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Abstract

We investigate the existence of a rainbow Hamilton cycle in a uniformly edge-

coloured randomly perturbed graph. We show that for every δ ∈ (0, 1) there exists

C = C(δ) > 0 such that the following holds. Let G0 be an n-vertex graph with

minimum degree at least δn and suppose that each edge of the union of G0, with the

random graph G(n,C/n) on the same vertex set, gets a colour in [n] independently

and uniformly at random. Then, with high probability, G0 ∪ G(n,C/n) has a

rainbow Hamilton cycle.

This improves a result of Aigner-Horev and Hefetz, who proved the same when the

edges are coloured uniformly in a set of (1 + ε)n colours.

1 Introduction

Given δ ∈ (0, 1), let Gδ,n be the collection of graphs on vertex set [n] with minimum

degree at least δn. Determining the minimum δ that guarantees that every member of

Gδ,n contains a given spanning subgraph is a central theme in extremal combinatorics.

The prototypical example is Dirac’s theorem [12], which says that the minimum δ such

that every member of Gδ,n is Hamiltonian is 1/2. On the other hand, one of the main

pursuits of probabilistic combinatorics is understanding the minimum p such that G(n, p),

the binomial random graph on [n] with edge probability p, contains a given subgraph with

high probability1. Following the breakthrough of Pósa [25], it was proven in [20, 21] that
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1We say that a sequence of events (An)n∈N holds with high probability if P [An]→ 1 as n→∞.

1

ar
X

iv
:2

30
4.

09
15

5v
1 

 [
m

at
h.

C
O

] 
 1

8 
A

pr
 2

02
3



G(n, p) is Hamiltonian with high probability, if it has minimum degree at least 2 with

high probability, showing that the threshold p for Hamiltonicity is (1 + o(1)) log n/n.

As an interpolation between the two models, Bohman, Frieze and Martin [8] introduced

the perturbed graph model. Given a fixed δ > 0, this is defined as G0 ∪G(n, p), where

G0 ∈ Gδ,n, i.e. this is the union of some graph on vertex set [n] with minimum degree at

least δn, and the random graph G(n, p) on the same vertex set. In [8] the authors showed

that there exists C, depending only on δ, such that for all G0 ∈ Gδ,n, the perturbed graph

G0∪G(n,C/n) is with high probability Hamiltonian. That is, for every graph with linear

minimum degree, adding linearly many random edges results in a graph that is with high

probability Hamiltonian. This is best possible for all δ ∈ (0, 1/2) up to the value of C,

since the complete bipartite graph with parts of size δn and (1− δ)n requires Ω(n) edges

to be Hamiltonian. (When δ ≥ 1/2 no random edges are needed, due to Dirac’s theorem.)

By now there is a sizeable literature on the perturbed model; see e.g. [1,2,4,5,9,10,22,23].

In this paper we consider a rainbow variant of the above result. A subgraph H of an

edge coloured graph G is called rainbow if no two edges of H share a colour. For a finite

set of colours C, a graph G is uniformly coloured in C if each edge of G gets a colour in

C independently and uniformly at random. The problem of finding rainbow subgraphs

of uniformly coloured graphs is well studied, in particular for G(n, p) [6, 11, 13, 14, 17].

The problem of finding rainbow subgraphs in the uniformly coloured perturbed graph

G ∼ G0∪G(n, p), where G0 ∈ Gδ,n, was first considered more recently [1–5]. In particular,

the problem of containing a rainbow Hamilton cycle was first addressed by Anastos

and Frieze [5], who showed that if the number of colours is at least about 120n, then

G ∼ G0∪G(n,C/n) has with high probability a rainbow Hamilton cycle, for C depending

only on δ and all G0 ∈ Gδ,n. Aigner-Horev and Hefetz [3] improved this result by showing

that, at the same edge probability in the random graph, n + o(n) colours suffice. We

prove that the optimal number of colours suffices.

Theorem 1.1. For any δ ∈ (0, 1) there exists C > 0 such that the following holds. For

G0 ∈ Gδ,n, let G ∼ G0∪G(n,C/n) be uniformly coloured in [n]. Then with high probability

G contains a rainbow Hamilton cycle.

As explained above, our result has the optimal edge probability, up to the dependence of

C on δ, for δ ∈ (0, 1/2).

The paper is structured as follows. In Section 2 we sketch the proof of Theorem 1.1.

In Section 3 we prove Theorem 1.1 assuming Lemma 3.1, the key lemma of the paper.

Next in Section 4 we state and prove some preliminary results that we need. In Section 5

we prove the existence of ‘gadgets’ which underpin Lemma 3.1. In Section 6 we prove

Lemma 3.1.

Throughout the paper, we will assume that n is sufficiently large. Asymptotic notation

hides absolute constants: if for some x, ε, n > 0 we write x = O(εn), then there is an

absolute constant C > 0, which does not depend on x, ε, n or any other parameters, such

that x ≤ Cεn. We write x� y if x < f(y) for an implicit positive increasing function f .
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We denote the set of colours on the edges of a graph H by C(H), and say that a graph H

is spanning in a colour set C ′ if C(H) = C ′. Finally, we let Gδ,n be an arbitrary member

of Gδ,n, which is the family of n-vertex graphs with minimum degree at least δn.

2 Proof sketch

Our proof uses the absorption method. This method is typically applicable when one

searches for a spanning subgraph, and involves two stages: finding an almost spanning

subgraph; and dealing with the remainder, by having a ‘special’ set of vertices, put aside

at the beginning, that can cover any sufficiently small set of vertices.

This is done in Lemma 3.1, which says the following: with high probability there exists

a rainbow path Pabs such that, for any sets of vertices V ′ and colours C ′ with |V ′| = |C ′|,
disjoint from the vertices and colors of Pabs, there exists another rainbow path Q with

vertex set V ′ ∪ V (Pabs) and colours C ′ ∪ C(Pabs), whose ends can be any vertices in V ′.

We now sketch the proof of Lemma 3.1. We first put aside a subset of the vertices and a

subset of the colours, which are typically called the ‘reservoir’ (also called ‘flexible set’),

that have the following property: for any sets of vertices and colours V ′, C ′ of the same

small size (much smaller than the reservoir) which are disjoint from the reservoir, we can

find a rainbow path P0 that uses V ′, C ′ and a Θ(|V ′|) subset of the vertices and colours

in the reservoir.

Then the question is how to cover the rest of the reservoir; to this end, we build an

‘absorbing structure’ (Pabs above) which has the following property: it can ‘absorb’ any

subset of vertices and colours of the same size of the reservoir in a rainbow path P ′abs.

Then combining P ′abs and P0 gives Q.

The path Pabs and the ‘absorbing structure’ in which it resides are built by putting

together several ‘absorbing gadgets’, graphs on Θ(1) vertices with the following property:

each gadget has two paths with the same endpoints such that one avoids a designated

pair of a vertex and a colour in the reservoir, and the other one ‘absorbs’ the same

pair; see Figure 1. The construction of the gadgets is done in Section 5. This absorbing

structure was introduced by Gould, Kelly, Kühn and Osthus [18] for constructing rainbow

Hamilton paths in random optimal colourings of the complete graph, and is based on ideas

of Montgomery [24].

For finding an almost spanning rainbow path we use a rainbow version of depth first

search [3, 14], which was used for the same problem in [3].

3 Proof of Theorem 1.1

In this section we prove the main theorem, Theorem 1.1. We will use Lemma 3.1 below,

which we prove in Section 6.
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Lemma 3.1. Let δ, γ, η ∈ (0, 1) and C > 0 be constants such that C−1 � η � γ � δ.

Let G ∼ Gδ,n ∪G(n,C/n) be uniformly coloured in C = [n]. Then, with high probability,

G has a rainbow path Pabs of length at most γn with the following property. For any

V ′ ⊆ V \ V (Pabs), C ′ ⊆ C \ C(Pabs) with 2 ≤ |V ′| = |C ′| ≤ ηn and distinct x, y ∈ V ′, there

exists a path Q such that

• Q has ends x, y,

• V (Q) = V (Pabs) ∪ V ′,

• C(Q) = C(Pabs) ∪ C ′.

The next lemma is a rainbow version of a commonly used consequence of the depth first

search algorithm [7], which we will use to find an almost spanning rainbow path. This

lemma was used in [3] for the same problem.

Lemma 3.2 (Prop. 2.1 [3]; Lem. 2.17 [14]). Let G be a graph with its edges coloured in

a set C. If for any two disjoint sets of vertices X, Y of size k we have |C(E(X, Y ))| ≥
|V (G)| , then G has a rainbow path of length at least |V (G)| − 2k + 1.

The next lemma can easily be proved using Chernoff’s bound (cf. Theorem 4.1).

Lemma 3.3. Let α ∈ (0, 1) and C > 0 be constants with C−1 � α. Let G ∼ G(n,C/n)

be uniformly coloured in C = [n]. Then, with high probability, for any two disjoint sets of

vertices X, Y of size αn we have |C(E(X, Y ))| ≥ (1− α)n.

Our main theorem now follows easilly.

Proof of Theorem 1.1. Let η, γ be constants such that C−1 � η � γ � δ. By Lemmas 3.1

and 3.3 we may assume that there exists a path Pabs with the properties in Lemma 3.1;

and that for any disjoint X, Y ⊆ V of size k = ηn/4 we have |C(E(X, Y ))| ≥ n − k.

Let C2 = C \ C(Pabs), let V ′ ⊆ V \ V (Pabs) be an arbitrary set of size k, and let V2 =

V \ (V ′ ∪ V (Pabs)). So |C2| ≥ n − γn and |V2| = |C2| − k − 1. Then, for every disjoint

X, Y ⊆ V2 of size k,

|C(E(X, Y )) ∩ C2| ≥ |C2| − k ≥ |V2| .

Therefore, in the spanning subgraph of G[V2] whose edges are edges in G coloured in C2,

by Lemma 3.2 there exists a rainbow path P2 of length at least |V2| − 2k + 1. Hence

V ′2 = V (G) \ (V (Pabs) ∪ V (P2)) has size between k and 3k ≤ ηn − 2 and C ′2 = C \
(C(Pabs) ∪ C(P2)) has size |V ′2 |+ 2. Let x, y be the endpoints of P2. Then by the property

of Pabs there exists a rainbow path Q spanning in V (Pabs) ∪ V ′2 ∪ {x, y} and C(Pabs) ∪ C ′2
with endpoints x, y. Then P2 ∪Q is a rainbow Hamilton cycle.
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4 Preliminaries

In this section we collect three preliminary results that we need: the Chernoff bound, cf.

Theorem 4.1; that random sparse subgraph of dense hypergraphs have large matchings,

cf. Lemma 4.2; and that in the perturbed graph, between any two vertices, there is a

large rainbow collection of paths of length three, cf. Lemma 4.3.

Theorem 4.1 (Chernoff Bound, [19, eq. (2.8) and Theorem 2.8]). For every ε > 0 there

exists cε > 0 such that the following holds. Let X be the sum of mutually independent

indicator random variables and write µ = E [X]. Then

P [|X − µ| ≥ εµ] ≤ 2e−cε µ.

The next lemma, despite its technical appearance, proves the following straightforward

statement: quite sparse random subgraphs of dense hypergraphs contain, with high prob-

ability, a matching of linear size.

Lemma 4.2. Let α, c, c′ > 0 and r ≥ 2 be an integer such that c′ � α, c, r. Let H be an

r-uniform hypergraph on n vertices with at least αnr edges.

Let Hm be the random subgraph of H that consists of m = cn edges of H, chosen with

replacement and uniformly at random. Then, with probability at least 1 − e−
cαn
4 , the

hypergraph Hm has a matching of size at least c′n.

Let Hp be the random subgraph of H, where we keep each edge independently with prob-

ability p = cn−r+1. Then with probability at least 1 − e−
cαn
2r , the hypergraph Hp has a

matching of size at least c′n.

Proof. Write β(G) for the size of the largest matching of a hypergraph G.

It is not hard to see that H contains an induced subgraph of minimum degree at least

αnr−1. Hence, without loss of generality, we may assume that H has minimum degree at

least αnr−1.

We first prove the result for Hm. Suppose β(Hm) < c′n, and let M be a maximal

matching. Then S = V (H) \ V (M) is an independent set in Hm and |S| ≥ (1 − rc′)n.

By the minimum degree condition of H, the number of edges with all vertices in S is at

least 1
r
|S|(αnr−1 − rc′nr−1) ≥ 1

r
(1− rc′) (α− c′)nr. This gives

P [S is independent] =

(
1− e(H[S])

e(H)

)m
≤ exp

(
−cn ·

1
r
(1− rc′) (α− rc′)nr(

n
r

) )

≤ exp

(
−1

2
(r − 1)! c (1− rc′) (α− rc′)n

)
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Then, since rc′ < 1/2, the number of S ⊆ V with |S| ≥ (1− rc′)n is at most

n

(
n

(1− rc′)n

)
= n

(
n

rc′n

)
≤ e2rc′n(rc′)−rc

′n.

Thus by the union bound P [β(Hm) < c′n] ≤ exp (fc,r,α(c′)n) , where

fc,r,α(c′) = 2rc′ − rc′ ln(rc′)− (r − 1)!

2
c(1− rc′)(α− rc′)

Since fc,r,α(c′) is continuous near 0 and fc,r,α(c′) → 0 − 0 − (r−1)!
2

c α < 0 as c′ → 0, for

c′ = c′(c, r, α) sufficiently small fc,r,α(c′) ≤ − (r−1)!
4

c α ≤ −1
4
cα, which gives the first part

of the lemma.

For the second part of the lemma observe that the same argument works: with S as

above, in Hp we have

P [S is independent] = (1− p)e(H[S]) ≤ exp

(
−cn−r+1 · 1

r
(1− rc′) (α− rc′)nr

)
and a similar calculation as above shows that the probability there is such an S is at

most e−
cαn
2r .

Lemma 4.3 (Triangles and Short Paths). Let 0 < δ < 1, q, C > 0 and ρ, λcon � δ, q, C.

Let C be a set of colours of size qn. Let G ∼ Gδ,n ∪G(n,C/n) be uniformly coloured in

C. Then, with probability at least 1 − e−λconn, the following holds. For any u, v ∈ V (G)

there is a matching M of size at least ρn such that the colours of the edges ux, xy, vy, for

xy ∈M , are all distinct.

Proof. Fix u, v ∈ V . Let ρ1 be a constant such that ρ, λcon � ρ1 � C, δ, q.

By the minimum degree assumption, there exist disjoint subsets Nu ⊆ NGδ,n(u), Nv ⊆
NGδ,n(v), of size δn/2. Consider the bipartite graph with bipartition (Nu, Nv) and edges

{ zw ∈ E(G(n,C/n)) : z ∈ Nu, w ∈ Nv} .

This is a random subgraph of the complete bipartite graph, with each part having order

δn/2, and edge probability C/n. Hence, by Lemma 4.2, with probability 1 − e−Ω(Cδn),

there is matching M of size ρ1n.

For each zw ∈M , reveal whether the path uzwv is rainbow, without exposing the colours.

Then each uzwv is rainbow independently with probability 1−o(1). Hence by Chernoff’s

bound (Theorem 4.1), with probability 1− e−Ω(ρ1n), there is M ′ ⊆M with |M ′| ≥ ρ1n/2

such that each uzwv is rainbow, for all zw ∈M ′.

Let P = {uzwv : zw ∈ M ′}. It remains to show we can find a large M ′′ ⊆ M ′ such that

the collection P ′ = {uzwv : zw ∈M ′′} is rainbow.

Now reveal the colours on the edges in P . By symmetry, each triple of distinct colours in

C is equally likely to appear in P . Hence P corresponds to selecting uniformly at random
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with replacement |P| ≥ ρ1n/2 edges from the complete 3-graph with vertex set C. Thus,

by Lemma 4.2, with probability 1 − e−Ω(ρ1qn), there exists M ′′ ⊆ M ′ of size ρn so that

the colours of P ′ = {uxyv : xy ∈M ′′} form a matching in the complete 3-graph on C i.e.

P ′ is rainbow.

The probability this fails for some pair u, v is, by the union bound, at most

n2 ·
(
e−Ω(Cδn) + e−Ω(ρ1n) + e−Ω(ρ1qn)

)
≤ e−λconn,

proving the lemma.

5 Finding absorbers

In this section we prove Lemma 5.2, which asserts that for any vertex v, colour c and any

small (but linear in size) set of forbidden vertices and colours, we can find an ‘absorber’

(cf. Definition 5.1) for v, c. These absorbers are the building blocks for Pabs in Lemma 3.1.

To construct these absorbers we will need to find a rainbow 4-cycle containing a given

colour c, and none of the forbidden vertices and colours. This is the most technical part

of our proof, and is done in Lemma 5.5.

Definition 5.1 (Absorber). Let v be a vertex and c a colour. A (v, c)-absorber is a

graph Av,c with v ∈ V (Av,c) and c ∈ C(Av,c) that has two paths P, P ′ with the following

properties.

• They are rainbow.

• They have the same endpoints.

• P is spanning in V (Av,c) and V (P ′) = V (P ) \ {v} = V (Av,c) \ {v}.

• P is spanning in C(Av,c) and C(P ′) = C(P ) \ {c} = C(Av,c) \ {c}.

We call P the (v, c)-absorbing path and P ′ the (v, c)-avoiding path. The internal vertices

of Av,c are V (Av,c) \ {v} and the internal colours are C(Av,c) \ {c}.
For the sake of concreteness, we will refer to one of the endpoints of the paths as the first

vertex of the absorber and the other one as the last vertex.

Lemma 5.2. Let 0 < δ < 1, C > 0 and C−1 � ν � δ. Let G ∼ Gδ,n ∪ G(n,C/n)

be uniformly coloured in C = [n]. Then with high probability the following holds. For

any v ∈ V (G) and c ∈ C and for all V ′ ⊆ V (G) and C ′ ⊆ C that have size at least

(1 − ν)n, there exists a (v, c)-absorber on 11 vertices with internal vertices in V ′ and

internal colours in C ′.

Our absorbers will consist of the union of a triangle, a 4-cycle and two paths of length

three between opposite vertices of the cycle and between a vertex in the triangle and a

vertex in the 4-cycle. We require the colours of the triangle to match the internal colours

of the square. See Figure 1.
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P1 P2v

u

u′

c

x y

zw

P1 P2v

u

u′

c

x y

zw

P1 P2v

u

u′ x y

zw

Figure 1: At the top is a (v, c)-absorber. At the bottom the first figure
shows the (v, c)-absorbing path and the second figure the (v, c)-avoiding path.

5.1 Finding squares

We will use the following theorem, due to Fox and Sudakov [15], that is based on the

dependent random choice method.

Theorem 5.3 (Theorem 3.1 [15]; see also Prop. 5.3 [16]). Let α, α′ > 0 be constants

such that α′ � α. Let G be a bipartite graph of order n with bipartition (A,B) and

e(A,B) ≥ αn2. Then there are A′ ⊆ A, B′ ⊆ B such that for all a ∈ A′, b ∈ B′, the

number of paths of length three between a and b in G[A′, B′] is at least α′n2.

Lemma 5.4. Let α, β > 0 be constants such that β � α. Let G be a bipartite graph

on n vertices with bipartition (A,B) and e(A,B) ≥ αn2. Then there exist disjoint sets

A1, A2 ⊆ A, B1, B2 ⊆ B, such that for any a ∈ A1, b ∈ B1, the number of paths of length

three between a, b with internal vertices in A2, B2 is at least βn2. Moreover, the minimum

degree of G[A1, B1] is at least βn.

Proof. Let α′ satisfy β � α′ � α and let A′, B′ be given by Theorem 5.3. Let (A1, A2)

be a random partition of A′, and (B1, B2) be a random partition of B′, i.e. each a ∈ A′
lies in A1 independently with probability 1/2, and similarly for B1.

Then, since G[A′, B′] has minimum degree at least α′n, for each a ∈ A′ the expected

number of neighbours of a in B1 is at least α′n/2; the same is true for the number of

neighbours of b ∈ B′ in A1. Hence from Chernoff’s bound, for any a ∈ A′, b ∈ B′,

P [|N(a) ∩B1| ≥ α′n/3] , P [|N(b) ∩ A1| ≥ α′n/3] ≥ 1− e−Ω(α′n).

Consider a pair a ∈ A′, b ∈ B′. Notice that the number of paths of length three between

a, b in G[A′, B′] is equal to the number of edges between G[N(a), N(b)]. From Theo-

8



rem 5.3, the number of edges of G[N(a) ∩B′, N(b) ∩A′] is at least α′n2, hence there are

Ba,b ⊆ N(a) ∩ B′, Aa,b ⊆ N(b) ∩ A′ such that G[Aa,b, Ba,b] has minimum degree at least

α′n. Then the expected number of neighbours of each a′ ∈ Aa,b in Ba,b ∩ B2 is at least

α′n/2, so by Chernoff’s bound, for a′ ∈ Aa,b,

P [|N(a′) ∩Ba,b ∩B2| ≥ α′n/3] ≥ 1− e−Ω(α′n).

Similarly, for b′ ∈ Ba,b,

P [|N(b′) ∩ Aa,b ∩ A2| ≥ α′n/3] ≥ 1− e−Ω(α′n).

Hence, for each a ∈ A′, b ∈ B′, the probability that the minimum degree of G[Aa,b ∩
A2, Ba,b ∩B2] is less than α′n/3 is, by the union bound, at most

|Aa,b| e−Ω(α′n) + |Ba,b| e−Ω(α′n) ≤ e−Ω(α′n).

Moreover, the number of paths of length three between a, b with internal vertices in A2, B2

is

e(N(a) ∩B2, N(b) ∩ A2) ≥ e(N(a) ∩B2 ∩Ba,b, N(b) ∩ A2 ∩ Aa,b),

which is at least the square of the minimum degree of G[N(a)∩B2∩Ba,b, N(b)∩A2∩Aa,b].
Hence, the probability that the number of paths of length three between a ∈ A′, b ∈ B′
with internal vertices in A2, B2 is less than α′2n2/9 is at most e−Ω(α′n).

By the union bound over a ∈ A′, b ∈ B′ and pairs (a, b) ∈ A′ × B′ the probability that

a random partition fails to satisfy the lemma, with β = α′2/9, is at most ne−Ω(α′n) +

n2e−Ω(α′n) < 1. Thus there exists a partition as desired.

Lemma 5.5. Let δ, q1, q2, λsq be constants such that 0 < δ < 1, 0 < q2 < q1 and

0 < λsq � δ, q2. Let C be a set of colors with |C| = q1n and C0 ⊆ C3 be a collection

of colour triples that are pairwise disjoint, with |C0| = q2n. Let G be a graph of order n

and minimum degree at least δn which is uniformly coloured in C. Then, with probability

at least 1− e−λsqn, the following holds. For any c ∈ C there exists a 4-cycle in G coloured

(c1, c2, c3, c), for some (c1, c2, c3) ∈ C0.

Proof. Let β, γ1, γ3 be constants such that β � δ and λsq � γ3 � γ1 � γ � β, q−1
1 .

Fix c ∈ C. By passing to a bipartite subgraph of G with at least e(G)/2 edges, from

Lemma 5.4 there exist disjoint A1, B1, A2, B2 ⊆ V (G) such that the bipartite graph

G[A1, B1] has minimum degree at least βn, and for all a ∈ A1, b ∈ B1, the number of

edges in G[N(a) ∩B2, N(b) ∩A2] is at least βn2. We will reveal the colours of the edges

in G[A1 ∪ A2, B1 ∪B2] in the order E(A1, B1), E(A1, B2), E(A2, B1), E(A2, B2).

Since each edge of G[A1, B1] is coloured c independently with probability (q1n)−1, by

Lemma 4.2, with probability at least 1−e−Ω(λsqn), there exists a matching M ⊆ G[A1, B1]

of size at least γn with all edges coloured c.

9



For (c1, c2, c3) ∈ C0 say an edge e ∈ E(A2, B2) is good for (c1, c2, c3), if, when C(e) = c2,

it completes a 4-cycle coloured (c1, c2, c3, c) with vertices in A1, B1, A2, B2 (in this order).

Notice that, this definition does not depend on the colours of the edges in G[A2, B2]. Let

F (c1, c2, c3) := {e ∈ E(A2, B2) : e is good for (c1, c2, c3)}.

Claim 5.6. Fix (c1, c2, c3) ∈ C0. With probability at least 1 − e−Ω(λsqn), |F (c1, c2, c3)| ≥
γ3n.

Proof. Let ab ∈ M . Since e(N(a) ∩ B2, N(b) ∩ A2) ≥ βn2, there exist Aab ⊆ N(b) ∩ A2,

Bab ⊆ N(a) ∩ B2 such that G[Aab, Bab] has minimum degree at least βn. Let G′ be the

spanning subgraph of G such that xy ∈ E(G′) if and only if the following holds:

• If xy ∈ EG(A1, B1) then xy ∈M .

• If xy ∈ EG(A1, B2) then x ∈ V (M) ∩ A1 and y ∈ BxM(x), where M(x) is the

neighbour of x in M .

• If xy ∈ EG(A2, B1) then y ∈ V (M) ∩B1 and x ∈ AM(y)y.

• If xy ∈ EG(A2, B2) then xy ∈ EG(Ae, Be) for some e ∈M .

Since G is 4-partite with parts A1, B1, A2, B2, this exhausts all possible edges of G′.

Then the number of edges of G′[A1, B2] is at least
∑

a∈A1∩V (M) |Bab| ≥ γβn2. More-

over, each edge is coloured c1 independently with probability (q1n)−1. Therefore, by

Lemma 4.2, with probability at least 1− e−Ω(λsqn), there is a matching M1 in G′[A1, B2]

coloured c1 that has size at least γ1n.

Finally, we will find a large matching M3 coloured c3 which, along with M1 and M will

give us a large number of good edges for (c1, c2, c3). To this end, let G′′ be the spanning

subgraph of G′ such that xy ∈ E(G′′) if and only if the following holds:

• if xy ∈ EG′(A1, B1) then xy ∈M and x ∈ V (M) ∩ V (M1).

• If xy ∈ EG′(A1, B2) then xy ∈M1.

• If xy ∈ EG′(A2, B1) then y ∈ V (M) ∩ B1, M(y) ∈ V (M1), and x ∈ AM(y)y ∩
NG′ (M1(M(y))).

• If xy ∈ EG′(A2, B2) then there exists ab ∈M such that y = M1(a) and x ∈ Aab.

Again, this exhausts all possibilities for the edges of G′′.

Then the number of edges of G′′[A2, B1] is at least∑
ab∈M : a∈V (M1)∩A1

|NG′(M1(a)) ∩ Aab| ≥ γ1βn
2,
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where we use that for all ab ∈M the minimum degree of G′′[Aab, Bab] is at least βn.

Moreover, each edge of G′′[A2, B1] is coloured c3 independently with probability (q1n)−1.

Hence, by Lemma 4.2, with probability at least 1− e−Ω(λsqn), there exists a matching M3

in G′′[A2, B1] coloured c3 that has size at least γ3n.

Let

F0(c1, c2, c3) := {xy ∈ EG′′(A2, B2) : x ∈ V (M3) ∩ A2 }.

Notice from the definition of G′′ that every x ∈ A2 has a neighbour in B2, hence

|F0(c1, c2, c3)| ≥ |M3|. Moreover, if xy ∈ F0(c1, c2, c3), then, by the definition of G′′,

there are a ∈ A1, b ∈ B1 such that ab ∈M , ay ∈M1, xb ∈M3; i.e. C(ab) = c, C(ay) = c1,

C(xb) = c3. Therefore, xy is a good edge for (c1, c2, c3). Thus F0(c1, c2, c3) ⊆ F (c1, c2, c3),

so |F (c1, c2, c3)| ≥ |F0(c1, c2, c3)| ≥ |M3| ≥ γ3n and the claim follows.

By the union bound over (c1, c2, c3) ∈ C0, for which there are q2n choices, Claim 5.6 implies

that with probability at least 1− e−Ω(λsqn), for each (c1, c2, c3) ∈ C0, |F (c1, c2, c3)| ≥ γ3n.

Let

F ′(e) := {c2 ∈ C : there exist c1, c3 such that (c1, c2, c3) ∈ C0 and e ∈ F (c1, c2, c3)}.

Then, using that no two triples in C0 share a colour we have∑
e∈E(A2,B2)

|F ′(e)| =
∑

(c1,c2,c3)∈C0

|F (c1, c2, c3)| ≥ |C0| γ3n = q2γ3n
2.

Now we reveal the colours of E(A2, B2). For e ∈ E(A2, B2) let Ae be the event that e

gets a good colour i.e. C(e) ∈ F ′(e). Then P [Ae] = |F ′(e)| /q1n. Each edge is coloured

independently, so the events Ae are mutually independent. Hence, the probability that

no e ∈ E(A2, B2) gets a good colour is

∏
e∈E(A2,B2)

(1−P [Ae]) ≤ exp

− ∑
e∈E(A2,B2)

P [Ae]


= exp

− ∑
e∈E(A2,B2)

|F ′(e)|
q1n

 ≤ exp

(
−q2γ3n

q1

)
.

Hence, with probability at least 1 − e
− q2γ3n

q1 , at least one edge gets a good colour, i.e.

there exists e ∈ E(A2, B2) such that C(e) ∈ F ′(e), as required for the lemma.

The above fails for some colour c with probability at most

q1ne−Ω(λsqn) ≤ eλsqn,

proving the lemma.
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5.2 Proof of Lemma 5.2

Proof of Lemma 5.2. Let ρ, ρ′ be constants satisfying C−1 � ν � λ, ρ, ρ′ � δ. Fix

v ∈ V (G), c ∈ C and V ′ ⊆ V (G), C ′ ⊆ C of size at least (1− ν)n.

For the next claim, it is useful to refer to Figure 1.

Claim 5.7. With probability 1− e−Ω(λn), there exist a 4-cycle K = xyzw and a triangle

T = vuu′ in G[V ′] such that C(yz) = c, C(xw) = C(uu′), C(xy) = C(vu′), C(zw) = C(vu).

Proof. Let (V4, V�) be a random partition of V ′. Then from Chernoff’s bound, a union

bound over v ∈ V ′, and ν � 1, with probability 1−e−Ω(δn), the graphs Gδ,n[V4], Gδ,n[V�]

have minimum degree at least δn/3 and |V4| , |V�| ≥ n/3.

First reveal the random edges and colours of G[V4]. Then, by Lemma 4.3, with proba-

bility 1− e−Ω(λn), there is a collection ∆v of ρn rainbow triangles that pairwise intersect

only on v; are pairwise colour-disjoint; and V (∆v) ⊆ V4∪{v}. Let Cv be the collection of

colour triples (C(vu), C(uu′), C(vu′)) with vuu′ ∈ ∆v, whose three colours are in C ′. Then

|Cv| ≥ ρn− 3νn ≥ (ρ/2)n.

Next reveal the colours of edges in G[V�]. By setting C0 = Cv in Lemma 5.5, it follows

that with probability 1 − e−Ω(λn) there exists a 4-cycle xyzw and a triangle vuu′ ∈ ∆v

with colours in Cv, such that C(yz) = c, C(xw) = C(uu′), C(xy) = C(vu′), C(wz) = C(vu).

We fail to find a triangle or square as required with probability at most e−Ω(λn).

By Lemma 4.3, with probability 1 − e−Ω(λn), for every u, v ∈ V ′ there are ρ′n rainbow

paths of length three between u, v which are pairwise colour disjoint and internally vertex

disjoint. Hence, with probability 1 − e−Ω(λn), this and the conclusion of Claim 5.7 hold

simultaneously.

Then, using ν � ρ′, there exists two colour- and vertex-disjoint rainbow paths P1, P3 of

length 3 such that: P1 has endpoints u2, w; P3 has endpoints x, z; the interiors of P1, P2

are in V ′ \ (V (K)∪ V (C)); and the colours of P1, P2 are in C ′ \ (C(K)∪ C(T )). Then the

graph Av,c, defined as

Av,c = K ∪ T ∪ P1 ∪ P2,

is a (v, c)-absorber: the (v, c)-absorbing path is uvu′P1wxP2zy and the (v, c)-avoiding

path is uu′P1wzP2xy, and it is straightforward to check they satisfy Definition 5.1. Clearly

Av,c has 11 vertices.

The number of V ′ ⊆ V of size at least (1−ν)n is at most n
(
n
νn

)
= eO(ν log ν)n, and the same

bound holds for the number of C ′ ⊆ C of the same size. Using ν � λ, the probability we

fail to find an absorber for some v, c, V ′, C ′ is by the union bound at most

n2eO(ν log ν)n · e−Ω(λn) ≤ n−2.
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6 Proof of Lemma 3.1

To cover an arbitrary small subset of the vertices using Pabs into a rainbow path Q we

need the following lemma, which asserts that for any two vertices and a color we can

connect them with a short rainbow path through a random subset of the vertices.

Lemma 6.1 (Flexible sets). Let ζ, µ, δ ∈ (0, 1) and C > 0 be constants such that C−1 �
ζ � µ � δ. Let G ∼ Gδ,n ∪G(n,C/n). Then there exist Vflex ⊆ V , Cflex ⊆ C of size

2µn such that with high probability the following holds. For all u, v ∈ V , c ∈ C, and

V ′flex ⊆ Vflex , C ′flex ⊆ Cflex of size at least (2µ − ζ)n, there exists a rainbow path of length

seven with endpoints u, v, internal vertices in V ′flex and colours in C ′flex∪{c}, that contains

the colour c.

Proof. Let γ be a constant satisfying C−1 � ζ � γ � µ� ν � δ.

For a colour c, let Mc be a largest matching of colour c in G, and for distinct vertices

u, v, let Pu,v be a largest collection of pairwise vertex- and colour-disjoint rainbow paths

of length three with endpoints u, v. By Lemmas 4.2 and 4.3, with probability 1 − e−γn,

we have |Mc| ≥ γn and |Pu,v| ≥ γn for every colour c and distinct vertices u, v.

Let V ′ be a random subset of V , obtained by including each vertex independently with

probability µ, and let C ′ be a random subset of C, obtained by including each colour

independently with probability µ.

Then, by Chernoff and union bounds, with high probability, the following properties hold.

• |V ′|, |C ′| ≤ 2µn,

• at least 1
2
µ2γn edges in Mc have both endpoints in V ′, for every c ∈ C,

• at least 1
2
µ5γn paths in Pu,v have their interior vertices in V ′ and all colours in C ′,

for all distinct u, v ∈ V .

Suppose that all three properties hold, and let Vflex be a subset of V that contains V ′

and has size 2µn and let Cflex be a subset of C that contains C ′ and has size 2µn.

We show that these sets satisfy the requirements of the lemma. Indeed, fix u, v, c and

V ′flex, C ′flex as in the lemma. Then, as ζ � µ, γ, there is an edge e = xy ∈ Mc with both

ends in V ′flex. Similarly, there are paths P1 ∈ Pu,x, P2 ∈ Py,v that are vertex- and colour-

disjoint, their interiors are in V ′flex, and their colours are in C ′flex \ {c}. Then P1 ∪ e ∪ P2

is a path that satisfies the requirements of the lemma.

We will put together several (v, c)-absorbers to construct the paths in Lemma 3.1, by

having a (v, c)-absorber for each edge of a bipartite graph which has the following prop-

erty. This follows an idea introduced by Montgomery [24], which was adapted to the

rainbow setting by Gould, Kelly, Kühn and Osthus [18].

13



Definition 6.2 (Def. 3.3, [18]). Let H be a balanced bipartite graph with bipartition

(A,B). We say H is robustly matchable with respect to A′, B′, for some A′ ⊆ A and

B′ ⊆ B of equal size, if for every pair of sets X ⊆ A′, Y ⊆ B′ with |X| = |Y | ≤ |A′| /2,
there is a perfect matching in H[A \X,B \ Y ]. We call A′, B′ the flexible sets of H.

Proposition 6.3 (Lemma 4.5, [18]). For every large enough m ∈ N, there exists a 256-

regular bipartite graph with bipartition (A,B) and |A| = |B| = 7m, which is robustly

matchable with respect to some A′ ⊆ A,B′ ⊆ B with |A′| = |B′| = 2m.

Proof of Lemma 3.1. Let ζ, µ, ν ∈ (0, 1) be constants such that

C−1 � η � ζ � µ� ν � δ.

Let Vflex , Cflex be the sets given by Lemma 6.1 that have size 2µn. By the union bound,

the conclusions of Lemmas 4.3, 5.2 and 6.1 hold simultaneously with high probability.

Assume they all hold.

Let Vbuf , Cbuf be arbitrary subsets of V \ Vflex , C \ Cflex of size 5µn. Let H be a bipartite

graph on (Vflex ∪ Vbuf , Cflex ∪ Cbuf ) that is isomorphic to a graph as in Proposition 6.3

such that Vflex , Cflex are the flexible sets.

Claim 6.4. There is collection of absorbers Av,c on 11 vertices and rainbow paths Pv,c

of length three, for each edge vc in H, with the following properties: the internal vertices

of Av,c and of Pv,c are pairwise disjoint and disjoint of Vflex ∪ Vbuf ; the internal colours

of Av,c and the colours of Pv,c are pairwise disjoint and disjoint of Cflex ∪ Cbuf ; and for

some ordering of the edges of H, the path Pv,c starts with the last vertex of Av′,c′ and ends

with the first vertex of Av,c, where v′c′ is the predecessor of vc in the ordering (so we can

ignore Pvc for the first edge vc).

Proof. Let H0 be a maximal subgraph of H with some ordering of its edges, for which we

can find a collection of absorbers and paths as in the claim. Suppose for contradiction

H0 6= H and let v1c1 ∈ E(H \H0) and v0c0 be the last edge of H0 in the ordering, that

has absorber Av0,c0 .

Let V0, C0 be the union of the vertices and colours spanned by the absorbers for E(H0),

the paths connecting them, and Vflex ∪ Vbuf , Cflex ∪ Cbuf . Then, since each absorber has

11 vertices and each path connecting consecutive absorbers has 4 vertices, we have

|V0| , |C0| = O(e(H0)) = O(µn) < νn/2,

where for the inequality we used that µ � ν. Hence by Lemma 5.2 there exists a

(v1, c1)-absorber Av1,c1 on 11 vertices with internal vertices and internal colours disjoint

from V0 and C0. Moreover, by Lemma 4.3 there exists a rainbow path Pv1,c1 of length

three between the last vertex of Av0,c0 and the first vertex of Av1,c1 , with internal vertices

disjoint from V0∪V (Av1,c1) and colours disjoint from C0∪C(Ac1,c1). Then the subgraph of
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H with edges E(H0) ∪ {v1c1} satisfies the conditions of the claim and properly contains

H0, contradicting the maximality of H0.

We can now define Pabs. Since H is regular bipartite, it has a perfect matching M .

For vc ∈ E(H), let PM(vc) be the (v, c)-absorbing path of Av,c, if vc ∈ E(M), and the

avoiding path otherwise. Let Pvc = ∅ if vc is the first edge, and otherwise let Pvc be as

in Claim 6.4. Set

Pabs =
⋃

vc∈E(H)

(PM(vc) ∪ Pvc).

Then Pabs uses each v ∈ Vflex ∪Vbuf and c ∈ Cflex∪Cbuf precisely once; any other vertex and

colour in Pabs is also used, by construction, precisely once. Therefore Pabs is a rainbow

path that is spanning in
⋃
vc∈E(H)(V (Avc) ∪ V (Pvc)) and

⋃
vc∈E(H)(C(Avc) ∪ C(Pvc)) with

endpoints the first vertex w of the first absorber and the last vertex w′ of the last absorber.

We will now show how to construct Q, given V ′ ⊆ V \ V (Pabs) and C ′ ⊆ C \ C(Pabs) of

size between 2 and ηn, with endpoints x, y ∈ V ′. Let c0 ∈ C ′. From Lemma 6.1, there

exists a rainbow path Q1 with endpoints w, x, internal vertices in Vflex and colours in

Cflex ∪ {c0}, which includes the colour c0 and has length 7.

Claim 6.5. There exists a rainbow path Q2 between w′, y, with internal vertices V ′′flex ∪
(V ′ \ x), and colours C ′′flex ∪ (C ′ \ c0), for some V ′′flex ⊆ Vflex \ V (Q1), C ′′flex ⊆ Cflex \ C(Q1)

with
∣∣V ′′flex

∣∣ =
∣∣C ′′flex

∣∣ ≤ µn− 7.

Proof. The Claim will follow by applying greedily Lemma 6.1 to cover V ′ \x, C ′ \c0 using

Vflex \ V (Q1), Cflex \ C(Q1) in a rainbow path with endpoints w′ and y.

Fix a linear order of V ′ \ x with y the last vertex. Let P0 be a longest path from w′ to

a vertex in V ′ \ x among all rainbow paths that start at w′ and satisfy the following: if

u, v ∈ V (P0) ∩ (V ′ \ x) and u < v, then u appears before v on P0; every seventh vertex

on P0 lies in V ′ \x, and all other vertices are in {w′}∪Vflex \V (Q1); between consecutive

vertices in V ′ \ x, and between w′ and the first vertex in V ′ \ x, there is exactly one edge

with colour in C ′ \ c0, and all other edges have colours in Cflex \ C(Q1).

Let z be the last vertex of P0. If z = y we are done so suppose otherwise, and let z′ ∈ V ′\x
be the vertex after z in the order. Since, by construction, |V (P0) ∩ V ′| = |C(P0) ∩ C ′|,
there is also c1 ∈ C ′ \ C(P0).

Let V ′flex = Vflex \(V (P0)∪V (Q1)), C ′flex = Cflex\(C(P0)∪C(Q1)). Since |P0| ≤ 7 |V ′| ≤ 7ηn,

and Q1 has length 7, using η � ζ, it follows that |V ′flex | = |C ′flex| ≥ (2µ − ζ)n. Hence

by Lemma 6.1 there is a rainbow path P1 between z, z′ of length 7, that contains an

edge with colour c1, and whose internal vertices and other colours are in V ′flex , C ′flex. Then

P1 ∪ P0 contradicts the maximality of P0.

Let V ′′flex = V (P0)∩ Vflex , C ′′flex = C(P0)∩Cflex. Then |V ′′flex | = |C ′′flex| < |P0| ≤ ζn < µn− 7,

so we can take Q2 = P0.

15



Let V ′′′flex = (V (Q1) ∪ V (Q2)) ∩ Vflex and C ′′′flex = (C(Q1) ∪ C(Q2)) ∩ Cflex. Then we have

|V ′′′flex | = |C ′′′flex| ≤ µn. Hence by choice of H there is a matching M ′ between Vflex \ V ′′′flex

and Cflex \ C ′′′flex.

As before, for vc ∈ E(H) let PM ′(vc) be the (v, c)-absorbing path of Av,c if vc ∈ E(M ′)

and the avoiding path otherwise. Let

P ′abs =
⋃

vc∈E(H)

(PM ′(vc) ∪ Pvc).

Then P ′abs is a rainbow path that is spanning in V (Pabs) \ V ′′′flex and C(Pabs) \ C ′′′flex with

endpoints w,w′. Therefore Q = Q1∪P ′abs∪Q2 is a rainbow path, spanning in V (Pabs)∪V ′
and C(Pabs) ∪ C ′ and has endpoints x, y.
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