [r], G′[Zi] is either bipartite with the bipartition {Xi, Yi} (with roughly

the same average degree and minimum degree as G[Zi]) or it is far from being bipartite.

Next, we find short paths P1, . . . , Pr (where each Pi has both of its ends in Zi) whose removal ‘balances’ the expanders

that are close to being bipartite. More precisely, for every i ∈ [r], if G[Zi] is close to being bipartite, then, writing

Q := P1 ∪ . . . ∪ Pr, we have |Xi − V (Q)| = |Yi − V (Q)|, and Pi has one end in Xi and the other end in Yi. The key

tool for building these paths is Lemma 3.4 due to Gruslys and Letzter [11], which produces a small linear forest H

that balances the expanders that are close to being bipartite, while also ensuring that each expander contains zero or

two leaves of H. To obtain the desired paths P1, . . . , Pr, we iteratively merge pairs of components of H whose leaves

lie in the same expander and, if necessary, we define some paths Pi as arbitrary edges within G′[Zi].

Our next step is to find two small, vertex-disjoint F -subdivisions within each expander G′[Zi], denoted Fi and F ′
i ,

which are disjoint from Q and whose union is balanced; that is, if G[Zi] is close to being bipartite, then |Xi ∩ V (Fi ∪
F ′
i )| = |Yi ∩ V (Fi ∪ F ′

i )|. We construct Fi and F ′
i greedily: we begin by selecting |V (F )| vertices from Xi to serve

as the branch vertices of Fi, and |V (F )| vertices from Yi to serve as the branch vertices of F ′
i . We then iteratively

connect pairs of branch vertices (corresponding to the edges of F ) one pair at a time, to complete each subdivision.

Finally, for each i ∈ [r], we absorb the path Pi and the remaining uncovered vertices in Zi into the subdivision Fi.

To do this, we replace an arbitrary edge xiyi in Fi with a path that starts at xi, connects to one end of Pi, traverses

Pi, and then continues through all the remaining uncovered vertices in Zi before returning to yi.

In the last three steps, we rely on the fact that the expanders G′[Zi] are robustly connected via short paths; that is,

any two vertices can be joined by a short path that avoids any given small set of forbidden vertices (see Lemma 7.1).

In the final step, we also use the robust Hamiltonicity property of the expanders G′[Zi], meaning that for any small

set of forbidden vertices W (which is balancing if G′[Zi] is bipartite), and any two vertices x, y ∈ Zi −W (lying in

different parts of G′[Zi] if it is bipartite), there exists a Hamilton path in G′[Zi]−W with ends x and y.

The proof of Theorem 1.7 is given in Section 7.3, after establishing two preparatory lemmas in the following two

subsections.

7.1 Expanders are robustly connected via short paths

In the following lemma, we show that our expanders are ‘robustly connected’ via short paths, a property we will use

several times in the proof.

Lemma 7.1. Let n be a positive integer, and let β, ξ, ζ, δ ∈ (0, 1) satisfy 1/n ≪ ξ, β ≪ ζ ≪ δ. Let H be a graph

on at most n vertices with minimum degree at least δn and no ζ-sparse cuts. If H is β-almost-bipartite, let H ′ be a

largest bipartite subgraph of H; otherwise, set H ′ := H. Then, H ′ has no ζ/2-sparse cuts. Moreover, if W ⊆ V (H)

is a subset of size at most ξn, then H ′′ := H ′ −W satisfies the following properties.

(i) H ′′ has no ζ/2-sparse cuts.

(ii) For every pair p, p′ ∈ V (H ′′), there exists a (p, p′)-path in H ′′ of length at most 15/δ.
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Proof. Notice that H ′ has minimum degree at least δn/2, and H ′′ has minimum degree at least δn/4. First, we show

that H ′ has no ζ/2-sparse cuts. Consider a partition {X,Y } of V (H ′) with |X| ≤ |Y |. If |X| ≤ δn/4, then, since H ′

has minimum degree at least δn/2, we have eH′(X,Y ) ≥ δn
4 · |X| ≥

δ
4 · |X| · |Y | ≥

ζ
2 · |X| · |Y |. So we may assume that

|X|, |Y | ≥ δn/4. Then, since H has no ζ-sparse-cuts, we have eH′(X,Y ) ≥ eH(X,Y ) − βn2 ≥ ζ · |X| · |Y | − βn2 ≥
ζ/2 · |X| · |Y |, showing that H ′ has no ζ/2-sparse cuts, as desired. To prove (i), we use a very similar argument.

Consider a partition {X,Y } of V (H ′′) with |X| ≤ |Y |. If |X| ≤ δn/8, then, since H ′′ has minimum degree at least

δn/4, we have eH′′(X,Y ) ≥ δn
8 · |X| ≥

δ
8 · |X| · |Y | ≥

ζ
2 · |X| · |Y |. So we may assume that |X|, |Y | ≥ δn/8. But then,

since H has no ζ-sparse-cuts,

eH′′(X,Y ) = eH′(X,Y ) = eH′(X,Y ∪W )− eH′(X,W )

≥ (eH(X,Y ∪W )− βn2)− ξn2

≥ ζ · |X| · |Y | − βn2 − ξn2

≥ ζ/2 · |X| · |Y |.

since ξ, β ≪ δ, ζ. This shows that H ′′ has no ζ/2-sparse cuts, proving (i).

Now we prove (ii). Let p, p′ ∈ V (H ′′). By (i), H ′′ is connected, so it contains a (p, p′)-path. Let P be a shortest

(p, p′)-path in H ′′. We claim that P has length at most 15/δ. Indeed, suppose otherwise, and let P be the path

u0 . . . ut, where u0 = p and ut = p′ such that t > 15/δ. Set U := {u0, u3, . . . , u3q}, where q := ⌈4/δ⌉ (this is well

defined because t > 15
δ ≥ 3 · ( 4

δ + 1) ≥ 3 ·
⌈
4
δ

⌉
= 3q). Since H ′′ has minimum degree at least δn/4, the number of

edges of H ′′ incident to vertices in U is at least (q + 1) · δn/4 > n, implying that there is a vertex v in H ′′ with at

least two neighbours in U , say u3i and u3j , where i < j. Denote by W the walk u0u1 . . . u3ivu3j . . . ut. Note that W

is a (p, p′)-walk in H ′′. Let P ′ be a (p, p′)-path contained in W . Since W is shorter than P , it follows that P ′ is also

shorter than P , a contradiction to the minimality of P . This proves (ii), completing the proof of Lemma 7.1.

7.2 Balancing the expanders

As further preparation for the proof of Theorem 1.4, we state the following corollary of Lemma 3.4, which will allow

us to balance the expanders using a suitable collection of paths. This is somewhat similar to Lemma 4.1, where we

also balance the expanders, but using a collection of vertex-disjoint Kt,t’s instead of paths.

Lemma 7.2. Let η, β, ξ, γ, ζ, δ, c ∈ (0, 1) and n ∈ N satisfy 1/n ≪ η ≪ β ≪ ξ ≪ γ ≪ ζ ≪ δ ≪ c. Let G be a

d-regular graph on n vertices, where d ≥ cn. Suppose that {Z1, . . . , Zr} is a partition of V (G) satisfying properties

(E1)–(E4) in Lemma 3.2, where r ≤ ⌈1/c⌉. For i ∈ [r] such that G[Zi] is β-almost-bipartite, let {Xi, Yi} be a partition

of Zi maximising eG(Xi, Yi). Then there are vertex-disjoint paths P1, . . . , Pr in G satisfying the following properties,

where Q :=
⋃

i∈[r] Pi.

(P’1) For every i ∈ [r], we have 2 ≤ |V (Pi)| ≤ ξn.

(P’2) For every i ∈ [r], both leaves of Pi are in Zi. Moreover, for each i ∈ [r] such that G[Zi] is β-almost-bipartite,

one of the leaves of Pi is in Xi and the other leaf is in Yi.

(P’3) For each i ∈ [r] such that G[Zi] is β-almost-bipartite, |Xi − V (Q)| = |Yi − V (Q)|.

Proof. Let H be the linear forest guaranteed by Lemma 3.4, satisfying properties (P1)–(P4). Let G′ be the subgraph

of G obtained by removing all edges with both endpoints in Xi or both endpoints in Yi, for each i ∈ [r] such that

G[Zi] is β-almost-bipartite.

We will iteratively add some edges from G′ to H using the following procedure to construct subgraphs H0 :=

H,H1, . . . ,Hr satisfying |V (Hi)| ≤ ξn + 15i/δ for every i ∈ [r].

For i ∈ [r], suppose that Hi−1 is already defined such that |V (Hi−1)| ≤ ξn + 15(i− 1)/δ; we construct Hi as follows.

If Hi−1 has two distinct components, say P and P ′, with leaves p, p′ in Zi, say p ∈ V (P ) ∩ Zi, p′ ∈ V (P ′) ∩ Zi,

let Li be a shortest (p, p′)-path in G′[Zi] − (V (Hi−1) − {p, p′}). Applying (ii) of Lemma 7.1 with G[Zi], G′[Zi],
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V (Hi−1) − {p, p′}, 2ξ playing the roles of H, H ′, W , ξ, respectively, we obtain that the path Li has length at most

15/δ. (Note that Lemma 7.1 indeed applies because |V (Hi−1)| ≤ ξn + 15(i − 1)/δ ≤ 2ξn.) Define Hi := Hi−1 ∪ Li.

Note that |V (Hi)| ≤ |V (Hi−1)|+ 15/δ ≤ ξn + 15i/δ, as required.

If G[Zi] is β-almost-bipartite, then, by (P3), one of the two vertices p, p′ is in Xi and the other one is in Yi. Therefore,

we have the following.

If G[Zi] is β-almost-bipartite, then |V (Li) ∩Xi| = |V (Li) ∩ Yi|. (20)

Notice that for every i ∈ [r], the number of leaves of Hj in Zi is the same as the number of leaves of Hj−1 in Zi, unless

j = i, in which case it either remains the same, or it decreases from 2 to 0. Moreover, if Hi has two leaves in Zi, then

they must belong to the same component of Hi, which is then also a component of Hr; denote this component by Pi.

For every i ∈ [r] such that Pi is not defined (which means that Hr has no components with leaves in Zi), define Pi

to be an edge in G′[Zi]− V (Hr). This is indeed possible because

|V (Hr)| ≤ ξn + 15r/δ ≤ 2ξn, (21)

which implies that G′[Zi]− V (Hr) contains at least one edge.

Notice that P1, . . . , Pr are pairwise vertex-disjoint. We claim that they satisfy (P’1)–(P’3) (with 2ξ playing the role

of ξ for (P’1)). Indeed, by (21) we have |V (Pi)| ≤ max{2, |V (Hr)|} ≤ 2ξn, and since Pi contains two leaves, we have

|V (Pi)| ≥ 2, proving (P’1). Note that (P’2) holds when Pi is a component of Hr by the discussion in the previous

paragraph together with (P3); otherwise, it holds by the choice of Pi as an edge in G′[Zi] − V (Hr). For proving

(P’3), recall that Q = P1 ∪ . . .∪Pr and consider i ∈ [r] such that G[Zi] is β-almost-bipartite. Also recall that if Li is

defined, then its leaves are p, p′. Then we have,

V (Q) ∩ Zi =


V (H) ∩ Zi if Pi ⊆ Hr

(V (H) ∩ Zi) ∪· V (Pi) if Pi ⊈ Hr and Li is not defined

(V (H) ∩ Zi) ∪· V (Pi) ∪· (V (Li)− {p, p′}) if Pi ⊈ Hr and Li is defined.

(Here A ∪· B denotes the union of the disjoint sets A and B.) Hence, (P’3) follows from (P4), (20), and the choice of

Pi as an edge in G′[Zi]− V (Pr) when Pi ⊈ Hr, completing the proof of Lemma 7.2.

7.3 Proof of Theorem 1.7

We are now ready to prove Theorem 1.7.

Proof of Theorem 1.7. Let F be a graph with at least one edge, let n0 ∈ N be such that 1/n0 ≪ c, and let G be

a d-regular graph of order n ≥ n0 and let d ≥ cn. Our aim is to show that G has a perfect TF-packing.

By applying Lemma 3.2 to G, we obtain positive numbers η, β, γ, ζ, δ where

1/n0 ≪ η ≪ β ≪ γ ≪ ζ ≪ δ ≪ c

and a partition {Z1, . . . , Zr} of V (G) satisfying properties (E1)–(E4) such that r ≤ ⌈1/c⌉.

Let ξ ∈ (0, 1) satisfy

β ≪ ξ ≪ γ.

For each i ∈ [r], let Xi, Yi be a partition of Zi that maximizes eG(Xi, Yi). Let G′ be the subgraph of G obtained by

removing all edges with both endpoints in Xi or both in Yi, for each i ∈ [r] such that G[Zi] is β-almost-bipartite. Let

P1, . . . , Pr be vertex-disjoint paths satisfying (P’1)–(P’3), guaranteed by Lemma 7.2, and let Q := P1 ∪ . . . ∪ Pr.

7.3.1 Constructing a balanced pair of F -subdivisions in each expander

For every i ∈ [r], we will construct two vertex-disjoint subdivisions of F in G′[Zi]− V (Q) as follows.
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Claim 7.3. For every i ∈ [r], there exist two vertex-disjoint F -subdivisions Fi, F
′
i in G′[Zi] − V (Q) such that

|V (Fi)|, |V (F ′
i )| ≤ e(F ) · 15/δ. Moreover, if G[Zi] is β-almost-bipartite, then

|Xi ∩ (V (Fi ∪ F ′
i ))| = |Yi ∩ (V (Fi ∪ F ′

i ))|. (22)

Proof. Fix i ∈ [r]. Let S, S′ ⊆ Zi − V (Q) be disjoint sets of size |V (F )|, where S ⊆ Xi and S′ ⊆ Yi if G[Zi] is

β-almost-bipartite, and let ϕ : S → V (F ) and ϕ′ : S′ → V (F ) be two injections chosen arbitrarily. Let T be the set of

unordered pairs {s, s′} with s, s′ ∈ S such that ϕ(s)ϕ(s′) is an edge in F , and similarly, let T ′ be the set of unordered

pairs {s, s′} with s, s′ ∈ S′ such that ϕ′(s)ϕ′(s′) is an edge in F .

Let P be a maximal collection of pairwise internally vertex-disjoint paths in G′[Zi]− V (Q), with internal vertices in

Zi− (V (Q)∪S∪S′), whose length is at most 15/δ and such that each of the paths in P is an (s, s′)-path for a distinct

pair {s, s′} ∈ T ∪ T ′. We claim that |P| = 2e(F ). Indeed, suppose otherwise. Then there is a pair (s, s′) ∈ T ∪ T ′ for

which there is no (s, s′)-path in P. Fix such a pair (s, s′), and let W := V (P) ∪ V (Q) ∪ S ∪ S′. Then

|W | ≤ 2e(F ) · 15/δ + ξn + 2|V (F )| ≤ 2ξn.

Thus, by applying (ii) of Lemma 7.1 (with 2ξ playing the role of ξ), we obtain an (s, s′)-path P in G′[Zi] −W of

length at most 15/δ. But then P ∪ {P} contradicts the maximality of P. This shows that |P| = 2e(F ), as claimed.

Pick a collection P as guaranteed by the previous paragraph. Take Fi to be the subgraph consisting of the paths in P
with ends in S, and take F ′

i to be the subgraph consisting of the paths in P with ends in S′. We claim that Fi and F ′
i

satisfy the requirements of Claim 7.3. Indeed, first note that Fi is an F -subdivision in G′[Zi]− V (Q) whose branch

vertices are in S, and similarly F ′
i is an F -subdivision in G′[Zi] − V (Q) whose branch vertices are in S′. Second,

notice that Fi and F ′
i are vertex-disjoint, since the paths in P are internally vertex-disjoint whose internal vertices

are in Zi − (V (Q) ∪ S ∪ S′). Third, we have |V (Fi)|, |V (F ′
i )| ≤ e(F ) · 15/δ, since every path in P has length at most

15/δ by our choice of P. Finally, if G[Zi] is β-almost-bipartite, then for every path P ∈ P with ends in S, we have

|V (P ◦) ∩Xi| = |V (P ◦) ∩ Yi| − 1,

where P ◦ denotes the interior of the path P . Hence

|V (Fi) ∩Xi| − |V (Fi) ∩ Yi| =
∑

P a path in P with ends in S

(
|V (P ◦) ∩Xi| − |V (P ◦) ∩ Yi|

)
+ |S|

= −e(F ) + |V (F )|,

and analogously,

|V (F ′
i ) ∩ Yi| − |V (F ′

i ) ∩Xi| = −e(F ) + |V (F )|.

Altogether, since Fi and F ′
i are vertex-disjoint,

|V (Fi ∪ F ′
i ) ∩Xi| − |V (Fi ∪ F ′

i ) ∩ Yi|
= |V (Fi) ∩Xi| − |V (Fi) ∩ Yi|+ |V (F ′

i ) ∩Xi| − |V (F ′
i ) ∩ Yi| = 0.

This proves (22), completing the proof of Claim 7.3.

7.3.2 Absorbing the paths P1, . . . , Pr and all the uncovered vertices into the subdivisions Fi

For every i ∈ [r], let Fi, F
′
i be the two vertex-disjoint subdivisions of F in G′[Zi]−V (Q), as guaranteed by Claim 7.3.

Denote the leaves of Pi by ui and vi, where ui ∈ Xi and vi ∈ Yi if G[Zi] is β-almost-bipartite. Let xiyi be an arbitrary

edge of Fi, where xi ∈ Xi and yi ∈ Yi if G[Zi] is β-almost-bipartite. Let Qi be a shortest (yi, ui)-path in G′[Zi] whose

interior avoids V (Q) ∪ V (Fi) ∪ V (F ′
i ). By (P’1),

|V (Q)|+ |V (Fi)|+ |V (F ′
i )| ≤ rξn + 2|V (F )| ≤ ⌈1/c⌉ξn + 2|V (F )| ≤

√
ξn. (23)
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Hence, it follows that Qi exists and is of length at most 15/δ by applying (ii) of Lemma 7.1 (with
√
ξ playing the role

of ξ). Let H := G[Zi], and let H ′ := G′[Zi]. Then, by Lemma 7.1, H ′ has no ζ/2-sparse cuts. Now let

Wi := Zi ∩
((

V (Q) ∪ V (Fi) ∪ V (F ′
i ) ∪ V (Qi)

)
− {xi, vi}

)
.

By (23) and the fact that |V (Qi)| ≤ 15
δ + 1, we have |Wi| ≤ 15

δ + 1 +
√
ξn ≤ 2

√
ξn.

Note that H ′ has maximum degree at most d since it is a subgraph of G. By (E1), and the fact that |V (H ′)| = |Zi| ≥ δn

(by (E2)), we have

2e(H ′) ≥ d · |V (H ′)| − ηn2 − βn2 ≥ d · |V (H ′)| − 2β

δ2
· |V (H ′)|2,

showing that H ′ has average degree at least d − (2β/δ2)|V (H ′)|. Moreover, H ′ is either bipartite or γ-far-from-

bipartite by definition. Therefore, using |Wi| ≤ 2
√
ξn, we can apply Lemma 3.3 with H ′, Wi, 2β/δ2, 2ξ, ζ/2 playing

the roles of G, W , η, ξ, ζ, respectively, to find a Hamilton path Q′
i in H ′ −Wi = G′[Zi] −Wi with ends xi and vi.

Note that Lemma 3.3 indeed applies because when G[Zi] is β-almost-bipartite (so H ′ is bipartite), (P’3) and (22)

together imply that |Xi −Wi| = |Yi −Wi|.

Now replace the edge xiyi in Fi with the path xiQ
′
iviPiuiQiyi to obtain a subgraph F ′′

i which is a subdivision of F .

Note that V (F ′′
i ) ∪ V (F ′

i ) = (Zi − V (Q)) ∪ V (Pi). Hence, {F ′
i , F

′′
i | i ∈ [r]} is a collection of F -subdivisions that are

pairwise vertex-disjoint covering all vertices of G, completing the proof of Theorem 1.7.

8 Concluding remarks

Recall that our main result (Theorem 1.4) states that for every bipartite graph H, every dense regular graph G

contains an H-packing covering all but O(1) vertices. As noted in the introduction, this was already known for

unbalanced bipartite graphs H by Kühn and Osthus [31] (see Theorem 1.3). In fact, they proved a slightly stronger

statement in this case: the host graph G need only be almost regular rather than regular. More precisely, for every

bipartite H and every c > 0, there exist ε > 0 and C such that any n-vertex graph G in which every vertex has

degree between (c− ε)n and (c + ε)n contains an H-packing covering all but at most C vertices. This fails, however,

for balanced bipartite H (for example, if G is a slightly unbalanced bipartite graph) so our result cannot, in general,

be extended to the almost regular setting.

Keevash proved an analogous result for hypergraphs (see Theorem 5.14 in [15]).2 Specifically, he showed that for every

3-partite 3-graph H whose parts are not all of equal size, and for every 0 < c1, c2 < 1, there exist ε > 0 and C > 0 such

that if G is a 3-graph on n vertices in which every vertex has degree between (1− ε)c1n
2 and (1 + ε)c1n

2, and every

pair of vertices has degree more than c2n, then G contains an H-packing covering all but at most C vertices. Here,

the degree of a pair {u, v} of vertices in G is the number of vertices w ∈ V (G)− {u, v} such that {u, v, w} ∈ E(G).

It is plausible that, analogous to Theorem 1.4, the conclusion holds for all tripartite 3-graphs H when G is assumed

to be regular.

Question 8.1. Is it true that for every tripartite 3-graph H and every 0 < c < 1, there exist ε > 0 and C > 0 such

that the following holds? If G is a 3-graph on n vertices in which all vertices have the same degree at least cn2, and

every pair of vertices has degree at least cn, then G contains an H-packing covering all but at most C vertices.

The problem of partitioning the vertex set of edge-coloured complete graphs into a small number of monochromatic

subgraphs has a very rich history; see [12] for a recent survey. An early example of a problem of this kind is Lehel’s

conjecture. An interesting problem in this direction, suggested by Matija Bucić, is to consider a variant of Theorem 1.4

where the edges of G are colored and we seek packings using monochromatic H-copies (where different copies of H

may receive different colors).

2Keevash’s theorem is stated and proved for 3-uniform hypergraphs, but the analogous statement for higher uniformities can be obtained
by the same methods.
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Question 8.2. Is it true that for every bipartite graph H, integer r ≥ 2, and 0 < c < 1, there exists C > 0 such that

the following holds? If G is an n-vertex d-regular graph with d ≥ cn, whose edges are colored with r colors, then G

contains a collection of vertex-disjoint monochromatic copies of H covering all but at most C vertices.

The problem of finding a large monochromatic H-packing in a graph with a given minimum degree was studied by

Balogh, Freschi, and Treglown [2].
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A Perfect fractional matching implies perfect 2-matching

Proof of Fact 5.4. Suppose that G is a graph with a perfect fractional matching. Let w : E(G) 7→ [0, 1] be a perfect

fractional matching in G that minimises the number of edges whose weight is neither 0 nor 1, and denote by G′ the

subgraph of G whose edges have non-zero weight in w. We claim that G′ is a 2-matching; that is, every connected

component of G′ is either a single edge or an odd cycle. Notice that G′ is spanning, because w is a perfect fractional

matching. Thus, if G′ is a 2-matching, this would show that G′ is a perfect 2-matching in G as required.

Therefore, it remains to show that G′ is a 2-matching. Suppose for a contradiction that it is not, and let F be a

component of G′ which is neither an edge nor an odd cycle.

First, notice that F has minimum degree at least 2. Indeed, otherwise, let v be a vertex with degree 1 in F , let u be

its unique neighbour, and let x be a neighbour of u which is not v. Then w(vu), w(ux) > 0, implying that w(vu) < 1,

contradicting the assumption that w is a perfect fractional matching.

Next, we claim that F does not have even cycles. Indeed, suppose that C = (v1 . . . v2s) is an even cycle in F . For

x > 0, let wx : E(G) 7→ [0, 1] be the weighting of the edges of G defined as follows (with the addition of indices taken

modulo 2s).

wx =


w(e) e /∈ E(C)

w(e) + x e = v2i−1v2i for i ∈ [s]

w(e)− x e = v2iv2i+1 for i ∈ [s].

Note that the edges vivi+1, with i ∈ [2s], have weight strictly between 0 and 1, and so there exists x > 0 such that

all weights in wx are in [0, 1]. Let x′ be the maximum x with this property. Then at least one of the edges in C has

weight either 0 or 1 in wx′ , showing that wx′ is a perfect fractional matching in G with fewer edges whose weight is

neither 0 nor 1 compared to w, a contradiction to the choice of w. This shows that F does not have even cycles, as

desired. Moreover, this shows that F cannot be a cycle since we assumed that F is not an odd cycle.

Since F has minimum degree at least 2 and is not a cycle, it contains two distinct cycles C1 and C2. Because F has

no even cycles, these cycles are odd and share at most one vertex (otherwise their union contains an even cycle). Let

P be a shortest path with one end in C1 and the other end in C2. (Note that P is a singleton if the cycles share a

vertex.) Write C1 = (v1 . . . v2s+1), C2 = (u1 . . . u2t+1), and suppose that P is a path from v1 to u1. Now, for x > 0,

let wx : E(G) 7→ [0, 1] be the weighting of the edges of G obtained from w by making the following modifications.

• Decrease the weight of edges v2i−1v2i, with i ∈ [s + 1], by x (where addition in the indices is taken modulo

2s + 1).

• Increase the weight of edges v2iv2i+1, with i ∈ [s], by x.

• Increase the weight of the first, third, fifth, etc. edges of P by 2x (starting from v1).

• Decrease the weight of the second, fourth, sixth, etc. edges of P by 2x (starting from v1).

• If P has odd length, decrease the weight of edges u2i−1u2i with i ∈ [t + 1] by x (where addition of indices is

taken modulo 2t + 1). Otherwise, increase the weight of these edges by x.

• If P has odd length, increase the weight of edges u2iu2i+1, with i ∈ [t], by x. Otherwise, decrease the weight of

these edges by x.

As before, there exists x > 0 such that all weights in wx are in [0, 1], and let x′ be the maximum x with this property.

Then wx′ is a perfect fractional matching of G with fewer edges whose weight is neither 0 nor 1 compared to w, a

contradiction.

In conclusion, the assumption that F is a component of G′ that is neither an odd cycle nor an edge leads to a

contradiction, so G′ is a 2-matching (and thus G′ is a perfect 2-matching in G), as required.
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B Hamiltonicity of clusters

In this section, we present the proof of Lemma 3.3. Our proof closely follows that of Lemma 4 in [11], but we include

it here for completeness and to address differences in the lemma’s statement.

The proof is based on known results concerning the Hamiltonicity of robust out-expanders, a concept introduced by

Kühn, Osthus and Treglown [34]. Before stating the relevant result, we first introduce some necessary definitions.

Given a digraph G on n vertices, a set of vertices S and a parameter ν ∈ (0, 1), the robust ν-out-neighbourhood

of S in G, denoted RN+
ν,G(S), is the set of vertices in G that have at least νn in-neighbours in S; we omit the

subscript G when it is clear from the context. Given 0 < ν ≤ τ < 1, we say that G is a robust (ν, τ)-out-expander if

|RN+
ν (S)| ≥ |S|+ νn for every set of vertices S with τn ≤ |S| ≤ (1− τ)n. We shall also use the following undirected

version of a robust out-neighbourhood. In a graph G on n vertices, the robust ν-neighbourhood of a set of vertices S,

denoted RNν,G(S), is the set of vertices in G with at least νn neighbours in S. As before, we may omit the subscript

G when it is clear from the context. We say that G is a robust (ν, τ)-expander if |RNν,G(S)| ≥ |S|+ νn for every set

of vertices S with τn ≤ |S| ≤ (1− τ)n.

We will need the following theorem from [34]. The minimum semi-degree of a digraph G, denoted δ0(G), is defined

as δ0(G) = min{δ+(G), δ−(G)}, where δ+(G), δ−(G) are the minimum out-degree and in-degree of G, respectively.

Theorem B.1 (Kühn, Osthus and Treglown [34]). Let n ∈ N and let ν, τ, γ be reals such that 1/n≪ ν ≤ τ ≪ γ < 1.

Let G be a digraph on n vertices with δ0(G) ≥ γn which is a robust (ν, τ)-out-expander. Then G contains a Hamilton

cycle.

We shall use the following corollary of Theorem B.1.

Corollary B.2. Let ν, τ, γ be reals and let n be an integer such that 1/n ≪ ν ≤ τ ≪ γ < 1. Let G be a digraph on

n vertices with δ0(G) ≥ γn which is a robust (ν, τ)-out-expander. Then for every choice of distinct vertices x and y,

there is a Hamilton path in G with ends x and y.

Proof. Given vertices x and y, form G′ by adding the edge xy to G, removing the edge yx (if it exists), and removing

all the edges directed toward y or away from x. Next, form G′′ by contracting the edge xy. It is easy to check that

G′′ is a robust (ν/2, 2τ)-out-expander. Thus, by Theorem B.1, it contains a Hamilton cycle. This cycle corresponds

to a Hamilton cycle in G′ which contains the edge xy, which in turn corresponds to a Hamilton path in G with ends

x and y.

Proof of Lemma 3.3. Let G be a graph with n vertices, maximum degree at most d, and average degree at least

d− ηn. Suppose G has no ζ-sparse cuts and is either γ-far-from-bipartite or bipartite with a bipartition {X,Y }. Let

W ⊆ V (G) be a set of size at most ξn, which satisfies |X −W | = |Y −W | if G is bipartite. Define H = G −W ,

V = V (H), and, if G is bipartite, then also define X ′ = X −W and Y ′ = Y −W . Then H has maximum degree at

most d, average degree at least d− 2ξn, and no ζ/2-sparse cuts.

The following claim will allow us to use Corollary B.2 above.

Claim B.3. Let S ⊆ V be a set satisfying ξ1/7n ≤ |S| ≤ (1 − ξ1/7)n if G is γ-far-from-bipartite, or ξ1/7n ≤ |S| ≤
(1/2− ξ1/7)n if G is bipartite. Then |RNξ,H(S)| ≥ |S|+ ξn.

Proof. Define S1 = S − RNξ(S), S2 = S ∩ RNξ(S), T1 = RNξ(S) − S, T2 = V − (S ∪ T1). Assume, towards a

contradiction, that |RNξ(S)| < |S|+ ξn, which implies that |T1| < |S1|+ ξn.

Given sets A,B ⊆ V , denote by e(A,B) the number of ordered pairs ab such that ab is an edge of H and a ∈ A, b ∈ B.

Then

e(S1, V − T1) ≤ e(S1, S) + e(S1, T2) ≤ (|S1|+ |T2|) · ξn ≤ ξn2, (24)

using that the vertices in S1∪T2 are not in RNξ(S). By the maximum and average degree assumption on H, we have

e(S1, T1) =
∑
v∈S1

dH(v)− e(S1, V − T1) ≥ d|S1| − 2ξn2 − ξn2 = d|S1| − 3ξn2.
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As |T1| < |S1|+ ξn, we obtain the following bound on e(T1, V − S1).

e(T1, V − S1) ≤ d|T1| − e(S1, T1) ≤ d(|T1| − |S1|) + 3ξn2 ≤ 4ξn2. (25)

Consider the quantity e(S1 ∪ T1, V − (S1 ∪ T1)). By (24) and (25), this quantity is at most 5ξn2, and since H has

no ζ/2-sparse cuts, it is at least (ζ/2) · |S1 ∪ T1| · |V − (S1 ∪ T1)|. As ξ ≪ ζ, we find that either |S1 ∪ T1| ≤ ξ1/3n or

|V − (S1 ∪ T1)| ≤ ξ1/3n.

First, suppose that |S1 ∪ T1| ≤ ξ1/3n. Then

e(S2, V − S2) ≤ e(S1 ∪ T1, V ) + e(S2, T2) ≤ ξ1/3n2 + |T2|ξn ≤ 2ξ1/3n2,

using that |S1 ∪ T1| ≤ ξ1/3n and T2 ∩ RNξ(S2) = ∅. However, since H does not have ζ/2-sparse cuts and given the

assumption of the size of S, we have

e(S2, V − S2) ≥ (ζ/2) · |S2| · |V − S2| ≥
ζ

2
· (ξ1/7n− |S1|) ·

ξ1/7n

2
≥ ζ

2
· ξ

2/7n2

4
> 2ξ1/3n2,

a contradiction.

Next, suppose that |V − (S1∪T1)| ≤ ξ1/3n. If G is bipartite, then using that |T1| < |S1|+ ξn and |S| ≤ (1/2− ξ1/7)n,

we have

|V | = |V − (S1 ∪ T1)|+ |S1 ∪ T1| < ξ1/3n + |S1|+ (|S1|+ ξn)

≤ ξ1/3n + n− 2ξ1/7n + ξn < n− ξn ≤ n− |W |,

a contradiction. Hence, we may assume that G is γ-far-from-bipartite. Note that G can be made bipartite by

removing edges incident to W ∪ S2 ∪ T2 or within S1 or T1. However, there are at most (ξ + ξ1/3)n2 edges of the

former type (since |W | ≤ ξn and |V − (S1 ∪ T1)| = |S2 ∪ T2| ≤ ξ1/3n) and at most 5ξn2 edges of the latter type (by

(24) and (25)), so there are fewer than γn2 edges in total (using ξ ≪ γ). This contradicts the assumption that G is

γ-far-from-bipartite, thus completing the proof of the claim.

It follows from Claim B.3 that H is a robust (ξ, 2ξ1/7)-expander. Let x, y ∈ V , where x ∈ X and y ∈ Y if G is

bipartite. Our goal is to show that H contains a Hamilton path with ends x and y. First, consider the case where

G is γ-far-from-bipartite. Form a digraph D by replacing each edge uv of H with the two directed edges uv and vu.

It follows from Claim B.3 that D is a robust (ξ, 2ξ1/7)-out-expander. Then, Corollary B.2 implies the existence of a

Hamilton path in D with ends x and y, which corresponds to a Hamilton path in H with the same ends.

Now, suppose that G is bipartite. Note that in this case H is a balanced bipartite graph (by our choice of the set W ).

We first show that H has a perfect matching by verifying Hall’s condition i.e., we will show that for every S ⊆ X ′,

we have |NH(S)| ≥ |S|. Notice that H has minimum degree at least ζ(n − 1) − ξn ≥ ζn/2, by the assumption that

G has no ζ-sparse cuts and by |W | ≤ ξn. Thus, if |S| < ζn/2 (and S ̸= ∅) then |NH(S)| ≥ ζn/2 ≥ |S|. Similarly,

if |S| > |V |/2 − ζn/2 then |NH(S)| = |V |/2 ≥ |S|. Hence, we may assume that ζn/2 ≤ |S| ≤ |V |/2 − ζn/2, which

implies that ξ1/7n ≤ |S| ≤ (1/2 − ξ1/7)n, but then Claim B.3 implies that |NH(S)| ≥ |S|, showing that H has a

perfect matching.

Let {a1b1, . . . , atbt} be a perfect matching in H, where t = |X ′| and ai ∈ X ′, bi ∈ Y ′ for i ∈ [t]. We assume for

convenience that aibi is not the edge xy (if the edge xy exists) for i ∈ [t] – this is possible because removal of the edge

xy from H does not affect the arguments above. Without loss of generality, a1 = x and bt = y. Form an auxiliary

directed graph D with vertex set {v1, . . . , vt} where vivj is a directed edge whenever biaj is an edge of H. It follows

from Claim B.3 that D is a robust (ξ, 3ξ1/7)-out-expander. Then, by Corollary B.2, there is a Hamilton path in D

starting at v1 and ending at vt. Without loss of generality, suppose that this path is v1, . . . , vt. This path corresponds

to the Hamilton path x = a1, b1, . . . , at, bt = y in H, as desired.
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