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Abstract

A well-known result due to Chvatál and Erdős (1972) asserts that, if a graph G satisfies κ(G) ≥ α(G),

where κ(G) is the vertex-connectivity of G, then G has a Hamilton cycle. We prove a similar result

implying that a graph G is pancyclic, namely it contains cycles of all lengths between 3 and |G|: if
|G| is large and κ(G) > α(G), then G is pancyclic. This confirms a conjecture of Jackson and Ordaz

(1990) for large graphs, and improves upon a very recent result of Draganić, Munhá-Correia, and

Sudakov.

1 Introduction

A graph G is Hamiltonian if it contains a Hamilton cycle, namely a cycle through all the vertices of

G. The notion of Hamiltonicity is a key notion in combinatorics and computer science (see the surveys

[18, 23]). The decision problem, of determining whether a given graph is Hamiltonian, is one of 21

problems that have been shown to be NP-complete in Karp’s influential paper [20] from 1972. As

such, it is interesting to find simple sufficient conditions for Hamiltonicity. Perhaps the earliest and

best-known example is Dirac’s theorem [11] from 1952, which asserts that every n-vertex graph with

minimum degree at least n/2 (and n ≥ 3) has a Hamilton cycle.

We say that a graph G is pancyclic if it contains a cycle of length ℓ, for every ℓ ∈ [3, |G|]. In 1971

Bondy [4] showed that Dirac’s theorem can be strengthened substantially, to show that every graph

on n vertices with minimum degree at least n/2 is either pancyclic, or a balanced complete bipartite

graph. While interesting in its own right, Bondy believed that this example was a special case of a

much more general phenomenon: in 1973 he [5] posed a famous ‘meta-conjecture’, asserting that almost

every non-trivial property implying Hamiltonicity also implies pancyclicity, up to a small number of

exceptions.

Since then, the validity of this meta-conjecture has been proved in many cases. For example, Bauer

and Schmeichel [2] considered three properties involving degrees of vertices that were shown to imply

Hamiltonicity by Bondy [6], Chvatál [8], and Fan [17], and showed that they also imply pancyclicity,

with the exception of some bipartite graphs. Clark [10] (and later, independently, Shi [28] and Zhang

[30]) showed that connected, locally connected claw-free graphs on at least three vertices are pancyclic,
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generalising a result of Oberly and Sumner [26], who proved that such graphs are Hamiltonian. Another

very recent illustration of the validity of Bondy’s meta-conjecture is a result of Dragaić, Munhá-Correia,

and Sudakov [13]. To state their result, let α̃(G) be the bipartite independence number of G, defined to

be the maximum of a+ b, over all a, b such that there exist disjoint sets A and B, of a and b vertices,

such that G has no A-B edges. (In particular, α̃(G) ≥ α(G) for every graph G.) They proved that if

a graph G satisfies δ(G) ≥ α̃(G), then G is pancyclic, unless G is a balanced complete bipartite graph,

generalising a result of McDiarmid and Yolov [25] who proved that this condition implies Hamiltonicity.

The result of McDiarmid and Yolov is reminiscent of the following classic result of Chvatál and Erdős

[9] from 1972: every graph G satisfying κ(G) ≥ α(G), where κ(G) is the vertex-connectivity of G, is

Hamiltonian. In light of the above discussion, it is natural to ask: is (almost) every graph G satisfying

κ(G) ≥ α(G) pancyclic? It is easy to come up with a counterexample; indeed, any balanced complete

bipartite graph is one. In fact, Bauer, van den Heuvel, and Schmeichel [3] found many examples of

non-bipartite, triangle-free graphs G satisfying κ(G) = α(G). Such graphs are counterexamples to the

question, due to the triangle-freeness. Nevertheless, Lou [24] showed that every such graph G contains

a cycle of length ℓ for every ℓ ∈ [4, |G|], so the lack of triangles is the only barrier to pancyclicity for

this class of examples. It is plausible that every graph G which satisfies κ(G) ≥ α(G) and contains a

triangle is pancyclic. In this direction, in 1986 Jackson and Ordaz [19] conjectured that every graph G

with κ(G) > α(G) is pancyclic.

A result of Erdős [15] from 1974 implies that the stronger condition κ(G) ≥ 4(α(G) + 1)4 guarantees

pancyclcity. Amar, Fournier, and Germa [1] proved Jackson and Ordaz’s conjecture when α(G) ∈
{2, 3}. Keevash and Sudakov [22] proved the conjecture up to a constant factor: they showed that if

κ(G) ≥ 600α(G) then G is pancyclic. Very recently, Draganić, Munhá-Correia, and Sudakov [14] proved

it asymptotically: they showed that for every ε > 0, if |G| is large enough and κ(G) ≥ (1+ε)α(G), then

G is pancyclic. In this paper we prove Jackson and Ordaz’s conjecture for sufficiently large graphs.

Theorem 1.1. There exists n0 such that every graph G on at least n0 vertices, that satisfies κ(G) >

α(G), is pancyclic.

We use many ingredients that are also used in [12] in the proof of the asymptotic version of the

conjecture, including lemmas from [12, 14] about extending and shortening paths by a small amount,

the main result in [12], upper bounds on cycle-complete Ramsey numbers [16, 21], and an upper bound

on the Turán numbers of even cycles [7]. Nevertheless, in each step of the proof, new ingredients were

needed. Here we highlight one such ingredient, which is a so-called rotation-extension argument, and

might have applications elsewhere.

A new rotation argument. A very useful tool in the study of cycles in graphs is the so-called

rotation-extension technique, introduced by Pósa [27] in the study of Hamiltonicity of random graphs,

and later and independently also used by Thomason [29]. A standard rotation-extension argument

proceeds as follows. Consider a cycle C, and for a vertex u in C, denote by u− the predecessor of u in

C (according to an arbitrary orientation of C). If u, v are two vertices in C, which can be joined by a

path P with non-empty interior that lies outside of C, and u−v− is an edge, then we can form a new

cycle (uCu→v−v
−u−Cu−←vvxPyu) (see Figure 2) which extends C. Suppose now that our underlying
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graph has independence number α. Then, using this argument, if U is a set of at least α + 1 vertices

in C, any two of whose vertices can be joined by a path as above, then we can find an appropriate

extension of C by the existence of an edge u−v−.1 This approach fails, however, even when we can only

find such a U of size slightly below α, as there is no way to guarantee the existence of an edge u−v−.

Our new idea here is to consider the set {u−, u−3 : u ∈ U}, where u−3 = ((u−)−)−. If |U | > α/2, and

no two vertices of U are too close on C, then this is a set of size larger than α, which thus spans an

edge. If that edge is of form u−v−, u−v−3, or u−3v−3, with distinct u, v ∈ U , and u, v can be joined

by a path of length at least 6 with interior outside of C, then we can extend C similarly to the above

(see Figures 3, 5a and 5b). The only other possibility is an edge of form u−u−3, which is a chord of

length 2. Under the right conditions, this either gives us the desired extension of C, or yields many

non-intersection chords of length 2, which can be utilised in other ways.

Organisation of the paper. In the next section, Section 2, we state three lemmas, corresponding

to three ranges of cycles lengths (upper, middle, and lower), and show how to prove our main result,

Theorem 1.1, using these lemmas (and an additional result due to Draganić, Munhá-Correia, and

Sudakov [12]). In Section 3 we mention notation and preliminary results that will be used in the proofs

of more than one of the three lemmas. We then prove the three lemmas in Sections 4 to 6, devoting

one section to each lemma. We conclude the paper in Section 7 with some remarks regarding potential

future research.

2 Proof of the main theorem

Our proof of Theorem 1.1 splits into three lemmas, according to the length of the cycles they can

guarantee. Here are these three lemmas. The notation a ≪ b means that a is chosen to be sufficiently

small with respect to b.

Lemma 2.1 (Upper range). Let 0 < δ ≪ 1 and let n, α, ℓ ≥ 1 be integers, satisfying: α is sufficiently

large, α ≤ n ≤ 4α2, and n/δα ≤ ℓ ≤ n. Suppose that G is a graph on n vertices with α(G) = α and

κ(G) > α. Then G has a cycle of length ℓ.

Lemma 2.2 (Middle range). Let 0 < δ ≪ 1 and let n, α, ℓ ≥ 1 be integers, satisfying: α is sufficiently

large,
√
n/2 ≤ α ≤ δn2/3, and n/α ≤ ℓ ≤ δ(n/α)2. Suppose that G is an n-vertex graph with α(G) = α

and κ(G) ≥ α. Then G contains a cycle of length ℓ.

Lemma 2.3 (Lower range). Let 0 < δ ≪ 1 and let n, α, ℓ ≥ 1 be integers, satisfying: α is sufficiently

large, and 3 ≤ ℓ ≤ max{n/α, δα}. Suppose that G is an n-vertex graph with δ(G) > α(G) = α. Then

G has a cycle of length ℓ.

In addition, we shall need the following result, due to Draganić, Munhá-Correia, and Sudakov [12],

allowing us to assume that that the independence number is relatively large in terms of the number of

vertices.

1This approach proves the Chvatál–Erdős Hamiltonicity result mentioned above.
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Theorem 2.4 (Draganić–Munha-Correia–Sudakov [12]). Let ε > 0 and let n be sufficiently large.

Suppose that G is a Hamiltonian graph on n vertices, satisfying n ≥ (2+ε)α(G)2. Then G is pancyclic.

The proof of our main result, Theorem 1.1, follows directly from the last four results.

Proof of Theorem 1.1. Let δ be a constant satisfying 0 < δ ≪ 1. Let G be a graph on n vertices, where

n is sufficiently large. Write α(G) = α, and let ℓ be an integer satisfying 3 ≤ ℓ ≤ n. We need to show

that G contains a cycle of length ℓ.

First note that G is Hamiltonian, by the assumption κ(G) > α(G), and the well-known result of Chvátal

and Erdős [9] mentioned in the introduction. By Theorem 2.4, if n ≥ 4α2 then G is pancyclic, so in

particular it contains a cycle of length ℓ.

So suppose that n ≤ 4α2, and notice that at least one of the following holds: ℓ ≥ n/δα; n/α ≤
ℓ ≤ δ(n/α)2 and

√
n/2 ≤ α ≤ δn2/3; or 3 ≤ ℓ ≤ max{n/α, δα}. Indeed, suppose that the first and

third properties do not hold, namely max{n/α, δα} ≤ ℓ ≤ n/δα. Then δα ≤ n/δα, implying that

α ≤
√
n/δ ≤ δn2/3. Thus also n/α ≤ ℓ ≤ n/δα ≤ δ(n/α)2. This shows that the second property holds.

Hence, we can apply one of Lemmas 2.1 to 2.3 to show that G contains a cycle of length ℓ.

3 Preliminaries

We will prove each of Lemmas 2.1 to 2.3 in a separate section, and mention the relevant preliminaries

in these sections. Here we first define some notation, and then mention a few preliminaries that will be

used in more than one of these sections.

Chords. A chord in a path P is an edge joining two non-consecutive vertices in P . The length of

a chord is the length of the subpath of P between the two vertices of the chord. We call two chords

non-intersecting if the interiors of the subpaths of P between the two vertices of each chord are disjoint.

We will also use these notions with respect to a cycle C (when talking about the subpath of C between

the vertices of the chord, we mean the shorter of these two subpaths, and in fact we will only consider

chords of length 2 or 3). See Figure 1 for an illustration of this notion.

Figure 1: A cycle with three non-intersecting chords: two of length 2 and one of
length 3
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Predecessors in cycles. Some of our proofs use arguments involving rotations, and as such the

following notation will be useful. Given a cycle C with an arbitrary direction, and a vertex u in C, we

denote by u− the predecessor of u in C (according to the arbitrary direction of C). More generally, we

will write u−i for the vertex in C obtained by taking i steps backwards from u. Additionally, given two

vertices u, v in C, we write Cu→v for the subpath of C with ends u, v which contains the successor of

u, and write Cu←v for the other subpath of C with ends u, v. Similarly, for a path P and vertices u, v

in P , we write Pu→v for the subpath of P with ends u, v.

More path and cycle notation. For a path P we write |P | for its order, namely its number of

vertices, and ℓ(P ) for its length, namely its number of edges. As the order and length of a cycle are

the same, we normally stick to the more standard notation |C| for its length. For distinct vertices

v1, . . . , vℓ, denote by v1 . . . vℓ the path with edges v1v2, . . . , vℓ−1vℓ, and by (v1 . . . vℓ) the cycle with

edges v1v2, . . . , vℓ−1vℓ, vℓv1. For vertices x, y, an xy-path is a path with ends x and y. If P is an

xy-path and Q is a yz-path, and P and Q share only the vertex y, then xPyQz denotes the path which

is the concatenation of P and Q. Similarly, if P and Q are xy-paths that do not share vertices other

than x and y, then (xPyQx) is the cycle which is the union of P and Q. We sometimes use PQ and

(PQ) for the same things if the ends are not explicitly known. We denote by Pk the path on k vertices.

3.1 Paths with many short chords

The next lemma finds a path with many short, non-intersecting chords.

Lemma 3.1. Suppose that G is a graph satisfying δ(G) > α(G). Then for every integer k ≤ α(G)/6,

there is a path of length at most 3k which has k pairwise non-intersecting chords of length 2 or 3, at

least one of which has length 2.

Proof. Write α = α(G). We define paths P1, . . . , Pk such that the following holds for i ∈ [k]: |Pi| ≤ 3i;

and Pi has i pairwise non-intersecting chords of length 2 or 3, at least one of which with length 2. To

start, notice that G contains a triangle (as the neighbourhood of any vertex has size at least α+1 and

is thus not independent). Let x, y, z be the vertices of a triangle, define P1 = xyz, and notice that xz is

a chord of length 2 in P1. Now suppose that P1, . . . , Pi are defined and i ∈ [k − 1], and let x be one of

Pi’s ends. Consider the graph G′ = G− (V (Pi)− {x}). If x is in a triangle in G′, let y, z be the other

two vertices in such a triangle, define Pi+1 = Pixyz, and observe that xz is a chord of length 2 that does

not intersect the chords of Pi. Similarly, if x has a neighbour y which is in a triangle yzw in G′ (with

z, w ̸= x), define Pi+1 = Pixyzw, and notice that yw is a chord of length 2. It remains to consider the

case where x and one of its neighbours y are not in a triangle in G. Then the sets Nx := NG′(x)− {y}
and Ny := NG′(y) − {x} are independent and disjoint. Notice that |Nx|, |Ny| > α − 3k ≥ α/2. Thus

Nx ∪Ny is a set of size larger than α, showing that it contains an edge zw, which must have one end

in Nx and the other in Ny; say z ∈ Nx and w ∈ Ny. Define Pi+1 = Pixzwy, and notice that xy is a

chord of length 3 which does not intersect any chords in Pi. This completes the proof that a sequence

P1, . . . , Pk with the required properties exists. The path Pk satisfies the requirements of the lemma.

A path P as in Lemma 3.1 has the useful property that it can be shortened by any amount up to k.

This is formalised in the next proposition.
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Proposition 3.2. Let P be a path with ends x, y and k non-intersecting chords of length 2 or 3, with

at least one of length 2. Then, for every k′ ≤ k, there is an xy-path P ′ with V (P ′) ⊆ V (P ) and

|P ′| = |P | − k′.

Proof. Consider a collection of k non-intersecting chords of length 2 or 3 in P , at least one of which

having length 2, and denote the number of chords of length 2 in this collection by a and the number of

chords of length 3 by b. We claim that there exist a′, b′ such that 0 ≤ a′ ≤ a, 0 ≤ b′ ≤ b, and a′+2b′ = k′.

Indeed, taking b′ = min{⌊k′/2⌋ , b} and a′ = k′−2b′ works. Let e1, . . . , ea′+b′ be non-intersecting chords,

a′ of which of length 2 and the rest of length 3, and consider the path P ′ obtained by replacing the

subpath of P between the ends of ei by ei itself, for i ∈ [a′+b′]. Then |P ′| = |P |−a′−2b′ = |P |−k′.

3.2 Cycle-complete Ramsey numbers

We now mention two results regarding cycle-complete Ramsey numbers. These refer to the Ramsey

number r(Cℓ,Ks), namely the minimum n such that every n-vertex graph contains either a cycle of

length ℓ or an independent set of size s. The first is an early result about these numbers, which tends

to be useful when ℓ is small.

Theorem 3.3 (Erdős–Faudree–Rousseau–Schelp [16]). Let ℓ ≥ 3 and s ≥ 2, and write x =
⌊
ℓ−1
2

⌋
.

Then

r(Cℓ,Ks) ≤
(
(ℓ− 2)(s1/x + 2) + 1)

)
(s− 1).

The next result determines r(Cℓ,Ks) precisely when ℓ is large with respect to s, and resolves a conjecture

from [16].

Theorem 3.4 (Keevash–Long–Skokan [21]). There is a constant c ≥ 1 such that the following holds

for s ≥ 3 and ℓ ≥ c log s
log log s .

r(Cℓ,Ks) = (ℓ− 1)(s− 1) + 1.

4 Upper range

Our aim in this section is to prove Lemma 2.1, restated here, which guarantees the existence of long

cycles.

Lemma 2.1 (Upper range). Let 0 < δ ≪ 1 and let n, α, ℓ ≥ 1 be integers, satisfying: α is sufficiently

large, α ≤ n ≤ 4α2, and n/δα ≤ ℓ ≤ n. Suppose that G is a graph on n vertices with α(G) = α and

κ(G) > α. Then G has a cycle of length ℓ.

This section is the one where our proof differs the most from [14]. Key new components here are a new

rotation-extension technique, and the use of rotation-extension arguments given a cycle C for which

there are no long paths outside of C.

The proof proceeds as follows. First, we apply Lemma 3.1 to find a path P0 with many non-intersecting

chords of length 2 or 3, which can be extended to a cycle of length at most ℓ. Using Lemma 4.1 below,
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we show that there is a cycle C that either extends P0 or contains many non-intersecting chords of

length 2, which is not much longer than ℓ, such that either G− V (C) is P5-free, or |C| ≥ ℓ. If |C| < ℓ,

then G−V (C) is P5-free, and we use Lemma 4.2 to find a cycle of length at most ℓ. Otherwise, we use

two lemmas from [12, 14] (Lemmas 4.3 and 4.4 below) to shorten C gradually to have length slightly

more than ℓ, so that it can further be shortened to have length exactly ℓ using the short chords.

4.1 Lemmas

In this subsection we state the lemmas we will use in the proof of Lemma 2.1. Most of the work towards

proving Lemma 2.1 will go into the proof of the following lemma.

Lemma 4.1. Let 0 < δ ≪ 1, and let n, α, ℓ ≥ 1 be integers such that n is large.

Let G be a graph on n vertices with α(G) = α and κ(G) > α. Let C0 be a cycle of length at most ℓ,

and let P0 be a subpath of C0 of length at most δα. Then there is a cycle C satisfying the following

three properties.

(1) |C| ≤ ℓ+ n
δα .

(2) Either G− V (C) has no paths of length 4, or |C| ≥ ℓ.

(3) Either P0 ⊆ C, or C has at least δα pairwise non-intersecting chords of length 2.

Given a cycle as guaranteed by the last lemma, if its length is less than ℓ, then we can apply the

following lemma to find a cycle of length exactly ℓ.

Lemma 4.2. Let ℓ, n ≥ 1 be integers satisfying 3 ≤ ℓ ≤ n. Let G be a graph on n vertices, satisfying

κ(G) > α(G). Suppose that C0 is a cycle in G satisfying: |C0| < ℓ; there are at least 18 pairwise

non-intersecting chords of length 2 or 3 in C0; and G−V (C0) is P5-free. Then G has a cycle of length

exactly ℓ.

Otherwise, we apply one of the following results, due to Draganic–Munhá-Correia–Sudakov [12, 14],

allowing us to shorten a given path by a relatively small amount.

Lemma 4.3 (Lemma 2.9 in [14] (a Consequence of Proposition 2.9 in [12])). Let G be an n-vertex graph

with independence number at most α, and let P be a path in G with ends x, y, satisfying |P | > 4α.

Then there is an xy-path P ′ such that |P | −
⌈
20α2

|P |

⌉
≤ |P ′| < |P |.

Lemma 4.4 (Lemma 2.8 in [14]). Let G be an n-vertex graph with minimum degree δ, and let P be a path

with ends x, y and length at least 20n/δ. Then there is an xy-path P ′ satisfying |P |−20n/δ ≤ |P ′| < |P |.

4.2 Proof of upper range lemma

We now prove the upper range lemma, using the results mentioned in the previous subsection.
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Proof of Lemma 2.1. Let η be a constant satisfying δ ≪ η ≪ 1. Suppose that ℓ satisfies n
δα ≤ ℓ ≤ n

and write k = min{ηα, ℓ/6}. By Lemma 3.1, there is a path P0 of length at most 3k which has k

non-intersecting chords of length 2 or 3, with at least one of length 2. Let C0 be a shortest cycle that

extends P0.

We claim that |C0| ≤ ℓ. Indeed, denote by x, y the ends of P0, and consider the graph G0, obtained

from G by removing the interior vertices of P0. Then κ(G0) ≥ κ(G) − 3k ≥ α/2. Thus, there are

α/2 paths from x to y in G0 with non-intersecting interiors. Let Q0 be a shortest xy-path; then

|Q0| ≤ n/(α/2) = 2n/α ≤ ℓ/2, implying that |C0| ≤ ℓ, as claimed.

Let C1 be a cycle as guaranteed by Lemma 4.1, applied with P0 and C0 and δ4.1 = η. If |C1| < ℓ, then

by (2), the graph G− V (C1) is P5-free. Additionally, by (3), by choice of P0, and by α being large, C1

has 18 non-intersecting chords of length 2 or 3. Lemma 4.2 thus yields a cycle of length exactly ℓ, as

required. So, we may assume that |C1| ≥ ℓ.

Suppose now that P0 ⊆ C1, let P1 be the subpath of C1 obtained by removing the edges of P0, denote

its ends by x, y, and let G1 be the graph obtained from G by removing the interior vertices of P0. Then

δ(G1) ≥ α/2 and α(G1) ≤ α. Write ℓ′ = ℓ− ℓ(P0). Let P2 be the shortest xy-path of length at least ℓ′

in G1.

Claim 4.5. ℓ(P2) ≤ ℓ′ + k.

Proof. Suppose that ℓ(P2) > ℓ′ + k. By Lemma 4.4, there is an xy-path P ′2 in G1 that satisfies

ℓ(P2) − r ≤ ℓ(P ′2) < ℓ(P2), where r = 20|G1|
δ(G1)

≤ 40n
α . If k ≥ 40n

α , then ℓ(P ′2) ≥ ℓ′ + k − r ≥ ℓ′,

contradicting the minimality of P2.

We thus have k ≤ 40n
α . In particular, k = ηα (because ℓ/6 ≥ 40n

α ), α2 ≤ 40n
η , and ℓ

α ≥ n
δα2 ≥ η

40δ ≥ 10

(by δ ≪ η). Note that ℓ(P2) ≥ ℓ− ℓ(P0) ≥ ℓ/2 ≥ 5α (using the last inequality). Hence, by Lemma 4.3,

there exists an xy-path P ′2 in G1 satisfying ℓ(P2)− r ≤ ℓ(P ′2) < ℓ(P2), where r =
⌈
20α2

|P2|

⌉
≤ 20α2

ℓ/2 + 1 =

40α2

ℓ +1 ≤ 1600δα
η +1 ≤ ηα = k (using ℓ

α ≥ η
40δ , δ ≪ η, and α being large). Thus ℓ(P ′2) ≥ ℓ(P2)− r ≥ ℓ′,

again contradicting the minimality of P2.

Recall that P0 has k non-intersecting chords of length 2 or 3, with at least one of length 2. Then, by

Proposition 3.2, there is an xy-path P ′0, with V (P ′0) ⊆ V (P0) and ℓ(P ′0) = ℓ − ℓ(P2) (indeed, we have

ℓ(P0) − k ≤ ℓ − ℓ(P2) ≤ ℓ(P0) by the above claim and choice of P2). The concatenation of P ′0 and P2

is a cycle of length ℓ, as required.

It remains to consider the case P0 ̸⊆ C1. Then C1 has at least ηα non-intersecting chords of length 2,

and |C1| ≤ ℓ+ n
ηα .

Suppose first that n ≤ η2α2. Write t = |C1| − ℓ; then t ≤ ηα using the last condition above. Pick t

non-intersecting chords of length 2 in C1, and, for each of these chords e, replace the subpath of length

2 of C1 between the vertices of e by e itself. This yields a cycle of length exactly ℓ.

Now consider the case n ≥ η2α2. Let P1 be a subpath of C1 of length ℓ/2 with a maximum number

of non-intersecting chords of length 2, and let P2 be the subpath of C obtained by removing the edges

of P1. Noting that |C| ≤ ℓ + n
ηα ≤ 2ℓ, we conclude that P1 has at least ηα/4 non-intersecting chords

of length 2. Denote the ends of P2 by x, y, and let P3 be a shortest xy-path in G[V (P2)] of length
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at least ℓ/2. We claim that ℓ(P3) ≤ ℓ/2 + ηα/2. If not, then by Lemma 4.3 there is an xy-path P ′3
in G[V (P3)] with ℓ(P3) − r ≤ ℓ(P ′3) < ℓ(P3), where r =

⌈
20α2

ℓ

⌉
≤ 20n

η2ℓ
+ 1 ≤ 20δα

η2
+ 1 ≤ ηα/4 (using

ℓ ≥ n/δα, η ≫ δ, and α being large), a contradiction to the minimality of P3. To finish, note that

there is an xy-path P ′1 in G[V (P1)] of length exactly ℓ − ℓ(P3). Indeed, since ℓ(P1) = ℓ/2, we have

ℓ(P1)− ηα/4 ≤ ℓ− ℓ(P3) ≤ ℓ(P1), and P1 has at least ηα/4 non-intersecting chords of length 2, so we

can use some of these chords to shorten P1 as needed. Concatenating P ′1 and P3 yields a cycle of the

desired length.

4.3 Finding a cycle with many chords

In this subsection we prove Lemma 4.1, the main step towards Lemma 2.1. The proof proceeds roughly

as follows. We take C to be a longest cycle of length at most which satisfies (1) and (3). Our task is

to show that (2) also holds, so suppose not. This means that |C| < ℓ and there is a components H in

G−V (C) that contains a path of length at least 4. To reach a contradiction, we will show that there is

a cycle C ′ satisfying: |C ′| > |C|; the vertices outside of C in C ′ are in H and form a subpath of C ′; and

C ′ contains either P0 or many chords of length 2. For this to be a contradiction, we want |P ′| ≤ n
δα ,

due to (1). This will be achieved in the first two claims, Claims 4.6 and 4.7, the latter asserting that if

x, y can be joined by a path of length at least 4 in H, then there is such a path of length at most n
δα . It

is easy to conclude that |C| > α (see Claim 4.8). Now, a standard rotation technique yields a cycle C ′

such that: |C ′| > |C|; C ′ misses at most two edges of C; and the vertices not in C ′ induce a subpath

of C ′. This implies the desired contradiction if C has at least δα+ 2 chords, so we may assume this is

not the case (see Claim 4.9). A somewhat more intricate rotation argument (which was outlined in the

introduction) (which was outlined in the introduction) (which was outlined in the introduction) implies

that H has no path of length at least 4 whose ends have relatively small degree in H (see Claim 4.11).

We then use structural arguments to find a relatively large subset A ⊆ V (H) whose every two vertices

can be joined by a path of length at least 4 in H[A], and whose almost every vertex has few neighbours

in H −A. A similar rotation argument now yields the desired contradiction, using the properties of A.

Proof of Lemma 4.1. Let η be a constant satisfying δ ≪ η ≪ 1. Let C be a longest cycle satisfying (1)

and (3), such that if P0 ̸⊆ C then |C| > α. We will show that it also satisfies (2). Suppose not, then

|C| < ℓ and G− V (C) contains a path of length 4. Let H be a component in G− V (C) that contains

such a path.

Define E as follows. If P0 ⊆ C, set E = E(P0). Otherwise, let E be a set of 2δα edges in C corresponding

to δα pairwise non-intersecting chords of length 2 in C.

The next claim is in preparation for the claim after that, which says that any two vertices in H which

are joined by a path of length at least 4 in H, are joined by such a path which is not too long. This

will help us control the length by which the cycle C is extended in various situations, allowing us to

satisfy (1).

Claim 4.6. There is no path P in H with n
η3α

≤ |P | ≤ n
δα whose ends have degree at most (12 − η)α in

H.
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Proof. Suppose that P is such a path and denote its ends by x, y. Let X be the set of neighbours of x in

C that are not incident to edges of E; then |X| ≥ dG(x)−dH(x)−2|E| ≥ α−(12−η)α−4δα ≥ (12+η2)α.

Define Y similarly with respect to y, then similarly |Y | ≥ (12 + η2)α.

Write X− = {x− : x ∈ X} and define Y − analogously for y. We claim that X− ∪ Y − is independent.

Indeed, suppose not, and pick u, v ∈ X ∪ Y such that u−v− is an edge. If u, v ∈ X, define

C ′ = (uCu→v−v
−u−Cu−←vvxu). (1)

(See Figure 2, and note that this make sense also when u− = v.) Moreover, |C ′| = |C| + 1 ≤ ℓ and

v
v−

u

u−

xC

(a) A cycle as in (1)

v = u−

u

v−
xC

(b) A cycle as in (1) when u− = v

Figure 2: Cycles as in (1)

E ⊆ C ′, so (1) and (3) both hold, a contradiction to the maximality of C. The same argument works

if u, v ∈ Y , so suppose now that v ∈ X and u ∈ Y , and define

C ′ = (uCu→v−v
−u−Cu−←vvxPyu). (2)

(See Figure 3, and note that this also works when v = u−.)

v
v−

u

u−

x

y

PC

Figure 3: A cycle as in (2)

Then |C ′| ≤ |C|+ |P | ≤ |C|+ n
δα , contradicting the maximality of C.

Since X− ∪ Y − is independent, it has size at most α, showing that |X− ∩ Y −| ≥ η2α, and thus

|X ∩ Y | ≥ η2α. Consider the segments of C between consecutive elements of X ∩ Y . At most 2δα of

them contain an edge of E, leaving at least η3α segments without any edges of E. Pick a segment I of

10



length at most |C|
η3α

≤ n
η3α

, and denote its ends by u and v. Define

C ′ = (vCv←uuyPxv), (3)

(see Figure 4). Then |C ′| ≥ |C|+ |P | − (|I| − 2) ≥ |C|+1 > |C| (using |P | ≥ n
η3α

≥ ℓ(I) = |I| − 1) and

|C ′| ≤ |C|+ |P | ≤ |C|+ n
δα . This contradicts the maximality of C.

v

u

x

y

PC

Figure 4: A cycle as in (3)

Claim 4.7. If x, y are vertices in H that are joined by a path of length at least 4, then there is such a

path P in H with |P | ≤ n
δα .

Proof. Let x, y ∈ V (H) which can be joined by a path of length at least 4 in H. Let P be a shortest

xy-path in H of length at least 4. We need to show |P | ≤ n
δα . Suppose this is not the case.

Denote the set of first and last four vertices in P by X, let U be a maximal set of vertices in P −X,

that are pairwise at distance at least 3 from each other on P ; so |U | ≥
⌊
|P |−8

3

⌋
≥ |P |

4 ≥ n
5δα . Let W

be the set of vertices in U with degree at least α/4 in H. Then the sets NH(w) − X, with w ∈ W ,

are pairwise disjoint sets (due to the minimality of P ) of size at least α/4 − 8 ≥ α/5. It follows that

|W | ≤ n
α/5 ≤ |U |/2.

By the previous paragraph, at least |U |/2 ≥ |P |/8 of the vertices in P have degree at most α/4 in H.

Since P can be divided into at most |P |
n/2δα paths on at most n

δα vertices (by taking as many paths as

possible of order exactly n
2δα and adding the remainder to the last path), there exists a subpath Q of

order at most n
δα that contains at least |P |/8

|P |/(n/2δα) =
n

16δα vertices of degree at most α/4 in H. Then Q

in turn contains a subpath of order between n
16δα and n

δα whose ends have degree at most α/4 ≤ (12−η)α

in H, contradicting Claim 4.6.

For technical reasons, it will be useful to know that |C| > α. This is proved in the following claim.

Claim 4.8. |C| > α.

Proof. Suppose not. Then, by connectivity, every vertex in C has a neighbour in H. Notice that C has

two consecutive vertices u, v that are not the ends of the same edge in E; this is because, by |C| ≤ α

we have P0 ⊆ C and so E is the edge set of P0. Let x be a neighbour of v in H, let y be a neighbour

of u in H, and let P be a shortest xy-path in H (if x = y then P is a single vertex). Then |P | ≤ n
δα by

Claim 4.7. A cycle as in (3) yields a contradiction to the maximality of C.

11



Claim 4.9. There is no collection of at least δα+ 2 non-intersecting chords in C of length 2.

Proof. Suppose that C has at least δα + 2 non-intersecting chords of length 2. Let U be the set of

vertices in C with neighbours in H. Then, because κ(G), |C| > α (by assumption and Claim 4.8), we

have |U | > α, implying that there are u, v ∈ U such that u−v− is an edge. Let x, y be neighbours of

v, u in H, and let P be a shortest path in H between u and v. Define C ′ as in (2) (see Figure 3). Then

|C ′| > |C| > α and |C ′| ≤ |C| + |P | ≤ ℓ + n
δα , by Claim 4.7. Moreover, since C ′ misses at most two

edges of C, it has at least δα non-intersecting chords of length 2. This contradicts the maximality of

C.

Claim 4.10. There is no path of length at least 4 in H whose ends have degree at most (12 − η)α in H.

Proof. Suppose that P is a path of length at least 4 whose ends, denoted x and y, have degree at most

(12 − η)α in H. By Claim 4.7, we may assume |P | ≤ n
δα .

Let X be the set of vertices in C that are neighbours of x but not of y, and are at distance at least 4

on C from any edge in E. Define Y similarly with the roles of x and y reversed, and let Z be the set

of vertices in C that are neighbours of both x and y, and are at distance at least 4 from any edge in

E. Then |X ∪Z| ≥ α− dH(x)− 10|E| ≥ (12 + η2)α, with the same estimate holding for |Y ∪Z|. Define

X− = {x− : x ∈ X} Y − = {y− : y ∈ Y } Z− = {z− : z ∈ Z} Z−3 = {z−3 : z ∈ Z}.

We claim that these four sets are pairwise disjoint. By disjointness of X,Y, Z, if not, then Z−3 ∩ (X ∪
Y ∪ Z) ̸= ∅, showing that there are vertices u, v at distance 2 on C such that v is a neighbour of x

and u a neighbour of y. This is a contradiction, as can be seen by defining C ′ as in (3) (see Figure 4).

Indeed, then |C ′| = |C| − 1 + |P | > |C| (using |P | ≥ 5), and |C ′| ≤ |C| + |P | ≤ |C| + n
δα . So, the sets

X−, Y −, Z−, Z−3 are pairwise disjoint, showing that |X− ∪ Y − ∪ Z− ∪ Z−3| = |X ∪ Z| + |Y ∪ Z| ≥
(1 + 2η2)α. Since α(G) = α, there is a matching M of size at least η2α in X− ∪ Y − ∪ Z− ∪ Z−3.

Let e be an edge in M . We claim that it is of form z−z−3, for some z ∈ Z. Indeed, suppose not. Then

one of the following holds: there exist u, v ∈ X ∪ Y ∪Z such that e = u−v−; there exist u ∈ X ∪ Y ∪Z

and v ∈ Z such that e = u−v−3; and there exist u, v ∈ Z such that e = u−3v−3.

We show now that each of these cases leads to a contradiction. This can be seen in the first case via

a cycle as in (1) or (2). In the second case, by symmetry, we may assume that u is a neighbour of y.

Consider the cycle

C ′ = (uCu→v−3v−3u−Cu−←vvxPyu). (4)

(See Figure 5a.) Then, |C ′| = |C| − 2 + |P | > |C ′|, and |C ′| ≤ |C| + |P | ≤ |C| + n
δα . (Here we are

implicitly assuming that u, v are at distance at least 4 on C; if this is not the case then we can reach a

contradiction via a cycle of form (3).) Finally, in the third case we can similarly reach a contradiction

via the cycle

C ′ = (uCu→v−3v−3u−3Cu−3←vvxPyu). (5)

(See Figure 5b.)

The previous paragraph implies that every edge inM is of the form z−z−3 for some z ∈ Z. In particular,

M is a set of η2α ≥ δα+2 pairwise non-intersecting chords of length 2 in C, contradicting Claim 4.9.

12



v
v−3

u

u−

x

y

PC

(a) A cycle as in (4)

v
v−3

u

u−3

x

y

PC

(b) A cycle as in (5)

Figure 5: Cycles as in (4) and (5)

Consider a longest path P in H. Then ℓ(P ) ≥ 4, by assumption on H. By the last claim, at least one

of P ’s ends has degree at least (12 − η)α in H; say x is such an end. Then all of x’s neighbours in H are

in V (P ), by maximality of P , showing that there is a cycle C ′ in H of length at least (12 − η)α. Notice

that any two vertices in C ′ can be joined by a path of length at least 4 in C ′. Thus we can take A to

be a largest set satisfying V (C ′) ⊆ A ⊆ V (H), such that for any two vertices in A there is a path of

length at least 4 in H[A] that joins these two vertices.

Claim 4.11. There is a subset A′ ⊆ A of size at least |A| − δ−3 such that every a ∈ A′ has at most δα

neighbours in V (H)−A.

Proof. We claim that there is no path P in H of length at least 2, whose ends are in A but whose

interior is outside of A. Indeed, otherwise, take A′ = A ∪ V (P ). It is easy to check that every two

vertices x, y ∈ A′ can be joined by a path of length at least 4 in H[A′]. Indeed, this holds by choice

of A if x, y ∈ A, so suppose that x is in the interior of P . If y ∈ A, let z be an end of P which is not

y. Then concatenating a yz-path of length at least 4 in H[A] with the segment Pz→x, yields a path

with the required properties. Similarly, if x, y are both in the interior of P , let z, w be the ends of P

such that z is closer to x than to y in P . Now concatenate Px→z with a zw-path of length at least 4 in

H[A], and with Pw→y, to get a path as desired.

Similarly, there is no cycle of length at least 8 that intersects A in exactly one vertex.

By the first paragraph, for every x ∈ V (H)− A there is a vertex a(x) ∈ A such that a(x) disconnects

x from A in H. Let X(a) be the set of vertices x ∈ V (H) − A such that a(x) = a. Notice that, by

Claim 4.10 and the choice of A, for at most one a ∈ A, the set X(a) contains a vertex of degree less

than (12 − η)α in H. Let a′ be this vertex (if exists).

Let C(a) be a maximal collection of pairwise vertex-disjoint cycles of length at least δα in H[X(a)−{a}],
for a ∈ A − {a′}. Let A′ be the set of vertices a ∈ A − {a′} such that |C(a)| ≤ δα. Then |A − A′| ≤

n
(δα)2

+ 1 ≤ 4
δ2

+ 1 ≤ δ−3, by the assumption n ≤ 4α2, and by disjointness of the cycles in C(a) and of

the sets X(a).

It remains to show that every a ∈ A′ has at most δα neighbours in V (H)−A. Indeed, let a ∈ A′, and

write C(a) = {C1, . . . , Cr}. Notice that there are no two vertex-disjoint (except at a) paths from a to Ci,

for any i ∈ [r], because otherwise the second paragraph would be violated. There is therefore a vertex

yi that disconnects a from Ci, for i ∈ [r]. If a has more than r neighbours in V (H)−A, let x be such a
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neighbour which is not in {y1, . . . , yr}. Then the connected component H ′ of H[X(a)−({a, y1, . . . , yr})]
that contains x is a non-empty graph with minimum degree at least (12 − η)α− (r+1) ≥ δα. So H ′ has

a cycle C ′ of length at least δα. Notice that C ′ is vertex-disjoint of the cycles C1, . . . , Cr, contradicting

the maximality of C(a). This shows that a has at most r ≤ δα neighbours in H−A, for every a ∈ A′.

Let W be the set of vertices in C with at least two neighbours in A. We claim that |A|+ |W | ≥ (12+η)α.

Indeed, this is clearly the case if |A| ≥ (12 +η)α, so suppose otherwise. Let U be the set of vertices in C

that are neighbours of vertices in A, and let U ′ be the set of vertices in U which are not in edges in E.

Notice that (U ′)− is independent, because otherwise a cycle as in (1) or (2), together with Claim 4.7,

would lead to a contradiction. Thus |U ′| ≤ α and |U | ≤ |U ′| + 2|E| ≤ (1 + 2δ)α. We conclude that

|W | ≥ α/3, say. Indeed, otherwise each vertex in A′ contributes at least (12 − η − δ − 1
3)α ≥ α

7 distinct

vertices to U , resulting in U having size at least |A′| · α
7 ≥ α2

28 > (1 + 2δ)α, a contradiction. It follows

that |A|+ |W | ≥ (12 − η + 1
3)α ≥ (12 + η)α, as claimed (using |A| ≥ (12 − η)α).

By connectivity and by |C| > α, there are at least min{|A|, α − |W |} pairwise vertex-disjoint paths

from A to C −W ; denote such a collection of paths by P and assume that interiors of paths in P are

disjoint of C and A. Let X be the set of vertices in C that are either in W or an end of a path in P,

and moreover are at distance at least 4 from E. Then |X| ≥ min{|A|+ |W |, α} − 8δα ≥ (12 + η2)α.

Claim 4.12. Let u, v ∈ X be distinct. Then there are distinct vertices x, y in H such that x is a

neighbour of v and y of u, and there is an xy-path of length at least 4 in H.

Proof. By symmetry, there are three cases to consider: u, v ∈ W ; v /∈ W , u ∈ W ; and u, v /∈ W . In the

first case, there are distinct x, y in A such that x is a neighbour of v and y of u. By choice of A, there is

an xy-path of length at least 4 in H. In the second case, let P be any path from v to A, whose interior

is disjoint of C and A, and denote its end which is not v by x′. Let y ∈ A be a neighbour of u which

is not x, and let Q be an x′y-path of length at least 4 in H[A]. Taking x to be the neighbour of v in

P , the path PQ with v removed is an xy-path of length at least 4. Finally, in the third case, we may

pick two vertex-disjoint paths P1, P2 from v, u to C, with interior disjoint of C and A. Let x′, y′ be the

ends of P1, P2 in A, respectively, let x, y the neighbours of v, u in P1, P2, and let Q be an x′y′-path of

length at least 4 in A. Then P1QP2 − {u, v} is an xy-path of length at least 4.

One can now show that any two vertices in X are at distance at least 4 in C, via a cycle as in (3),

using Claims 4.7 and 4.12.

In particular, the sets X− and X−3, defined as usual, are disjoint. Thus |X− ∪ X−3| ≥ (1 + 2η2)α,

showing that there is a matching M in X− ∪X−3 of size at least η2α.

We claim that all edges in M are of form u−u−3, for some u ∈ X. Indeed, if not, there are distinct

u, v ∈ X such that one of u−v−, u−v−3, u−3, v−3 is an edge in M . Each of these cases leads to a

contradiction, by considering cycles as in (2), (4), (5), using Claims 4.7 and 4.12 to find an appropriate

P with 5 ≤ |P | ≤ n
δα .

Thus M is a matching of at least η2α non-intersecting chords of length 2, a contradiction to Claim 4.9.

This concludes the proof that G−V (C) has no paths of length 4, so C satisfies the requirements of the

lemma.
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4.4 Extending a cycle whose complement is P5-free

In this subsection we prove Lemma 4.2. We first sketch its proof. Suppose that C is a cycle in a graph

G satisfying: |C| < ℓ; G − V (C) is P5-free; and C has 18 non-intersecting chords of length 2 or 3. A

simple rotation-extension argument (see Proposition 4.13) implies that every cycle C ′ containing the

vertices of C can be extended by at most four vertices, from any specified component of G−V (C ′). This

alone allows us to find a cycle of length between ℓ− 3 and ℓ. Another consequence of Proposition 4.13

is that, if for such a cycle C ′ there is a vertex outside of C ′ with at most one neighbour outside of

C ′, then C ′ can be extended by exactly that one vertex. It thus suffices to find a cycle C ′ such that:

V (C) ⊆ V (C ′); |C ′| ≤ ℓ; and G−V (C ′) has at least three vertices in components which are trees. This

can be done by three applications of Proposition 4.15, asserting that a cycle C ′ containing the vertices

of C can be extended by at most four vertices from a specified component H of G− V (C ′), such that

the remainder of the component is a non-empty tree. This might fail if |C| is too close to ℓ, in which

case we can use the short chords in C to get a cycle of length ℓ.

Before turning to the proof, we state and prove three propositions. The first one is a consequence of a

simple rotation and extension operation.

Proposition 4.13. Let G be a graph satisfying κ(G) > α(G). Let C be a cycle, H a component in

G − V (C), and u, v distinct vertices in H. Then there is a cycle C ′ such that: V (C ′) is the union of

V (C) with the vertices of a path in H that contains u and avoids v; and C ′ contains all but at most

two edges of C.

Proof. Write α = α(G). Because κ(G) > α, the graph G − {v} is α-connected. If there is a vertex w

in C such that w and w− can be joined by a path in G− {v}, whose interior contains u and is disjoint

of C, then we can define

C ′ = (wCw→w−w−Pw).

Then C ′ contains all edges in C except for ww− and its vertex set is the union of V (C) with the vertices

of the path P − {w,w−}. Suppose now that no such vertex w exists.

If |C| < α, then by connectivity there are |C| pairwise vertex-disjoint (except at u) paths from u to

C in G − {v}, leading to a contradiction to the assumption we just made. So |C| ≥ α, implying that

there are pairwise vertex-disjoint (except at u) paths P1, . . . , Pα from u to C in G − {v}. We assume

that the interiors of the paths Pi are disjoint of C. Let wi be the end of Pi which is not u. Then by

the above assumption no two vertices in {w1, . . . , wα} are consecutive, and there is no edge between u

and w−i for any i ∈ [α].

The set {w−i : i ∈ [α]} ∪ {u} has size α + 1, and so it spans an edge e. Since there is no edge of form

uw−i , we have e = w−i w
−
j for some distinct i, j ∈ [α]. We then get the cycle

C ′ = (uPiwiCwi→w−
j
w−j w

−
i Cw−

i ←wj
wjPju),

like in (2) or Figure 3 but with different notation. It is easy to check that C ′ satisfies the requirements

of the proposition. Indeed, C ′ uses all edges of C except for wiw
−
i and wjw

−
j , and V (C ′) is the union

of V (C) with the vertices of the path (Pi ∪ Pj)− {wi, wj}.
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The next proposition gives some structural information regarding P5-free graphs.

Proposition 4.14. Let H be a connected P5-free graph. Then one of the following holds: H is a

complete graph on four vertices; H is a tree; or there is a vertex u such that H − {u} is a forest.

Proof. Suppose that H is not a tree. Then it contains a cycle C. By P5-freeness, C has length 3 or 4.

If it has length 4, then H has exactly four vertices, as adding a pendant edge to a 4-cycle results in

the existence of a P5. In this case, it is easy to check that H is either complete, or there is a vertex

whose removal from H leaves a tree. Suppose now that C is a triangle and that G has no 4-cycles. The

latter assumption implies that no two vertices in C have a common neighbour outside of C. Hence,

P5-freeness implies that there is at most one vertex in C, say u, that has neighbours outside of C, and

that any neighbour of u outside of C has no neighbours other than u. In particular, H − {u} is a

forest.

The final proposition is a consequence of the former two.

Proposition 4.15. Let G be a graph satisfying κ(G) > α(G). Let C be a cycle in a graph G and let

H be a (non-empty) component in G−V (C). Suppose that H is P5-free. Then there is a cycle C ′ such

that: |C| ≤ |C ′| ≤ |C| + 4; V (C) ⊆ V (C ′); C ′ misses at most four edges of C; and H − V (C ′) is a

non-empty forest.

Proof. If H is a tree, there is nothing to prove (take C ′ = C). If there is a vertex u in H such

that H − {u} is a forest, then pick any v ∈ V (H) − {u}, and let C ′ be a cycle as guaranteed by

Proposition 4.13. Then |C| < |C ′| ≤ |C|+4 (the upper bound is by P5-freeness), H − V (C ′) is a forest

that contains v, and C avoids at most two edges of C.

It remains to consider the case H ∼= K4. By Proposition 4.13, there is a cycle C ′′ such that V (C) ⊊
V (C ′′) ⊊ V (C) ∪ V (H), and C ′′ avoids at most two edges of C. Let H ′ = H − V (C ′′). If H ′ consists

of at most two vertices, we are done. Otherwise, H ′ is a triangle. Then we can apply Proposition 4.13

again to obtain a cycle C ′ such that V (C ′′) ⊊ V (C ′) ⊊ V (C ′′)∪V (H ′) and C ′ misses at most two edges

of C ′′, and thus at most four edges of C. Now H − V (C ′′) has at least one and at most two vertices,

and so it is a tree.

Finally, here is the proof of the lemma.

Proof of Lemma 4.2. Write α = α(G).

First, we pick cycles C1, C2, C3 as follows, where Fi is the union of components of G − V (Ci) which

are trees, and Gi = G − V (Fi). If |Fi−1| ≥ i or |Ci−1| ≥ ℓ − |Fi−1|, define Ci = Ci−1. Otherwise, we

can apply Proposition 4.15, with the cycle Ci−1 and any component in Gi−1 −Ci−1, to find a cycle Ci

such that: |Ci−1| ≤ |Ci| ≤ |Ci−1| + 4; V (Ci−1) ⊆ V (Ci); Ci misses at most four edges of Ci−1; and

Gi−1 − V (Ci) has a component which is a tree.

Notice that |Ci| ≤ min{|C0|+ 4i, ℓ+ 3}; |Fi| ≥ min{i, ℓ− |Ci|}; and Ci avoids at most 4i edges of C0,

for i ∈ [3].

We distinguish three cases.
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� |C3| = ℓ+2. By the assumption that C0 has at least 18 pairwise non-intersecting chords of length

2 or 3, and the fact that C3 misses at most 12 edges of C0, the cycle C3 has either a chord of

length 3, or two non-intersecting chords of length 2. Both scenarios allow for shortening C3 by

exactly 2, to obtain an ℓ-cycle.

� |C3| ∈ {ℓ + 1, ℓ + 3}. Notice that |F3| ≥ 1 (otherwise C3 = C0, a contradiction to |C0| < ℓ);

let u be a vertex of degree at most 1 in F3. By Proposition 4.13, there is a cycle C4 with

V (C4) = V (C3)∪ {u} which misses at most two edges of C3, and thus at most 14 edges of C. So

|C4| ∈ {ℓ+ 2, ℓ+ 4} and C4 has four non-intersecting chords of length 2 or 3. These can be used

to form a cycle of length ℓ.

� |C3| ≤ ℓ. Let C4 be a longest cycle satisfying V (C3) ⊆ V (C4) ⊆ V (G) − V (F3) and |C4| ≤ ℓ.

We claim that |C4| ≥ ℓ − 3 or V (C4) = V (G) − V (F3). Indeed, suppose not. Then we can

apply Proposition 4.13 with a vertex in V (G) − (V (F3) ∪ V (C4)) to obtain a cycle C5 with

V (C4) ⊆ V (C5) ⊆ V (G)− V (F3) and |C5| ≤ |C4|+ 4 ≤ ℓ, contradicting the maximality of C4.

Write r = ℓ − |C4|. Recalling that |F3| ≥ min{3, ℓ − |C3|}, we have |F3| ≥ r. As F3 is a

forest, there are distinct vertices u1, . . . , ur in F3 such that uj is a vertex of degree at most 1

in F3 − {u1, . . . , uj−1}. Apply Proposition 4.13 r times, with uj and its unique neighbour in

F3 − {u1, . . . , uj−1} (if exists) in the jth application. These applications result in a cycle C ′ with

V (C ′) = V (C) ∪ {u1, . . . , uj}. In particular |C ′| = ℓ.

This completes the proof that G contains a cycle of length ℓ.

5 Middle range

In this section we prove Lemma 2.2 (restated here), about cycles whose length is not too small and not

too large.

Lemma 2.2 (Middle range). Let 0 < δ ≪ 1 and let n, α, ℓ ≥ 1 be integers, satisfying: α is sufficiently

large,
√
n/2 ≤ α ≤ δn2/3, and n/α ≤ ℓ ≤ δ(n/α)2. Suppose that G is an n-vertex graph with α(G) = α

and κ(G) ≥ α. Then G contains a cycle of length ℓ.

The general outline of the proof is similar to the proof of the middle range in [14]. We start with a

relatively short path P , which has the property that it can be shortened by any small amount (via

short non-intersecting chords). We then extend P to a cycle C of length at most n/α. In [14] it was

essentially trivial to show that such a cycle C exists. Here we need to work quite a lot harder; see

Lemma 5.1.

Next, writing P ′ = C − E(P ), we show that there is another path P ′′ with the same ends as P ′, such

that together with P it forms a cycle of length slightly more than ℓ. This is achieved using Lemma 5.2,

which strengthens Lemma 2.10 in [14].

Finally, this can be modified to a cycle of length exactly ℓ, using the property of P .
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5.1 Lemmas

We shall need the following lemma, that builds on Lemma 3.1, and yields a path with many chords

that can be extended to a cycle of length at most n/α.

Lemma 5.1. Let 0 < δ ≪ 1, and let α, n be positive integers satisfying: α and n/α are large; n ≤ 4α2;

and n ≥ α. Suppose that G is a graph on n vertices, with α(G) = α and κ(G) > α. Then there are

paths P0 and P1, which have the same ends and vertex-disjoint interiors, such that: ℓ(P0) ≤ 7δn/α;

ℓ(P1) ≥ δn/α; ℓ(P0) + ℓ(P1) ≤ n/α; and P0 has at least δn/α non-intersecting chords of length 2 or 3,

with at least one of length 2.

We will also use the following lemma, about extending a given path by a relatively small amount.

Lemma 5.2. Let α, r, ℓ, n be positive integers satisfying: α is large; max{4
√
ℓ, 32

√
α} < r ≤ min{2ℓ, n/α, α};

and ℓ ≤ n
2 . Suppose that G is a graph on n vertices, satisfying α(G) ≤ α and κ(G) ≥ α/2, and that P is

a path of length ℓ in G. Then there is a path P ′ with the same ends as P that satisfies |P | < |P ′| ≤ |P |+r.

We first show how to prove Lemma 2.2 using these lemmas, and then we prove both lemmas.

5.2 Proof of middle range lemma

Using the above lemmas, the proof of Lemma 2.2 is straightforward, albeit somewhat technical.

Proof of Lemma 2.2. Let η be a constant satisfying δ ≪ η ≪ 1. Apply Lemma 5.1 with η to find

paths P0 and P1 with the same ends, denoted x, y, and disjoint interiors, such that: ℓ(P0) ≤ 7ηn/α;

ℓ(P1) ≥ ηn/α; ℓ(P0) + ℓ(P1) ≤ n/α; and P0 has ηn/α non-intersecting chords of length 2 or 3, with

at least one of length 2. Consider the graph G1, obtained from G by removing the interior vertices of

P0. Then α(G1) ≤ α, |G1| ≥ n/2, and, since ℓ(P0) ≤ 7ηn/α ≤ α/2 (using α ≥
√
n/2), we also have

κ(G) ≥ α/2. Write ℓ′ = ℓ− ℓ(P0) and r = ηn/2α. Let P2 be a longest xy-path in G1 of length at most

ℓ′ + r.

Claim 5.3. ℓ(P2) ≥ ℓ′.

Proof. Suppose not. Then apply Lemma 5.2 with α, r, ℓ5.2 = ℓ(P2) and n5.2 = |G1|. To see that the

lemma is applicable, notice that, by assumption, ℓ(P2) ≤ ℓ′ ≤ ℓ ≤ n/4 ≤ |G1|/2, and κ(G1) ≥ α/2.

Moreover, we now verify that max{4
√
ℓ′′, 32

√
α} ≤ r ≤ min{2ℓ′′, |G1|/α, α}, where ℓ′′ = ℓ(P2):

� 4
√
ℓ′′ ≤ 4

√
ℓ ≤ 4

√
δn/α ≤ ηn/2α = r, using the assumption ℓ′′ ≤ ℓ′ and that ℓ′ ≤ ℓ.

�

32
√
α

r = 64α3/2

ηn ≤ 64δ3/2

η ≤ 1, using α ≤ δn2/3, and showing 32
√
α ≤ r.

� 2ℓ′′ ≥ 2ℓ(P1) ≥ 2ηn/α ≥ r, by maximality of P2.

�

|G1|
α ≥ n

2α ≥ ηn
2α = r.

�
α
r = 2α2

ηn ≥ 1
2η ≥ 1, using α ≥

√
n/2, and showing α ≥ r.
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This shows that the lemma is indeed applicable. It implies the existence of an xy-path P ′2 with ℓ(P2) <

ℓ(P ′2) ≤ ℓ(P2) + r ≤ ℓ′ + r, contradicting the maximality of P2.

Note that ℓ − ℓ(P2) ≤ ℓ − ℓ′ = ℓ(P0) (by the claim) and ℓ − ℓ(P2) ≥ ℓ − ℓ′ − r = ℓ(P0) − ηn/2α (by

choice of P2). Recalling that P0 has ηn/α non-intersecting chords of length 2 or 3, with at least one

of length 2, by Proposition 3.2 there is an xy-path P ′0 of length ℓ − ℓ(P2) with V (P ′0) ⊆ V (P0). The

concatenation of P ′0 and P2 is a cycle of length exactly ℓ.

5.3 Finding a short cycle with many short chords

We now prove Lemma 5.1. We start by taking a path Pinit which is relatively short yet not too short,

and has many chords of length 2 or 3, with at least one of length 2; denote its ends by x, z. Now we

consider the graph G′ obtained by removing the interior of Pinit, and observe that it has connectivity

at least a little below α. If the distance between x and z in G′ is sufficiently smaller than n/α, we are

done. If not, then due to space considerations, for almost all i ≤ α, there are roughly n/α vertices

at distance exactly i from x in G′. In particular, there is a relatively small i such that the number

of vertices at distance j from x in G′ is indeed roughly n/α, for j ∈ [i, i + 6]. We then focus on the

vertices at distance between i and i+6 from x in G′, and repeat arguments similar to the ones used in

Lemma 3.1, to find the desired paths.

Proof of Lemma 5.1. By Lemma 3.1, there is a path Q1 of length at most 3δn
α with at least δn

α non-

intersecting chords of length 2 or 3, at least one of which having length 2. Denote the ends of Q1 by

x, y. By the connectivity assumption, there is a path Q2 of length δn
α , one of whose ends is y, and

which otherwise does not intersect Q1. Let z be the other end of Q2. Write Pinit = xQ1yQ2z; so

ℓ(Pinit) ≤ 4δn
α ≤ 16δα, using n ≤ 4α2.

Consider the graph G′, obtained from G by removing the interior vertices of Pinit. Write

κ = (1− 16δ)α, ℓ = (1− 4δ) · n
α
,

and notice that κ(G′) ≥ α− |Pinit| ≥ κ. If G′ has an xz-path Q3 of length at most ℓ, we are done (take

P0 = Q1 and P1 = yQ2zQ3x), so suppose it does not.

Let Ui be the set of vertices at distance exactly i from x in G′. Notice that Ui is non-empty for i ≤ ℓ.

By connectivity of G′, we have |Ui| ≥ κ for i ∈ [ℓ− 1]. Moreover, there is a matching of size at least κ

between Ui and Ui+1, for i ∈ [ℓ − 2]. We claim that there exists i with 3 ≤ i ≤ ηn
α such that the sets

Ui, Ui+1, . . . , Ui+6 all have size at most (1 + η)α. Indeed, otherwise, we get∑
i∈[ℓ]

|Ui| ≥ κ
(
ℓ− ηn

α

)
+
(ηn
7α

− 1
)
· (6κ+ (1 + η)α)

≥ κℓ− κηn

7α
+

ηn

7
· (1 + η)− 7(1 + η)α

= κℓ+
ηn

7
·
(
1 + η − (1− 16δ)

)
− 7(1 + η)α

≥ (1− 16δ)(1− 4δ)n+
η2n

7
− 8α ≥

(
1− 20δ +

η2

7
− 8

n/α

)
n > n,
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a contradiction. For the first estimate we lower bounded |Ui| by κ for i > ηn/α, and divided the range

[3, ηn/α] into at least ηn/7α− 1 intervals of length 7, and then lower bounded the total length of |Ui|
over each of these intervals by 6κ + (1 + η)α, which was possible due to the assumption that in each

such interval there is a set Ui of size at least (1 + η)α. For the second inequality we used κ ≤ α, and

for the last estimate we used that n/α is large.

Fix an i as above. Let Mj be a matching of size κ between Ui+j−1 and Ui+j , for each j ∈ [6], and

denote the union of these matchings by F . Let U ′i+j be the set of vertices in Ui+j that are in a path

of length 6 in this union. We claim that |U ′i+j | ≥ (1 − 13η)α. To see this, consider the set of vertices

U ′′i+k in Ui+k which are in paths of length k − 1 in F that start in Ui. Then |U ′′i | ≥ κ ≥ (1− η)α, and

|U ′′i+j | ≥ |U ′′i+j−1| − (|Ui+j | − κ) ≥ |U ′′i+j−1| − 2ηα ≥ (1− (2j + 1)η)α. Each vertex in U ′′i+6 is in a path

of length 6. Thus |U ′i+j | ≥ |U ′′i+6| ≥ (1− 13η)α, for j ∈ [0, 6].

Rename Wj = U ′i+j for j ∈ [0, 6], and write W = W0∪. . .∪W6. Notice that every vertex in W1∪. . .∪W5

has at least κ− 14ηα ≥ α/2 neighbours in W . For a vertex w ∈ Wj let w+ be the F -neighbour of w in

Wj+1, for j ∈ [0, 5], and let w− be the F -neighbour of w in Wj−1, for j ∈ [6]. Moreover, let P (w) be

the unique path through w from W0 to W6 in F . Write ℓ′ = δn
α .

Claim 5.4. There is a sequence of paths P0, . . . , P2ℓ′ with the following properties.

(a) The paths Pi are pairwise vertex-disjoint, except that the start point of Pi is the end point of Pi−1,

for i ∈ [2ℓ′].

(b) |Pi| ≤ 8.

(c) Pi has a chord of length 2 or 3 for i ∈ [0, 2ℓ′] (2 if i = 0).

(d) The end point of Pi is in W1 ∪ . . . ∪W5.

(e) V (Pi) ⊆ W for i ∈ [2ℓ′]. If V (P0) is not fully contained in W , then it starts with a vertex in

Pinit, such that the subpath of Pinit between x and P0’s start point does not contain other vertices

of P0.

Proof. First, define P0 as follows. Let u ∈ W3. By assumption on G, the vertex u lies in a triangle

(uvw). If one of v and w is in Pinit, then without loss of generality v is in Pinit and is closer to x than

w in Pinit (if w is also in Pinit). Define P0 = vwu, and notice that P0 satisfies the above requirements.

Now suppose that P0, . . . , Pi−1 are defined and satisfy the above properties, where i ∈ [ℓ′]. Denote the

end point of Pi−1 by u; then u ∈ W1 ∪ . . . ∪ W5 by (e). Let W ′ be the set of vertices in W which

do not lie in any path P (v), with v ∈ V (P0) ∪ . . . ∪ V (Pi). Then |W ′| ≥ |W | − 8ℓ′ ≥ |W | − α
4 . Let

v be a neighbour of u in W ′, let P ′(v) be the subpath of P (v) that starts at v and ends in W3, and

let w be the end of P ′(v). As in the proof of Lemma 3.1, there exist w1, w2, w3 ∈ W ′ − V (P (v)) such

that one of the following holds: (ww1w2) is a triangle; (w1w2w3) is a triangle and ww1 is an edge; or

(ww1w2w3) is a 4-cycle. Let Q be ww1w2 in the first case, and ww1w2w3 in the other two cases, and

define Pi+1 = uvP ′(v)wQ.

It is easy to check that Pi satisfies the requirements. This completes the proof that paths P0, . . . , Pℓ′

as above exist.
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w2

Figure 6: An illustration of how Pi may look like

Define P = P0 . . . P2ℓ′ , and denote the start point of P by u0 and the end point by u1.

We define paths Q0 and Q1 between x and u0 and u1. Let i ∈ {0, 1}. If ui ∈ W , let vi be a neighbour

of ui such that P (vi) does not intersect P (v) for any v in P (it is easy to see that such vi exists), and

let Qi be the concatenation of a shortest path between x and vi that does not intersect P and the edge

viui. Then ℓ(Qi) ≤ 2ηn
α . If ui /∈ W , then i = 0 and ui ∈ V (Pinit), and we take Q0 to be the subpath of

Pinit between x and u0. In this case we have ℓ(Q0) ≤ ℓ(Pinit) ≤ 4δn
α .

Thinking of Q0 as a path from x to u0, let x
′ be the last vertex in Q0 which is also in Q1 (notice that

x is in both Q0 and Q1, so this is well defined). Let Q′0 be the subpath of Q0 from x′ to u0, and let

Q′1 be the subpath of Q1 from u1 to x′. The paths P0 . . . Pℓ′−1 (for P0) and Pℓ′ . . . P2ℓ′Q1Q0 (for P1)

satisfy the requirements of the lemma. Indeed, the former has length at most 7δn/α and at least δn/α

non-intersecting chords of length 2 or 3, with at least one of length 2, the latter has length at least

δn/α, and the total length is at most (14δ + 4η)n/α ≤ n/α.

5.4 Extending middle range cycles

In this section we prove Lemma 5.2. Here the task is to extend a given path P by a small but positive

amount. To do so, we use results about cycle-complete Ramsey numbers to find a cycle C of specific

length which is disjoint of P . We then use connectivity to find many pairwise vertex-disjoint paths

between P and C, one for each vertex of C. If many of the paths are short, we can pick two that are

close in P , and extend P by going along these paths and along the longer subpath of C that connects

the ends of these paths in P (see Figure 7a). Otherwise, we use the independence number to find

an edge between two of the paths to get an appropriate extension (see Figure 7b). The proof here is

reminiscent of the proof of Lemma 2.10 in [14], especially in the latter case, but the idea to use a cycle

outside of P is new and crucial for covering the full middle range.

Proof of Lemma 5.2. By Theorem 3.4, the bound r ≥ 32
√
α, and the assumption that α is large,

we have the following bound on the cycle-complete Ramsey number: r(Cr/2,Kα+1) ≤ (r/2) · α ≤
n/2 ≤ n − ℓ. Since α(G) ≤ α, it follows that there is a cycle C = (v1 . . . vr/2) of length r/2 which is
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vertex-disjoint of P . Since κ(G) ≥ α/2 ≥ r/2 = |C| and |P | = ℓ + 1 ≥ r/2, there are r/2 pairwise

vertex-disjoint paths from C to P . Given such a collection of paths, denote the path starting with vi by

Qi, for i ∈ [r/2], and let ui be the end of Qi in P . By assuming that the Qi’s are as short as possible,

the paths Qi are induced. We consider two cases: at least r/4 paths Pi have length at most r/4; and

at least r/4 paths have length at least r/4.

Suppose that the former holds, and let I be the set of indices i ∈ [r/2] such that ℓ(Qi) ≤ r/4. Since

|I| ≥ r/4, there are distinct i, j ∈ I such that the distance between ui and uj in P is at most ℓ
r/4 ≤ r/4

(using r ≥ 4
√
ℓ). Let P1 and P2 be the two subpaths of P obtained by removing the segment between

ui and uj , such that ui ∈ V (P1) and uj ∈ V (P2). Let P3 be the longer subpath of C with ends vi and

vj ; so ℓ(P3) ≥ r/4. Define P ′ as follows (see Figure 7a).

P ′ = P1uiQiviP3vjQjujP2.

We claim that P ′ satisfies the requirements. Indeed, notice that P ′ has the same ends as P . Moreover,

ℓ(P ′) ≥ ℓ(P ) − r/4 + ℓ(Qi) + ℓ(Qj) + ℓ(P3) ≥ ℓ(P ) + 2, as at most r/4 edges of P are skipped,

the paths Qi and Qj each have length at least 1, and P3 has length at least r/4. Also, ℓ(P ′) ≤
ℓ(P ) + ℓ(Qi) + ℓ(Qj) + ℓ(P3) ≤ ℓ(P ) + r, using ℓ(Qi), ℓ(Qj) ≤ r/4 and ℓ(P3) ≤ r/2.

ui uj

vi
vj

P1 P2

Qi Qj

C

(a) P ′ when many Pi’s are short

ui uj

vi
vj

P1 P2

Q′iQ′j

x y

(b) P ′ when many Pi’s are long

Figure 7: the path P ′

Now suppose that the latter case holds, namely at least r/4 of the paths Pi have length at least r/4;

let I be the set of indices i such that ℓ(Pi) ≥ r/4. We claim that there is a subpath of P of length at

most r/8 that contains at least 32α/r vertices ui, with i ∈ I. Indeed, otherwise

ℓ ≤
(

ℓ

r/8
+ 1

)
· 32α

r
<

29α

r2
· ℓ < ℓ,

a contradiction (using r ≥ 32
√
α). Let J be a subset of I of size at least 32α/r such that the vertices

uj with j ∈ J are on a subpath of P of length at most r/8. For each j ∈ J , let Uj be the set of vertices

in Pj whose distance from uj in Pj is even and between r/8 and r/4. Then Uj is an independent set

(as Pj is an induced path) of size at least r/16. It follows that the union
⋃

j∈J Uj has size at least
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(r/16) · (32α/r) > α. As α(G) ≤ α, there is an edge xy in this union; say x ∈ Ui and y ∈ Uj (so i ̸= j).

Let Q′i be the subpath of Qj from uj to x, let Q′j be the subpath of Qj from y to uj , and let P1 and P2

be the two subpaths of P obtained by removing the segment between ui and uj , such that ui ∈ V (P1).

Define a path P ′ as follows (see Figure 7b).

P ′ = P1uiQ
′
ixyQ

′
jujP2.

Again, we claim that P ′ satisfies the requirements. Indeed, it has the same ends as P . Moreover,

ℓ(P ′) ≥ ℓ(P )− r/8 + ℓ(Q′i) + ℓ(Q′j) + 1 > ℓ(P ) (using ℓ(Q′i), ℓ(Q
′
j) ≥ r/8), and ℓ(P ′) ≤ ℓ(P ) + ℓ(Q′i) +

ℓ(Q′j) + 1 ≤ ℓ(P ) + r (using ℓ(Q′i), ℓ(Q
′
j) ≤ r/4).

6 Lower range

In this section we prove Lemma 2.3, restated here, about short cycles.

Lemma 2.3 (Lower range). Let 0 < δ ≪ 1 and let n, α, ℓ ≥ 1 be integers, satisfying: α is sufficiently

large, and 3 ≤ ℓ ≤ max{n/α, δα}. Suppose that G is an n-vertex graph with δ(G) > α(G) = α. Then

G has a cycle of length ℓ.

The general outline is very similar to that of the proof of the lower range in [14], but we need to

work harder for each step. We find very short cycles (of length up to 7) via ad-hoc arguments; for

comparison, in [14] the authors needed to find cycles of length up to 5, and their proofs do not quite

carry to our setting.

To find longer cycles in this range, our proof splits into two cases. When n/α ≥ δα, we use results about

cycle-complete Ramsey numbers (Theorem 3.3 and Theorem 3.4), exactly as in [14]. Otherwise, we use

a result about the Turán number of even cycles due to Bondy and Simonovits [7] (see Theorem 6.2).

This works directly for even lengths, but for odd lengths we need a correction. Lemma 6.3 provides

such a correction: it finds a large subgraph H ⊆ G such that every edge e in H can be extended to a

cycle of length 3 or 5 in G, whose vertices outside of e are not in H. This is a variant of Lemma 2.7 in

[14], where the stronger condition on the connectivity allowed the authors to find such H where every

edge e is in a triangle in G whose third vertex is outside of H.

6.1 Lemmas

For technical reasons, we will find very short cycles (of length at most 7) separately.

Lemma 6.1. Let G be a graph with δ(G) > α(G) ≫ 1. Then G contains a cycle of length ℓ, for every

ℓ ∈ {3, . . . , 7}.

For longer cycles we will consider two cases, depending on whether or not n/α is larger than δα. If yes,

then the proof follows directly from the results we mentioned earlier regarding cycle-complete Ramsey

numbers (Theorems 3.3 and 3.4). If not, then we use the following result about the Turán number of

even cycles.
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Theorem 6.2 (Bondy–Simonovits [7]). Let ℓ ≥ 1 be an integer, and suppose that G is an n-vertex

graph with e(G) ≥ max{20ℓn1+1/ℓ, 200nℓ}. Then G contains a cycle of length 2ℓ.

The following lemma allows us to find odd cycles in the latter case, by applying Theorem 6.2 to a

subgraph H of G which has the property that every edge e is in a short odd cycle in G whose vertices

which are not in e are not in H.

Lemma 6.3. Let 0 < δ ≪ 1 and let α, n ≥ 1 be integers. Suppose that G is an n-vertex graph with

δ(G) > α(G) = α. Then there is a subgraph H of G with at least δnα edges, such that each edge e in

H is contained in a cycle C of length 3 or 5 satisfying V (C) ∩ V (H) = V (e).

6.2 Proof of lower range lemma

Proof of Lemma 2.3. Let η be a constant satisfying δ ≪ η ≪ α. Write m = max{n/α, δα}, and let ℓ

be an integer satisfying 3 ≤ ℓ ≤ m. If ℓ ≤ 7 then there is a cycle of length ℓ, by Lemma 6.1, so we may

assume ℓ ≥ 8. We consider two cases, according to the value of m.

Suppose first that m = n/α. Since G has no independent set of size α + 1 and α is large, there is a

cycle of length exactly ℓ, using aforementioned results about cycle-complete Ramsey numbers, namely

Theorem 3.3 if ℓ ≤ logα and Theorem 3.4 otherwise.

Suppose now that m = δα. Apply Lemma 6.3 to find a subgraph H of G with at least ηnα edges such

that for every edge e ∈ E(H) there is a cycle Ce of length 3 or 5 that contains e and whose vertices

which are not in e are not in H. Let Hi be the subgraph of H with edges e such that |Ce| = i, for

i ∈ {3, 5}. Let i ∈ {3, 5} be such that e(Hi) ≥ ηnα/2. Write

k =

{
ℓ−i+2

2 ℓ is odd
ℓ
2 ℓ is even.

Claim 6.4. e(Hi) ≥ max{20kn1+1/k, 200nk}.

Proof. First note that 200nk ≤ 200nℓ ≤ 200δnα ≤ ηnα/2 ≤ e(Hi).

Next, note that, as ℓ ≥ 8, we have k ≥ 3. Moreover, since m = δα, we have δα ≥ n/α, so α ≥ δ−1/2
√
n.

This implies e(Hi) ≥ ηδ−1/2n3/2/2 ≥ n3/2. Now, if k ≥ log n then 20kn1+1/k ≤ 20 · e · kn ≤ e(Hi). If,

instead, 3 ≤ k ≤ log n, then 20kn1+1/k ≤ 20 log n · n4/3 ≤ n3/2 ≤ e(Hi), using that α and thus n are

large.

By the claim and Theorem 6.2, the graph Hi has a cycle of length exactly 2k. If ℓ is even, then this is

a cycle of length ℓ in G. If ℓ is odd, then let C be a cycle of length 2k = ℓ − (i − 2) in Hi. Let C ′ be

the cycle obtained by replacing one edge e in C by the subpath of Ce obtained by removing e. Notice

that this is indeed a cycle, as the vertices of Ce which are not in e are not in Hi, and thus not in C.

Also, |C ′| = |C| − 1 + (i− 1) = ℓ.
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6.3 Finding short cycles

We now prove Lemma 6.1, about finding cycles of length between 3 and 7.

Proof of Lemma 6.1. Write α = α(G). For each vertex u, let I(u) be a largest independent set in the

neighbourhood N(u).

ℓ = 3. Since |N(u)| > α for every vertex u, there is an edge in N(u), showing that G contains a

triangle.

ℓ = 4. Notice that if, for some vertex u, its neighbourhood N(u) contains a path v1v2v3 of length 2,

then (uv1v2v3) is a cycle of length 4. So suppose that N(u) does not contain a path of length 2, for

every vertex u. In particular, each neighbourhood N(u) induces a matching, and thus |I(u)| ≥ α/2.

Consider a triangle (uvw). If |I(u) ∩ I(v)| ≥ 2, then take a vertex x ∈
(
I(u) ∩ I(v)

)
− {w}, and note

that (uxvw) is a 4-cycle (see Figure 8a). So suppose that |I(u) ∩ I(v)|, |I(u) ∩ I(w)|, |I(v) ∩ I(w)| ≤ 1.

Thus |I(u) ∪ I(v) ∪ I(w)| ≥ 3α/2 − 3 > α, showing that I(u) ∪ I(v) ∪ I(w) contains an edge xy. By

independence of I(u), I(v), I(w), and by symmetry, we may assume x ∈ I(u) and y ∈ I(v). Thus

(uxyv) is a 4-cycle (see Figure 8b).

(a) (uxvw) (b) (uxyv)

Figure 8: 4-cycles

ℓ = 5. To see that G contains a 5-cycle, we may assume that N(u) does not contain a path of

length 3, for every vertex u. It follows that |I(u)| ≥ α/3. Suppose that some neighbourhood N(u)

contains a matching {v1w1, . . . , v4w4} of size 4. If |I(vi) ∩ I(vj)| ≥ 10 for some distinct i, j ∈ [4], pick

x ∈
(
I(vi)∩ I(vj)

)
−{v1, w1, . . . , v4, w4, u}, then (uvixvjwj) is a 5-cycle (see Figure 9a). Otherwise, the

set I(v1) ∪ . . . ∪ I(v4) has size at least 4α/3 − 6 · 9 > α, and so it has an edge xy, say x ∈ I(vi) and

y ∈ I(vj). Notice that i ̸= j, by independence of the sets I(v1), . . . , I(v4). Then (uvixyvj) is a 5-cycle

(see Figure 9b). Now suppose that no neighbourhood N(u) contains a matching of size 4, showing that

|I(u)| ≥ α − 6 for every vertex u. Let (v1v2v3) be a triangle. If there is an edge xy with x ∈ I(vi),

y ∈ I(vj), and x, y /∈ {v1, v2, v3}, then, without loss of generality i = 1 and j = 2, and so (v1xyv2v3) is

a 5-cycle (see Figure 9c). So suppose no such edge exists. This shows that |I(vi)∪ I(vj)| ≤ α and thus

|I(vi) ∩ I(vj)| ≥ α− 12 for all i, j ∈ [3]. In particular, there are distinct vertices x ∈ I(v1) ∩ I(v2) and

y ∈ I(v2) ∩ I(v3), such that x, y /∈ {v1, v2, v3}. Then (v1xv2yv3) is a 5-cycle (see Figure 9d).

ℓ = 6. To find a 6-cycle, we may assume as above that |I(u)| ≥ α/4 for every vertex u. Suppose that

some neighbourhood N(u) contains a matching {v1w1, . . . , v5w5} of size 5. Then, similarly to the previ-

ous paragraph, there are distinct i, j ∈ [5] and either a vertex x ∈
(
I(vi)∩I(vj)

)
−{v1, w1, . . . , v5, w5, u},
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(a) (uvixvjwj) (b) (uvixyvj) (c) (v1xyv2v3) (d) (v1xv2yv3)

Figure 9: 5-cycles

or two vertices x ∈ I(vi) − {v1, w1, . . . , v5, w5, u} and y ∈ I(vj) − {v1, w1, . . . , v5, w5} such that xy is

an edge. This yields a 6-cycle: (uwivixvjwj) in the first case, and (uvixyvjwj) in the second case (see

Figures 10a and 10b). So we now may assume |I(u)| ≥ α − 8 for every vertex u. Consider a triangle

(v1v2v3). If |I(vi)∩ I(vj)| ≥ 6 for every distinct i, j ∈ [3], we may find a 6-cycle of the form (v1xv2yv3z)

(see Figure 10c). Otherwise, say |I(v1)∩I(v2)| ≤ 6, and so |I(v1)∪I(v2)| ≥ 2α−22. In particular, there

is a matching {x1y1, x2y2} with x1, x2 ∈ I(v1) and y1, y2 ∈ I(v2), yielding the 6-cycle (v1x1y1v2y2x2)

(see Figure 10d).

(a) (uwivixvjwj) (b) (uvixyvjwj) (c) (v1xv2yv3z) (d) (v1x1y1v2y2x2)

Figure 10: 6-cycles

ℓ = 7. Finally, we need to prove the existence of a 7-cycle. As usual, we assume |I(u)| ≥ α/5 for every

vertex u. Suppose N(u) contains a matching {v1w1, . . . , v6w6}. If there is an edge xy with x ∈ I(vi)

and y ∈ I(vj) (and x, y /∈ {v1, w1, . . . , v6, w6, u}), then we get a 7-cycle (uwivixyvjwj) (see Figure 11a).

So suppose no such edge exists, showing that |I(v1) ∪ . . . ∪ I(v6)| ≤ α. This implies that, for some

distinct i, j ∈ [6], we have |I(vi)∩I(vj)| ≥ 10. Let x1, . . . , x6 ∈
(
I(vi)∩I(vj)

)
−{vi, vj , wj , u}. As usual,

there are distinct s, t ∈ [6] such that either there exists y ∈
(
I(xs) ∩ I(xt)

)
− {vi, vj , wj , u}, or there is

an edge yz with y ∈ I(xs)−{vi, vj , wj , u} and z ∈ I(xt)−{vi, vj , wj , u}. Either way, there is a 7-cycle:

(uvixiyxjvjwj) in the first case, and (uvixiyzxjvj) in the second (see Figures 11b and 11c). We may

now assume that |I(u)| ≥ α − 10 for every vertex u. This implies that for every two vertices a, b and

any set S of size at most 7 which does not contain a or b, there is a path from a to b that avoids S and

has length 2 or 3. Consider a triangle (v1v2v3), and for 1 ≤ i < j ≤ 3, let Pi,j be a path of length 2

or 3 with ends vi and vj , such that distinct paths have disjoint interiors. If at least two of these paths

have length 3, say ℓ(P1,2), ℓ(P2,3) = 3, then (v1P1,2v2P2,3v3) is a 7-cycle (see Figure 11d). If exactly one

path has length 3, say ℓ(P1,2) = 3, then (v1P1,2v2P2,3v3P1,3) is a 7-cycle (see Figure 11e). We may thus

assume that all paths have length 2, i.e. there are distinct vertices u1, u2, u3 such that (v1u1v2u2v3u3)

is a 6-cycle. Let P be a path of length 2 or 3, with ends v1, u1, which avoids {v2, u2, v3, u3}. If P has
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length 2 then (v1Pu1v2u2v3u3) is a 7-cycle, and otherwise (v1Pu1v2u2v3) is a 7-cycle (see Figures 11f

and 11g).

(a) (uwivixyjvjwj) (b) (uvixiyzxjvj) (c) (uvixiyzxjvj)

(d) (v1P1,2v2P2,3v3) (e) (v1P1,2v2P2,3v3P1,3) (f) (v1Pu1v2u2v3u3) (g) (v1Pu1v2u2v3)

Figure 11: 7-cycles

6.4 Finding many edges in short odd cycles

We now prove Lemma 6.3. The idea is to find Ω(nα) edges in G that are contained in either a triangle

or a 5-cycle. Once that is done, a simple probabilistic argument can be used to find a subgraph H with

the desired properties.

Proof of Lemma 6.3. Let η be a constant satisfying δ ≪ η ≪ 1. For each vertex u let M(u) be a

maximum matching in N(u), and let I(u) := N(u) − M(u) (so I(u) is independent). We define sets

U1, . . . , U4 as follows.

� Let U1 be the set of vertices u satisfying |M(u)| ≥ α/12.

� Let U2 be the set of vertices u /∈ U1 for which there exists a triangle (uvw), where v /∈ U1.

� Let U3 be the set of vertices u /∈ U1 ∪U2 for which there exist three vertices v, w, x ̸= u such that

(vwx) is a triangle, v /∈ U1, and uw is an edge.

� Let U4 = V (G)− (U1 ∪ U2 ∪ U3).

27



We show that |U4| ≤ n/3. Indeed, for each u ∈ U4 let Tu be a triangle that contains u (such a triangle

exists by δ(G) > α). We claim that the triangles Tu, with u ∈ U4, are pairwise vertex-disjoint. To

see this, consider distinct u1, u2 ∈ U4, and write Tu = (u1v1w1) and Tu2 = (u2v2w2). Notice that

v1, w1, v2, w2 ∈ U1, because u1, u2 /∈ U2. Thus, if Tu1 and Tu2 share a vertex, we may assume v1 = v2.

This is a contradiction to u /∈ U4, as (u2v2w2) is a triangle, u2 /∈ U1, and u1v2 is an edge. This shows

that the triangles Tu, with u ∈ U4, are pairwise vertex-disjoint, which implies the desired inequality

|U4| ≤ n/3.

Let F be a family of ordered triples and quintuples, defined as follows. It will be useful to note that for

distinct u, v /∈ U1 either |I(u) ∩ I(v)| ≥ α/12 or there is a matching of size at least α/12 whose edges

have one end in I(u) and the other in I(v); this follows from I(u) and I(v) being independent sets of

size at least 2α/3.

� For every u ∈ U1 and xy ∈ M(u), add the ordered triples (u, x, y) and (u, y, x) to F .

� For every u ∈ U2, fix v, w such that v /∈ U1 and (uvw) is a triangle. Because I(u) and I(v) are

two independent sets of size at least 2α/3. If |I(u)∩ I(v)| ≥ α/12, add the ordered triple (u, x, v)

to F for each x ∈ I(u)∩I(v). Otherwise there is a matching M of size at least α/12 between I(u)

and I(v). Add to F the ordered quintuple (u, x, y, v, w), for each edge xy ∈ M with x ∈ I(u) and

y ∈ I(v).

� For every u ∈ U3, fix v, w, x ̸= u such that (vwx) is a triangle, v /∈ U1, and uw is an edge.

If |I(u) ∩ I(v)| ≥ α/12, add (u, y, v, x, w) with y ∈ I(u) ∩ I(v) to F . Otherwise, let M be an

I(u) − I(v) matching of size at least α/12, and add (u, y, z, v, w) to F , for all yz ∈ M (where

y ∈ I(u) and z ∈ I(v)).

Notice that for every u /∈ U4 there are at least α/12 ordered tuples in F whose first element is u,

showing that |F| ≥ 2n/3 · α/12 = αn/18. Moreover, for every two vertices x, y, there is at most one

ordered tuple in F whose first element is x and the second y.

Let X be a random set of vertices, obtained by including each vertex with probability 1/2, indepen-

dently. Let P be the set of ordered pairs (x, y) such that x, y ∈ X and F contains a tuple whose first ele-

ment is x and the second is y, and whose other elements are not inX. Then E(|P|) ≥ |F|·2−5 ≥ αn/576.

Fix an outcome of X such that |P| ≥ αn/576. Let H be the graph on vertex set X, with edges xy such

that at least one of (x, y) and (y, x) is in P. Then e(H) ≥ |P|/2 ≥ αn/1152. The graph H satisfies the

requirements of the lemma.

7 Conclusion

In this paper we proved that if a graph G has sufficiently many vertices, and satisfies κ(G) > α(G), then

G is pancyclic, thereby proving a long standing conjecture of Jackson and Ordaz [19] for large graphs.

Of course, it would be nice to settle the conjecture for all graphs. As mentioned in the introduction,

it is plausible that a slight generalisation of Jackson and Ordaz’s conjecture holds, namely that every

graph G that contains a triangle and satisfies κ(G) ≥ α(G) is pancyclic. Tools from this paper are
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likely to be helpful in proving this generalisation (if true), but not everything carries through directly,

and we have decided not to pursue this direction as the paper is long enough as it is.

As a different avenue for potential future research, we mention a question from [12]. In [12], Draganić,

Munhá-Correia, and Sudakov proved that if G is Hamiltonian and n ≥ (2 + Ω(1))α2, where n is the

number of vertices in G and α is G’s independence number, then G is pancyclic. While this bound is

tight, up to the Ω(1) error term, the authors suspect that a much weaker bound suffices for guaranteeing

a cycle of length n− 1.

Question 7.1. Is there a constant c such that if G is a Hamiltonian graph on n vertices, with inde-

pendence number α where n ≥ c · α, then G has a cycle of length n− 1?
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