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Abstract

In this survey we aim to give a comprehensive overview of results using sublinear expanders. The

term sublinear expanders refers to a variety of definitions of expanders, which typically are defined

to be graphs G such that every not-too-small and not-too-large set of vertices U has neighbourhood

of size at least α|U |, where α is a function of n and |U |. This is in contrast with linear expanders,

where α is typically a constant. We will briefly describe proof ideas of some of the results mentioned

here, as well as related open problems.

1 Introduction

Very informally speaking, expanders are graphs which have good connectivity properties, yet may be

quite sparse. Since their introduction by Bassalygo and Pinsker [9] in the 1970s, expanders have been

studied extensively, and have seen numerous applications in combinatorics and computer science (see

the concise expository paper by Sarnak [77] and the surveys by Hoory, Linial, and Wigderson [43],

Lubotsky [68], and Krivelevich [55]). There is quite a large variety of definitions of expanders, but here

we think of expanders as graphs whose every not-too-small and not-too-large set of vertices has a large

neighbourhood. A very simple definition of expanders is the following, where NG(U), the neighbourhood

of U in G, is the set of vertices in G that are not in U but have a neighbour in U .

Definition 1.1 (Linear expanders). Let α > 0. A graph G on n vertices is called an α-expander if

every subset U ⊆ V (G) of size at most n/2 satisfies |NG(U)| ≥ α|U |.

When α is a constant, which is often the case in applications, this expansion property is linear, namely,

every not-too-large set of vertices expands linearly. See Krivelevich [55] for an excellent survey which

mentions various results about α-expanders and their variants, and illustrates various ways in which

they can be used in applications.

Our focus will be on sublinear expanders. These may be defined similarly, but with α being a function

of n that tends to 0 as n grows, and oftentimes the rate of expansion of a set of vertices depends not

only on n but also on the size of the set. Such expanders were first defined by Komlós and Szemerédi
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[53, 54] in 1994, who used them to solve a problem about subdivisions. A somewhat different notion

of sublinear expanders was introduced by Shapira and Sudakov [78], in their work about finding small

minors. These two papers gave rise to a host of other results, particularly in the last three years or so.

In this survey we aim to give a comprehensive overview of results that were proved using sublinear

expanders, grouped into sections according the topics they address. We will also briefly describe proof

ideas of some of the results presented here. See the survey of Liu [61] for a deeper dive into some of

the methods developed for tackling problems using Komlós and Szemerédi’s sublinear expanders. We

will also highlight some open problems related to the results we will present.

� In Section 2 we mention several results about average degree conditions implying the existence of

a subdivision of a certain graph.

� In Section 3 we mention a similar type of problem, about average degree conditions implying a

small minor or subdivision of a complete graph.

� Section 4 discusses some results about immersions of complete graphs and digraphs. Next, we

consider recent progress about the ‘odd cycle problem’ of Erdős and Hajnal, and a related problem

about ‘balanced subdivisions’ in Section 5.

� Section 6 presents several extremal results, about tight cycles, rainbow cycles and clique subdivi-

sions, and cycles with many chords.

� In Section 7 we consider two problems about the global structure of a graph, namely about

decomposing a graph into cycles and edges, and about separating the edges of a graph by paths.

� Section 8 mentions two results about the number of ‘Hamiltonian sets’ in a graph with given

average degree.

� Finally, in Section 9 we briefly mention a few other results that did not naturally belong in one

of the previous sections.

Notation

Throughout the paper, we use log to denote the base 2 logarithm, and ln to denote the base e logarithm.

The various results mentioned in this survey use various different definitions of sublinear expanders. In

order to easily distinguish the names of different expanders, we use the initials of those who introduced

a specific definition of expanders; for example, the name KS-expanders refers to expanders as defined

by Komlós and Szemerédi.

2 Subdivisions

Recall that, for a graph F , an F -subdivision is a graph obtained by replacing each edge uv in F

by a path with ends u and v, such that the interiors of these paths are pairwise vertex-disjoint and

vertex-disjoint of the original vertices of F (see Figure 1).
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Figure 1: A subdivision of K4

Sublinear expanders were first introduced by Komlós and Szemerédi [53] in 1994, who used them to

solve an extremal problem about clique subdivisions. In this section we describe this first use, as well

as several subsequent applications of sublinear expanders to similar problems about subdivisions.

2.1 Finding clique subdivisions

In the 1990s Komlós and Szemerédi [53, 54], as well as independently Bollobás and Thomason [11],

proved the following result, estimating the average degree that guarantees the existence of a Kk-

subdivision.

Theorem 2.1 (Komlós–Szemerédi [53, 54] and Bollobás–Thomason [11]). There exists c > 0 such that,

for every integer k ≥ 1, every graph with average degree at least ck2 contains a Kk-subdivision.

This is tight up to the value of the constant c, as can be seen by considering a balanced complete

bipartite graph on fewer than 2
(
k/2
2

)
vertices.

The following notion of expanders played a key part in Komlós and Szemerédi’s proof.1

Definition 2.2 (Komlós–Szemerédi [53, 54]). For ε, t > 0, let ρ(x) = ρε,t(x) be the function defined

(for x ≥ t/2).

ρ(x) = ρ(x, ε, t) =
ε

(log(15x/t))2
.

An (ε, t)-KS-expander is a graph G in which every set of vertices U , with t/2 ≤ |U | ≤ |G|/2, satisfies

|NG(U)| ≥ ρ(|U |) · |U |.

As this is a somewhat cumbersome definition, let us digest it briefly. Writing n = |G|, we remark that,

typically, t is much smaller than n; often we think of t as constant and n as large. Moreover, notice

that every set of vertices of size Θ(t), and at least t/2, expands linearly, and sets of size Θ(n), and

at most n/2, may expand at a rate as low as O
(

1
(logn)2

)
. Nevertheless, we have no information at all

about the expansion rate of sets of fewer than t/2 vertices.

At this point, it may not be at all clear why one may want to consider expanders as in Definition 2.2,

when linear expanders, as in Definition 1.1, are much simpler to understand and work with. The basic

reason is the fact that the sublinear (ε, t)-KS-expanders may be found in essentially any graph.

1Bollobás and Thomason’s proof was quite different and influential in its own right: their main result was that every
22k-connected graph contains a graph which is k-linked, namely for every sequence of distinct vertices s1, t1, . . . , sk, tk,
there is a collection of vertex-disjoint paths P1, . . . , Pk such that Pi joins si with ti.
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Theorem 2.3 (Komlós–Szemerédi [53, 54]). Let ε > 0 be sufficiently small, and let t > 0. Then

every graph G has a subgraph H which is an (ε, t)-KS-expander, and satisfies d(H) ≥ d(G)/2 and

δ(H) ≥ d(H)/2.

Remark 2.4.

� The bound d(H) ≥ d(G)/2 could be replaced by d(H) ≥ (1− δ)d(G), for any constant δ > 0 using

a slight variation of the proof (see, e.g., Theorem 2.15).

� We note that the definition of ρ(x) is somewhat arbitrary. For the proof of Theorem 2.3 from [54]

to work, the following conditions need to hold: ρ(x) is decreasing for x ≥ t/2; xρ(x) is increasing

for x ≥ t/2; and
∫∞
t/2

ρ(x)
x dx is finite. The exact choice of ρ(x) was chosen for ease of presentation:

the largest ρ(x) can be while satisfying these conditions is ρ(x) = 1
log x(log log x)Θ(1) , which is close

to best possible, as shown by Moshkovitz and Shapira [73].

� Additionally, notice that |H| can be much smaller than |G| (e.g. if G is a disjoint union of Kd+1’s,

then |H| ≤ d+1, while |G| can be arbitrarily large); this is sometimes inconvenient in applications.

� Finally, note that there is some freedom in the choice of t. A natural choice is to take t to

be a small constant times d(G) (the average degree of G), because then the lower bound on the

neighbourhood of any given vertex is large enough for this neighbourhood to be guaranteed to

expand by Definition 2.2.

A useful property of (ε, t)-expanders is that any two not-too-small sets of vertices can be joined by a

relatively short path, namely of length O
(
(log n)3

)
.

Theorem 2.5 (Small diameter result; Komlós–Szemerédi [53, 54]). Let G be an n-vertex (ε, t)-expander.

Then for every x ≥ t/2 and every three sets of vertices U1, U2,W , where |U1|, |U2| ≥ x and |W | ≤
ρ(x)x/4, there is a path in G−W between U1 and U2 of length at most 2

ε

(
log(15n/t)

)3
.

To see how KS-expanders can be used to prove Theorem 2.1, notice first that by Theorem 2.3, it suffices

to show that every n-vertex (ε, t)-KS-expander H with average degree at least c1k
2 and with t = c2k

2,

for some constants c1, c2, contains a Kk-subdivision.

To prove this, Komlós and Szemerédi proved it separately for dense graphs, namely when t = Θ(n),

where n = |H|, using Szemerédi’s regularity lemma [81]. If H is not dense, write diam = 2
ε (log(15n/t))3,

and notice that, roughly speaking, Theorem 2.5 shows that the diameter of H is close to diam. In this

case, if there are at least k vertices with degree at least D, where
(
k
2

)
diam ≤ ρ(D) ·D/4, then it is very

easy to find a Kk-subdivision: given a set K of k vertices with degree at least D, apply Theorem 2.5

for each pair of vertices in K (with U1 and U2 being the neighbourhoods of these vertices, and W the

set of vertices used in previous connections) to find a path of length at most diam joining these vertices

and avoiding previously used vertices, one by one.

Otherwise, the authors first apply Theorem 2.3 to the graph obtained by removing vertices of degree

at least D, to find a new expander H ′ with maximum degree less than D. Then, they find a set K of

2k vertices, and associate a set S(x) (called a ‘stable neighbourhood’) with each x ∈ K, which expands

well around x, and moreover no vertex appears in too many sets S(x) (this last point is where they use
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that H ′ has bounded degree). Now they again repeatedly apply Theorem 2.5 to join pairs of vertices

in K through their stable neighbourhoods S(·), with a path of length at most diam avoiding previously

defined paths, but whenever a set S(x) becomes overused, they give up on the vertex x. A counting

argument shows that at most k vertices are discarded, and so this yields a Kk-subdivision.

This idea of using sets S(x) that are allowed to overlap somewhat, and starting with a bit more than

the required k vertices, allowed the authors to prove the tight O(k2) bound in [54]; a similar argument

where the sets S(x) were required to be disjoint was used in their earlier paper [53], where a slightly

weaker bound was proved. This idea, of allowing the S(x) to overlap and then omitting x whenever

S(x) becomes overused will be used in many subsequent results, with S(x) being replaced by a variety

of structures.

While the bound ck2 from Theorem 2.1 is tight up to a constant factor, it is still very interesting to

find an asymptotically tight bound. Define sub(k) to be the minimum d such that every graph with

average degree at least d contains a Kk-subdivision. We have seen that sub(k) = Θ(k2). The best

known bound on sub(k) are

(
1 + o(1)

)
· 9k2

64
≤ sub(k) ≤

(
1 + o(1)

)
· 10k

23
.

The lower bound is an observation of  Luczak, using bipartite random graphs, and the upper bound is

due to Kühn and Osthus [57].

Problem 2.6. Determine sub(k) asymptotically. Is sub(k) =
(
1 + o(1)

)
9k2

64 ?

2.2 Clique subdivisions in C4-free graphs

While the requirement that d(G) ≥ ck2 is tight, up to a constant factor, for guaranteeing the existence

of a Kk-subdivision, Mader [69] conjectured that the quadratic bound could be replaced by a linear

one for C4-free graphs. Namely, he conjectured that there is a constant c > 0 such that, if d(G) ≥ ck

and G is C4-free, then G has a Kk-subdivision.

In an early application of Komlós and Szemerédi’s expanders, from 2004, Kühn and Osthus [56] proved

a slightly weaker bound: they showed that there is a constant c > 0 such that if d(G) ≥ ck(log k)12

and G is C4-free, then G contains a Kk-subdivision. In the same paper, Kühn and Osthus also prove

an analogous result for Ks,t-free graphs, for all s, t ≥ 2.

In 2015, Balogh, Liu, and Sharifzadeh [8] proved Mader’s conjecture under the additional assumption

that G is C6-free; namely, they showed that there is a constant c > 0 such that, if d(G) ≥ ck and G is

{C4, C6}-free, then G has a Kk-subdivision.

Mader’s conjecture was subsequently solved by Liu and Montgomery [62] in 2017.

Theorem 2.7 (Liu–Montgomery [62]). There is a constant c > 0 such that, if d(G) ≥ ck and G is

C4-free, then G contains a Kk-subdivision.

They also proved an analogous result for Ks,t-free graphs.
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We describe some elements of their proof of Theorem 2.7 here, some of which are inspired by [8] and

also a result of Montgomery [71] about small minors, that will be mentioned below.

Here, the authors apply the existence result Theorem 2.3 with t = Θ(k2). This yields an n-vertex

(ε, t)-expander H with minimum degree at least ck/4. By C4-freeness, the second neighbourhood of

every vertex has size at least ck/4 · (ck/4− 1), so if t is taken to be a small factor of this number, then

the expansion property of H guarantees that second neighbourhoods expand well.

The proof now splits into the following three cases, which are quite typical of a proof using KS −
expanders.

� There are at least 2k vertices of large degree (at least k · mc1 , where m = log(n/t) and c1 is a

large constant; this bound is chosen so that a greedy algorithm using the small diameter result

Theorem 2.5 would work).

� H has small maximum degree and is quite dense (d(G) ≥ (log n)c2 for some large constant c2).

� H has small maximum degree and is sparse (d(G) ≤ (log n)c2).

The first case is resolved similarly to [54]: given a set K of 2k large degree vertices, join pairs of these

vertices one by one, using the small diameter property from Theorem 2.5, and removing vertices from

K whose neighbourhoods become overused. A counting argument shows that at least k vertices remain

in K, yielding the desired Kk-subdivision.

If there are few vertices of large degree, they are removed from H, leaving a graph which is still an

expander (with slightly worse parameters). The second case is resolved somewhat similarly to the first

one, except that instead of large degree vertices, structures called ‘units’ are used; units are defined

below, and inspired by a similar structure introduced by Montgomery [71] (see Figure 2). The small

maximum degree helps to find units that do not overlap too much.

Definition 2.8 (Hub). An (h1, h2)-hub is a rooted tree of height 2, where the root has degree h1 and

its neighbours have degree h2.

Definition 2.9 (Unit). An (h0, h1, h2, h3)-unit is a tree consisting of a core vertex v, h0 pairwise

vertex-disjoint (h1, h2)-hubs, and h0 pairwise vertex-disjoint (except at v) paths of length at most h3

joining the core vertex v with each of the roots of the hubs.

The authors of [62] take h0, h1 = Θ(k) and h2, h3 = mΘ(1), where m = log(n/t), and then find 2k

many (h0, h1, h2, h3)-units whose non-leaf vertex sets are pairwise-disjoint. They construct them, one

by one, by first constructing many disjoint hubs, and then joining their roots with short paths to find

a unit. Notice that the requirement that d(G) is relatively large is needed to guarantee the existence of

many (h1, h2)-hubs, and the requirement that the maximum degree is not too large is used to show that

the graph obtained by removing a not-too-large set of vertices still has large average degree, implying

the existence of many hubs. With the 2k units at hand, one proceeds very similarly to the first case:

connect, one by one, pairs of units, while avoiding vertices in any of the 2k units which are not leaves

or their parents, and discard units whose sets of parents of leaves become overused.

Finally, in the third case, using the sparsity and bounded maximum degree, they find k vertices that

are far from each other. They then connect pairs of vertices, one by one, by short paths that avoid

previously chosen paths as well as the vicinity of other vertices.
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h1

h2

h0

h1

h2

v

h3 ≥

Figure 2: A (3, 4)-hub and a (5, 3, 4)-unit

2.3 Crux and clique subdivisions

Haslegrave, Hu, Kim, Liu, Luan, and Wang [40] introduced a graph parameter, which they called ‘crux’

and described as measuring the ‘essential order’ of a graph, defined as follows.

Definition 2.10 (Crux). For a constant α ∈ (0, 1) and a graph G, a subgraph H ⊆ G is an α-crux if

d(H) ≥ α · d(G). The α-crux function of G, denoted cα(G), is the minimum order of an α-crux in G,

namely,

cα(G) = min{|H| : H ⊆ G and d(H) ≥ α · d(G)}.

Thinking of α as a constant, notice that cα(G) = Ω(d(G)). The authors of [40] proved various gen-

eralisations of results about cycles in graphs with large average degree, showing that in many cases

the average degree can be replaced by crux. For example, they showed that every graph G contains

a cycle of length Ω(cα(G)), generalising (with a loss of a constant factor) Erdős and Gallai’s theorem

[29] asserting that every graph G contains a cycle of length at least d(G).

Liu and Montgomery [62] suggested that a common generalisation of Theorem 2.7 and Theorem 2.1,

that involves the average degree and crux2 (yet yields slightly weaker bounds), might hold. Specifically,

taking α = 1
100 , say, they speculated that their methods could be used to show that every graph G

contains a Kk-subdivision, where

k = Ω

(
min

{
d(G),

√
cα(G)

log cα(G)

})
.

If true, this bound is tight: as noted in [62], the d-blow-up G of a d-vertex O(1)-regular expander

satisfies cα(G) = Θ(d2) and the largest clique subdivision has order O
(
d · (log d)−1/2

)
.

Im, Kim, Kim, and Liu [44] proved a slightly weaker bound.

Theorem 2.11 (Im, Kim, Kim, and Liu [44]). Let G be a graph, and write t = min
{
d(G),

√
cα(G)

log cα(G)

}
.

Then G contains a Kk-subdivision with k = Ω
(
t · (log log t)−6

)
.

This paper is quite technical, and splits into several cases depending on density and value of t. In all

cases the authors use vertex-disjoint stars, units whose non-leaf sets are disjoint, and webs, which are

2They did not use the term ‘crux’ explicitly, as it was not introduced yet.
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defined below, whose non-leaf sets are disjoint, to construct the desired subdivision. In some cases the

crux is used to get an additional expansion property.

It is natural to ask if k can be taken to be Ω(t) in Theorem 2.11.

Question 2.12. Is there a constant c > 0 such that for every graph G if t = min
{
d(G),

√
cα(G)

log cα(G)

}
then G contains a Kk-subdivision with k ≥ c · t?

2.4 Subdivisions of sparse graphs

So far we considered conditions guaranteeing a Kt-subdivision. Of course, one could instead look for

F -subdivisions of other, sparser graphs F . In this direction, Haslegrave, Kim, and Liu [40] considered

α-separable graphs: say that a graph F is α-separable if there is a set U of at most α|F | vertices, such

that the components of F −U have size at most α|F |. They proved the following for α-separable graphs

with bounded maximum degree.

Theorem 2.13 (Haslegrave–Kim–Liu [42]). Let ε > 0 and ∆ ≥ 1, and let α be sufficiently small and

k sufficiently large. Then for every bipartite, α-separable graph F with |F | ≤ (1 − ε)k, every graph G

with d(G) ≥ k contains an F -subdivision.

Notice that the assumption that F is bipartite is crucial: if F is a disjoint union of 1/α complete

graphs on αk/2 vertices, then F is α-separable, |F | = k/2, yet any complete bipartite graph Kt,t with

t <
(
αk/4
2

)
does not contain a subdivision of F . The bound |F | ≤ (1 − ε)k is clearly optimal up to the

error term εk (consider G = Kk+1), but perhaps the error term could be decreased or even removed.

This result has various implications regarding subdivisions of various sparse graphs, such as the grid,

planar graphs, and minor-closed families.

As part of their proof, the authors considered a ‘robust’ notion of the expanders in Definition 2.2.

Definition 2.14 (Robust KS-expanders). A graph G is an (ε, t)-robust-KS-expander if for every vertex

set U with t/2 ≤ |U | ≤ |G|/2, and every subgraph F ⊆ G with e(F ) ≤ d(G) · ρ(|U |) · |U |, the following

holds.

|NG−F (U)| ≥ ρ(|U |) · |U |.

They also proved an existence result, analogous to, and in fact slightly stronger than, Theorem 2.3.

(Here the notation a ≪ b means that there is a decreasing function f such that the statement holds for

a ≤ f(b).)

Theorem 2.15. Let 0 < ν ≪ ε1, ε2 ≪ δ. Then every graph G with average degree d has a subgraph

H which satisfies: H is an (ε1, ε2d)-robust-KS-expander; d(H) ≥ (1 − δ)d; δ(H) ≥ d(H)/2; and H is

νd-connected.

This means, as usual, that it suffices to prove that every robust (ε, t)-KS-expander H, with t = Θ(k),

d(H) ≥ k, and δ(H) ≥ k/2, contains an F -subdivision, for F as in Theorem 2.13. And again, the proof

differs depending on the density. The following three cases are considered.

� dense (k = Ω(n)),
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� medium (k = o(n) and k = Ω
(
(log n)c

)
for some constant c),

� sparse (k ≤ (log n)O(1)).

In the dense case, the regularity lemma is used. In the medium case, when there are k vertices of

large enough degree (at least k · mc1 for some constant c1, where m = log(n/t)), a greedy algorithm

suffices. Otherwise, the authors show that the graph obtained by removing the large degree vertices

still has large average degree, using the robust expansion of H and the fact that H is medium. They

then proceed somewhat similarly to Liu and Montgomery [62], finding ‘webs’, which are reminiscent of

‘units’ (see the next definition and Figure 3).

Definition 2.16. An (h0, h1, h2, h3)-web is a rooted tree, obtained by subdividing the height 3 tree

Th0,h1,h2 — whose root has degree h0, its neighbours have h1 children, and these children in turn have

h2 children — where the edges not touching leaves are subdivided at most h3 times and edges touching

leaves are not subdivided. The centre of a web is the set of vertices on the paths which subdivide the

edges touching the root in Th0,h1,h2 .

h0

h1

h2

h3 ≥

h3 ≥

Figure 3: A (3, 3, 4, 5)-web

They then finds 2k webs, where h0, h1, h3 are constant powers of m = log(n/t), and h0h1h2 ≥ k ·mc2 for

some constant c2 > 0, whose sets of non-leaf vertices are pairwise vertex-disjoint. They then connect

them greedily, as usual, with connecting paths avoiding the centres of other webs, and omitting webs

whose non-leaf sets become overused.

Finally, in the sparse case, the authors use ‘nakjis’3 (see Figure 4).

Definition 2.17. A (t, s, r, τ)-nakji in a graph G is a subgraph H, consisting of vertex-disjoint sets

M and Di, i ∈ [t], and paths Pi, i ∈ [t], such that the Pi’s are pairwise internally vertex-disjoint and

their interiors are also disjoint of M and the Dj ’s; Pi joins M and Di; |Di|, |M | ≤ s; Di has diameter

at most r; M is t-connected; the sets Di and M are at pairwise distance at least τ .

We refer to M as the head of the nakji and to the Di’s as the legs4.

In this case, the authors show that the graph obtained by removing large degree vertices still has

average degree about as large as the original graph (otherwise, there is a copy of F as a subgraph).

3Nakji means a ‘long arm octopus’ in Korean.
4Perhas feet or hands would be more appropriate?
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M

D1

D2 D3

D4

D5

≤ s

τ ≤

≤ r

Figure 4: A nakji with t = 5. Its head is M and its legs are D1, . . . , D5

Now, in this remaining graph, if there is a large, almost regular subexpander, then in it one can find

enough vertices that are far from each other (using sparsity and almost regularity), and join them in a

greedy fashion. If, instead, there is a subexpander which is medium or dense, then the arguments from

the previous cases can be invoked. Otherwise, there are many small sparse subexpanders that are far

from each other. They use these to find k vertex-disjoint nakjis (with t = ∆, i.e. the number of legs of

each nakji corresponds to the maximum degree of F ), where the head and legs of each nakji are distinct

such subexpanders, which are joined together using the connectivity of the underlying expander H.

The nakjis are then connected, vertex-disjointly and through their legs, using the expansion properties

of H. The subdivision of H is then finalised using the connectivity of the heads of the nakji to find

appropriate star subdivisions.

3 Small minors and subdivisions

Say that a graph G is an H-minor if H can be obtained from G by removing vertices and edges and

contracting edges. Equivalently, G is an H-minor if there is a collection of vertex-disjoint connected

subgraphs (Gv)v∈V (H), one for each vertex in H, such that if uv is an edge in H then there is an edge

between Gu and Gv.

Recall that sub(k) is the minimum d such that every graph with average degree at least d contains

a Kk-subdivision. Define, analogously, minor(k) to be the minimum d such that every graph with

average degree at least d contains a Kk-minor. We have seen that sub(k) = Θ(k2) (see Theorem 2.1).

Noting that a Kk-subdivision is also a Kk-minor, this implies that minor(k) = O(k2). In fact, minor(k)

is quite a lot smaller, and, moreover, its value is known quite precisely: Thomason [82] proved that

minor(k) =
(
α + o(1)

)
· k

√
ln k, for an explicit constant α.

Fiorini, Joret, Theis, and Wood [34] asked for the minimum d guaranteeing an H-minor on few vertices.

Specifically, they asked if an average degree of at least minor(k) + ε in an n-vertex graph guarantees an

H-minor on Oε(log n) vertices. The size estimate would be tight, as can be seen by considering random
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graphs, and the average degree condition is tight by definition of minor(k).

3.1 Almost logarithmically small clique minors

Addressing this question, in 2015 Shapira and Sudakov [78] proved the following.

Theorem 3.1 (Shapira–Sudakov [78]). For every ε > 0 and integer k ≥ 1, there is a constant α =

α(ε, k) such that every n-vertex graph with average degree at least minor(k) + ε has a Kk-minor on at

most α · log n · log logn vertices.

In their paper, they introduced a new notion of sublinear expanders.

Definition 3.2 (Shapira–Sudakov [78]). An n-vertex graph G is a δ-SS-expander if for every integer d

with 0 ≤ d ≤ log log n− 1 and subset S ⊆ V (G) of size at most n/22
d
, we have

|N(S)| ≥ δ · 2d

log n · (log log n)2
· |S|.

To better understand this expression, for a set S take d to be largest such that |S| ≤ n/22
d
, so

2d ≈ log(n/|S|), yielding that |N(S)| ≳ δ log(n/|S|)
logn (log logn)2

· |S|. This shows that sets of size at most n1−Ω(1)

expand at rate Ω( 1
(log logn)2

), and sets of size Θ(n) expand at rate Ω( 1
logn (log logn)2

).

As with KS-expanders, every graph contains a δ-SS-expander, as long as δ is sufficiently small.

Theorem 3.3 (Shapira–Sudakov [78]). Let δ > 0 be sufficiently small. Then every graph G contains a

δ-SS-expander H with d(H) ≥ (1 − δ)d(G).

An important reason why KS-expanders are not appropriate here is that the small diameter result for

them (Theorem 2.5) only yields a diameter of Θ((log n)3), which is way too large for Theorem 3.1.

Indeed, SS-expanders do better in this respect. We state a special case of it informally (see Claim 3.3

in [78] for a precise statement): in a δ-SS-expander on n vertices, for every two sets U1, U2 of at least

(log n)4 vertices, and a set W of at most (log n)2 vertices, there is a path between U1 and U2 that avoids

W and has length O(log n · (log log n)3). This illustrates why this expansion notion is more suitable

for the particular problem where we are interested in minors that are small, as the diameter here is

quite a lot smaller. However, using just this notion of expansion, Shapira and Sudakov get a slightly

weaker result than the one stated above, showing that average degree c(k) + ε implies a Kk-minor on

O(log n (log log n)3) vertices.

Indeed, this is essentially immediate if there are at least k vertices with degree at least (log n)4, using

the ‘small diameter’ result above, and in fact a Kk-subdivision is found in this case. If there are few

vertices of high degree, the authors show that there are k disjoint structures they call ‘expanding balls’,

which are relatively large sets of small radius and good expansion properties. They connect them via

the same diameter argument, and show how to use these connections to get a small Kk-minor.

To get the slightly stronger result, with a bound of O(log n log logn), they use yet another notion of

expansion, and proved a corresponding existence result for this latter notion. We mention the definition

and existence result here, as several future papers use a special case of the existence result, or variants

of it.
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Definition 3.4. An m-vertex graph H is said to be a (δ, n)-SS-expander if for every integer d with

0 ≤ d ≤ log logm− 1 and S ⊆ V (H) with |S| ≤ m/22
d

we have |N(S)| ≥ δ2d

logn · |S|.
Theorem 3.5. For every sufficiently small δ > 0, every graph G contains a subgraph H such that

d(H) ≥ (1 − 2δ)d(G) and H is a (δ, n)-SS-expander.

3.2 Logarithmically small clique minors and subdivisions

Shortly afterwards, Montgomery [71] improved upon the above result, proving the following tight result.

Theorem 3.6 (Montgomery [71]). For every ε > 0 and integer k ≥ 1, there is a constant α = α(ε, k)

such that every n-vertex graph G with d(G) ≥ minor(k)+ε has a Kk-minor on at most α · log n vertices.

He uses yet another definition of expanders.

Definition 3.7. An m-vertex graph is a (λ, η)-M-expander if every vertex set S of size at most m1−η

satisfies |N(S)| ≥ λ|S|.

In his application, η is a small constant, and λ a function of η, m, and the number of vertices n in a

given graph. Notice that this definition does not imply a small diameter result: sets of not-too-small

size can be shown to expand quickly to size m1−η, but might not expand fast beyond this size, making

it hard to connect two given fixed vertices.

As usual, Montgomery’s first step is to prove an existence result, showing that for given δ and η and

appropriate λ, every n-vertex graph G with average degree d contains a subgraph H with average degree

at least d(1− δ), which is either small or a (λ, η)-M-expander. Applying this to G with average degree

at least minor(t) + ε, we get a graph H with d(H) ≥ minor(t) which is either small or an expander. If

H is small, then in particular |H| = O(log n), and then it suffices to find a Kt-minor in H (with no size

restrictions), which is possible by the definition of minor(t). So suppose that H is a (λ, η)-M-expander.

Similarly to [78], Montgomery shows that such H contains many disjoint sets of size at least m1/4 and

small radius. Using the quick expansion of not-too-small sets to size m1−η, he shows that there is a

vertex v which is at distance O(log n) from at least a m−η fraction of the sets, thereby overcoming

the lack of a ‘small diameter’ result. He uses the vertex v as a basis of one of the k vertices in the

Kk-minor, and repeats the same argument after appropriate cleaning to find the desired Kk-minor.

In the same paper, Montgomery also proved an analogous result for subdivisions.

Theorem 3.8 (Montgomery [71]). For every ε > 0 and integer k ≥ 1, there is a constant α = α(ε, k)

such that every n-vertex graph G with d(G) ≥ sub(k) + ε has a Kk-subdivision on at most α · log n

vertices.

For this, Montgomery used (λ, η)-M-expanders, whose every vertex set S of size at most m1/3 also

expands at a rate of Ω( 1
(log log |S|)2 ). This additional property is necessary here, as to find subdivisions

we intuitively need single vertices to expand well. The proof here is more involved and uses the notion

of ‘units’, which in this context are a collection of t disjoint, relatively large sets of small radius, along

with t paths from these sets to a common (‘corner’) vertex v, which are vertex-disjoint other than at

v. This is somewhat similar to the notion of units from Definition 2.9, and in fact served as inspiration

for this latter definition of units.
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4 Immersions

Say that a graph G immerses a graph H if there is an injective function f : V (H) → V (G), along with

a collection of edge-disjoint paths Puv, for uv ∈ E(H), such that Puv has ends u and v. Equivalently, G

immerses H if H can be obtained from G by sequentially removing vertices and edges, and by replacing

paths uvw by the edge uw (see Figure 5).

Figure 5: A K4-immersion; each path Puv is depicted with a different pattern
and colour.

Recall that sub(k) is the minimum d such that every graph with average degree at least d contains

a Kk-subdivision, and minor(k) is defined analogously for Kk-minors. We define imm(k) similarly,

as the minimum d such that every graph with average degree at least d immerses Kk. Since a Kk-

subdivision is also an immersion of Kk, we immediately get imm(k) ≤ sub(k) = Θ(k2). Notice also that

imm(k) > k− 2, because the existence of a Kk-immersion implies the existence of vertices of degree at

least k − 1. This was proved to be tight, up to a constant factor, by DeVos, Dvořák, Fox, McDonald,

Mohar, and Scheide [21], who proved imm(k) ≤ 400k. This was improved to imm(k) ≤ 22k + 14

by Dvořák and Yepremyan [26]. The answer might actually be k, which would imply the following

conjecture and answer the subsequent question affirmatively. While neither [21] nor [26] use expanders,

it is plausible that expanders can be used to make progress on the following conjecture and question.

Conjecture 4.1 (Lescure–Meyniel [58], Abu-Khzam–Langston [1]). If χ(G) ≥ k then G contains a

Kk-immersion.

Question 4.2 (Dvořák–Yepremyan [26]). Does every graph with minimum degree k immerse Kk?

We remark that Lescure and Meyniel [58] and, independently, DeVos, Kawarabayashi, Mohar, and

Okamura [22] proved that minimum degree k−1 guarantees a Kk-immersion for k ≤ 7, thereby proving

the above conjecture and answering the question affirmatively for this range of k’s, strengthening both

conjecture and question slightly. Nevertheless, this is no longer true for large values of k (see [19, 21]).

Another natural question, given Theorem 3.6 and Theorem 3.8 above, asks whether an average degree

slightly above imm(k) suffices to guarantee a small immersion.

Question 4.3. Let ε > 0 and k ≥ 1. Is there a constant α = α(ε, k) such that every n-vertex graph G

with d(G) ≥ imm(k) + ε has a Kk-immersion on at most α log n vertices?
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4.1 Clique immersions in Ks,t-free graphs

Liu, Wang, and Yang [64] proved Conjecture 4.1 asymptotically for Ks,t-free graphs, for every s, t ≥ 2.

Theorem 4.4 (Liu–Wang–Yang [64]). For every ε > 0, integers s, t ≥ 2, and large enough d, every

Ks,t-free graph G with d(G) ≥ d contains a Kk-immersion with k ≥ (1 − ε)d.

The proof uses many of the tools described before. First, by Theorem 2.15, it suffices to prove that

every n-vertex (ε1, ε2k)-KS-expander H, which is Ks,t-free, and has average degree at least (1 + δ)k,

contains a Kk-immersion. Notice that k cannot be too close to n, by the Ks,t-freeness. Thus, there are

two main cases.

� dense (k ≥ (log n)c),

� sparse (otherwise).

In the dense case, the authors used a variant of ‘hubs’ and ‘units’ defined above: here an (h1, h2, h3)-unit

consists of h1 vertex-disjoint stars of size h2, that are joined by edge-disjoint paths of length at most

h3 to a ‘core vertex’. Here edge-disjointness suffices because we are interested in immersions. They

find k edge-disjoint (h1, h2, h3)-units (with h1 = k, h2 = diamc, and h3 = 2 diam, where diam is the

expression from the small diameter result Theorem 2.5) with the centres of stars pairwise disjoint, and

then connect them greedily.

The sparse case is somewhat more complex. If the maximum degree is at most k · (log n)c, then one can

find k vertices with degree a bit over k that are sufficiently far apart, and then join them, one by one,

avoiding previously used edges and the vicinity of vertices not being currently joined. Also, as usual,

if there are k vertices of degree at least k(log n)c then a greedy strategy can join them edge-disjointly

to form an immersion. Thus, we may assume that there are fewer than k vertices of degree at least

k(log n)c. By Ks,t-freeness, the graph obtained by removing them still has large average degree. If

the latter graph has a subexpander with average degree at bit above d and which is either dense or

has small maximum degree, then previous arguments can be applied. If not, this means that there are

many subexpanders with average degree a bit above k, that are far from each other and each have a

large degree vertex. Take k such subexpanders and a largest degree vertex from each, and join these

up as usual.

4.2 Immersions in directed graphs

Notice that the definition of immersions can be carried through to directed graphs. However, an

analogue of imm(k) for digraphs does not exist: there are digraphs with arbitrarily large minimum

in- and out-degree which do not immerse
−→
K3 (the complete digraph on 3 vertices); see Lochet [65].

Nevertheless, in the same paper Lochet showed that minimum out-degree k3 guarantees an immersion

of a transitive tournament on Ω(k) vertices, and it is plausible that minimum out-degree k already

suffices for an immersion of a transitive tournament on Ω(k) vertices.

Question 4.5. Is there a constant c > 0 such that, for every integer k ≥ 1, every digraph with minimum

out-degree at least ck contains an immersion of the transitive tournament on k vertices?
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DeVos, McDonald, Mohar, and Scheide [23, 24] showed that every Eulerian digraph with minimum

in-degree k2 immerses
−→
Kk, and asked whether a linear bound would suffice. In [38], Girão and Letzter

answered this question affirmatively.

Theorem 4.6 (Girão–Letzter [38]). There exists c > 0 such that every Eulerian digraph with minimum

in-degree at least ck immerses
−→
Kk.

The proof is a rare application of expanders in digraphs. We define an analogue of robust (ε, t)-KS-

expanders (see Definition 2.14), where instead of lower bounding the size of the neighbourhood N(U),

we lower bound the sizes of the out- and in-neighbourhoods of U . To prove an existence result for such

directed robust expanders, we use an undirected version guaranteeing the existence of an expander

where every set of relevant size has large edge boundary (as opposed to the vertex boundary that was

used above). Applying this to the underlying undirected graph obtained from the original Eulerian

digraph G, which we additionally assume to be regular, we get a digraph D′ ⊆ G where every set of

vertices U of relevant size has many outgoing edges (i.e. edges from U to V (D′)−U) or many incoming

edges (edges from V (D′) − U to U). Now, we observe that because G is Eulerian, it immerses an

Eulerian multidigraph D that contains D′ as a subgraph. By the property of D′ mentioned above and

by D being Eulerian, every set of vertices U in D of relevant size has many outgoing edges and many

incoming edges, which readily implies that D is a directed robust (ε, t)-KS-expander (using that D is

close to regular, which follows from regularity of G).

Additionally, we use the fact that imm(k) = O(k), along with structural arguments, to show that every

Eulerian multidigraph with minimum degree at least ck and O(k) vertices (with the technical condition

that the underlying undirected graph has Ω(k2) edges) immerses
−→
Kk.

The last two paragraphs imply that it suffices to show that an n-vertex Eulerian expander D (which

in our setting is a multidigraph), with average degree at least ck, immerses a (simple) digraph on Θ(k)

vertices with Ω(k2) edges. Conveniently, due to the nature of immersions, we may assume that D has

maximum in- and out-degree Θ(k). As usual, we distinguish between dense (k ≥ (log(n/k))c) and

sparse expanders. In the sparse case we find 2k vertices which are far from each other, k of which

have large out-degree (not counting multiplicities) and the other k having large in-degree. We then

find edge-disjoint paths from each of the latter vertices to each of the former ones, thus forming an

immersion of
−→
Kk,k. In the dense case, we follow a similar strategy to that of Komlós and Szemerédi

[54], finding 2k large out-stars and 2k large in-stars, with distinct centres and where leaves are not

shared by too many stars, and connect as many of the out-stars to the in-stars with short edge-disjoint

directed paths as possible, yielding an immersion of a dense subgraph of
−→
K2k,2k, as needed.

5 The odd cycle problem and balanced subdivisions

In this section we mention recent developments about a conjecture of Erdős and Hajnal about cycle

lengths in graphs with large chromatic number, known as the ‘odd cycle problem’, and about average

degree conditions guaranteeing the existence of so-called balanced subdivisions. While seemingly unre-

lated at first glance, in both topics it is useful to be able to join two given vertices by a path of specific

length.
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5.1 Cycle lengths in graphs with large average degree

For a graph G, let C(G) be the set of cycle lengths in a graph G. In 1966, Erdős and Hajnal [31] suggested

to study the sum
∑

ℓ∈C(G)
1
ℓ as a measure of the density of G’s cycle lengths. In particular, they asked

whether
∑

ℓ∈C(G)
1
ℓ tends to infinity as χ(G) → ∞. In fact, Erdős later [27] suggested that the same

should hold as d(G) → ∞, and, moreover, he thought it likely that
∑

ℓ∈C(G)
1
ℓ ≥

(
1/2 + od(1)

)
ln d, for

every graph G with d(G) ≥ d, which would be tight, as can be seen by considering Kd,d. In a slightly

different direction, Erdős [28] asked if every graph G with sufficiently large average degree contains a

cycle whose length is a power of 2.

In a breakthrough paper, Liu and Montgomery [63] answered both questions affirmatively.

Theorem 5.1 (Liu–Montgomery [63]). For large enough d, and every graph G with d(G) ≥ d there

exists ℓ ≥ d
10 (ln d)12

such that C(G) contains every even number in [(ln ℓ)8, ℓ].

They use similar methods to prove a similar result about the odd cycle lengths in a graph G with large

chromatic number, and, more generally, about cycle lengths of specific residues in graphs with large

chromatic number. As an immediate corollary of their results, they solved a problem due to Erdős

and Hajnal, known as the ‘odd cycle problem’: they asked whether Codd(G), defined to be the sum of

1/ℓ over all odd cycle lengths of G, tends to infinity as χ(G) → ∞. Liu and Montgomery answer this

affirmatively, and, in fact, they show that Codd(G) ≥
(
1/2 + o(1)

)
lnχ(G).

In a somewhat different direction, they considered balanced subdivisions of complete graphs. A balanced

subdivision of a graph H is a subdivision of H where each edge is replaced by a path of the same length.

Denote by TK
(ℓ)
k the balanced subdivision of Kk where each edge is replaced by a path of length ℓ (see

Figure 6).

Figure 6: A balanced subdivision TK
(3)
4 of K4

Liu and Montgomery proved that for any k, a large enough average degree guarantees the existence of

a balanced Kk-subdivision, confirming a conjecture of Thomassen [83].

Theorem 5.2 (Liu–Montgomery [63]). For every integer k ≥ 1 and large enough d, every graph G

with d(G) ≥ d contains a balanced subdivision of Kk.

While the results about cycle lengths and balanced subdivisions sound quite different, a common theme

is the need to join pairs of vertices by a path of specific length. This is in contrast with previously

described results, where when joining two given vertices, or sets of vertices, we just wanted the path
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joining them to be short, but did not care about the exact length. As such, the following theorem is a

key component in the proofs of the results in [63]. Here an (x, y)-path is a path with ends x and y.

Theorem 5.3 (Theorem 2.7 in Liu–Montgomery [63]). Let ε1, ε2 > 0 be small and let d be large.

Suppose that H is a TK
(2)
d/2-free bipartite n-vertex (ε1, ε2d)-expander H with δ(H) ≥ d. Then for any

two vertices x, y and ℓ ∈ [(lnn)7, n/(lnn)12] of the right parity 5, there is an (x, y)-path of length ℓ.

It is easy to see that this implies the first result about even cycle lengths. For the other results, some

more work is needed.

The main novelty in the proof of Theorem 5.3, is the introduction and use of ‘adjusters’.

Definition 5.4 (Simple adjusters). A simple (D,m)-adjuster is a subgraph consisting of a cycle C of

length 2ℓ for some ℓ ≤ 5m, two vertices v1, v2 in C at distance ℓ − 1 on C, and two pairwise vertex-

disjoint graphs F1, F2, which are vertex-disjoint of V (C) − {v1, v2}, such that, for i ∈ [2]: vi ∈ V (Fi);

|Fi| = D; and every vertex in Fi is at distance at most m in Fi.

≤ m

D

v1
F1

≤ m

D

v2
F2

C

Figure 7: A simple adjuster

Assuming we have a long sequence of k simple (D,m)-adjusters (where m = Θ((log n)3), so that m is

larger than the bound on the path length in Theorem 2.5, and D is polylogarithmic in n but significantly

larger than m), the plan would be to join them up, one by one, via the sets F2 and F1 of consecutive

adjusters, ensuring that the connecting paths are pairwise vertex-disjoint and relatively short. This

yields the following structure, generalising simple adjusters, which gives (v1, v2)-paths of many different

lengths.

Definition 5.5 (Adjusters). A (D,m, k)-adjuster is a subgraph consisting of vertices v1, v2 and graphs

A,F1, F2, such that: A,F1, F2 are pairwise vertex-disjoint; vi ∈ V (Fi) and every vertex in Fi is at

distance at most m from vi in Fi; |Fi| = D and |A| ≤ 10mk; and for some ℓ0 ≤ 10mk and every

i ∈ {0, 1, . . . , k} there is a (v1, v2)-path in A ∪ {v1, v2} of length ℓ0 + 2i.

Now, given two vertices x, y and a (D,m, k) adjuster, if we would like to find an (x, y)-path of length ℓ,

it suffices to join x to F1 and y to F2 by paths of total length between ℓ− ℓ0−2k and ℓ− ℓ0−2m, which

can then be corrected to an (x, y)-path of length ℓ using the adjuster. These tasks, of joining the Fi’s

5By the right parity, we mean that if x, y are in the same part of the bipartition of H then ℓ is even, and otherwise it
is odd.
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≤ m

D

v1
F1

≤ m

D

v2

F1≤ 10m ≤ 10m

Figure 8: A (D,m, 3)-adjuster

to form a (D,m, k)-adjuster, and of joining x and y to the adjuster by a path of length approximately

ℓ, are both achievable via the diameter theorem Theorem 2.5, assuming that k ≥ mc for large enough

c.

As such, it suffices to show how to find many disjoint simple adjusters, which essentially amounts to

finding a simple adjuster avoiding a forbidden set of vertices W of polylogarithmic size. Finding one

simple adjuster in an expander (with no forbidden vertices) is quite simple: take a shortest cycle C, pick

two vertices on it at appropriate distance in C, and expand from there, showing that C can be avoided

due to it being a shortest cycle. To find an adjuster avoiding a set W , one can apply this reasoning to

a subexpander of G −W . However, as we have no control over the order of such a subexpander, this

might lead to an adjuster which is way too small. Thus, the authors take many disjoint such adjusters,

and show that one of them can be expanded to be sufficiently large. This is a challenging task, which

we do not elaborate on. We do briefly mention that a useful tool in overcoming this challenge is a

lemma (Lemma 3.7 in [63]) about expanding a set A while avoiding forbidden sets with various ways

of controlling the interaction between A and the forbidden sets.

5.2 Improved bounds on average degree implying balanced clique subdivision

Notice that, through Theorem 5.2, Liu and Montgomery proved the existence of a function sb(k) such

that every graph with average degree at least sb(k) contains a balanced subdivision of Kk. They do

not calculate explicitly the upper bound on sb(k) that their proof yields, but they suggested that

sb(k) might be O(k2). If true, this would be tight, and would generalise the aforementioned fact that

sub(k) = Θ(k2) (see Theorem 2.1).

The first progress towards estimating sb(k) was made by Wang [91], who proved that sb(k) ≤ k2+o(1).

This was improved to the tight sb(k) = O(k2) by Luan, Tang, Wang, and Yang [67], and, independently,

by Gil Fernandez, Hyde, Liu, Pikhurko, and Wu [35].

Theorem 5.6 (Luan–Tang–Wang–Yang [67] and Gil Fernandez–Hyde–Liu–Pikhurko–Wu [35]). There

is a constant c > 0 such that for every integer k ≥ 1, every graph with average degree at least ck2

contains a balanced subdivision of Kk.

The former paper [91] also proves that there exists c > 0 such that average degree at least ck suffices

to guarantee a balanced Kk-subdivision for C4-free graphs, generalising Theorem 2.7.

As usual, it suffices to prove that every n-vertex robust (ε1, ε2d)-KS-expander H contains the required

balanced Kk-subdivision, with k = Ω(
√
d). Again as usual, both proofs split into three cases, depending
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on density: sparse (d = (log n)O(1)); medium (d ≥ (log n)c for some constant c and d = o(n)); and

dense (d = Ω(n)).

The dense case follows from a result of Alon, Krivelevich, and Sudakov [5], that actually yields a TK
(2)
k .

The sparse case was already addressed by Wang [91], and Wang addressed it as follows. Note that we

may assume H is TK
(2)
k -free. The proof uses tools due to Liu and Montgomery [63] about joining two

vertices by a path of specific length in a TK
(2)
k -free expander, and is otherwise quite routine. If there are

enough vertices of large degree (at least d(log n)c for some constant c) then they can be joined greedily.

Otherwise, we may assume the maximum degree is small, allowing us to find many ‘core’ vertices (in

the same part of the bipartition) that are far enough from each other. These can then be joined, one

by one, by paths of specific length, while avoiding previously used vertices and the vicinity of other

core vertices.

It thus remains to address the medium case. In [67], the authors find Θ(k) units (see Definition 2.9)

with at least d2mc leaves (where m = log(n/d) and c is some large constant), such that the sets of

non-leaves are pairwise vertex-disjoint. They then proceed to join pairs of units, one by one, removing

units that become overused. To yield a balanced subdivisions, the connection here needs to be of a

specific length, and for this the authors use (D,m, k)-adjusters (see Definition 5.5). Since here the

adjusters need to be somewhat larger than in [63] (D here has size dmΘ(1), to be able to use them

in connections while avoiding O(dmO(1)) vertices, as opposed to mΘ(1) in [62]), their construction is

somewhat different here. The authors of [35], follow a similar approach, using a variant of units, where

a (h0, h1, h2)-unit is defined to be a rooted tree of height h2 + 1, such that the root has degree h0,

the vertices at level between 1 and h2 − 1 have exactly one child, and the vertices at level h2 have h1

children. Units are also used in place of the graphs F1, F2 in the definition of adjusters.

6 Tight cycles, rainbow subdivisions, and cycles with many chords

In this section we describe several Turán type results, about tight cycles, rainbow subdivisions, and

cycles with many chords. These results are connected to each other via the methods they use, which

can be traced back to the paper of Shapira and Sudakov [78] about small minors. In particular, various

notions of expansions are used here (though for the most part we will not give the exact definitions),

but all are somewhat similar to the one in Definition 3.4.

6.1 Hypergraphs with no tight cycles

An r-uniform tight cycle is a hypergraph on vertices {v1, . . . , vℓ}, for some ℓ ≥ r + 1, with edges

{vi . . . vi+r−1 : i ∈ [ℓ]} (addition of indices taken modulo r; see Figure 9).

It is natural to ask: what is the maximum number of edges an n-vertex r-uniform hypergraph can have,

if it has no tight cycles? Denoting this maximum by exr(n, C), notice that exr(n, C) ≥
(
n−1
r−1

)
(take all

edges containing a single vertex), which is best possible for r = 2. For larger values of r, this turns out

not to be tight (disproving a conjecture due to Sós and, independently, Verstraëte; see [74, 89]). The

best known lower bound is due to Janzer [45], who showed that exr(n, C) = Ω
(
nr−1 · logn

log logn

)
. Sudakov

and Tomon [80] proved a close-to-matching upper bound.
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Figure 9: A 3-uniform tight cycle on 10 vertices

Theorem 6.1 (Sudakov–Tomon [80]). Let r ≥ 3. Every n-vertex r-uniform hypergraph with no tight

cycles has at most nr−1eO(
√
logn) edges.

In particular, this shows exr(n, C) = nr−1+o(1).

They define r-line-graphs, which are graphs whose vertices are the edges of an r-partite r-uniform

hypergraph, and whose edges correspond to two edges intersecting in r − 1 vertices, and define an

appropriate notion of density for such graphs. They use a variant of a notion of expanders used by

Shapira and Sudakov [78] (see Definition 3.4).

Definition 6.2 (Sudakov–Tomon [80]). A (λ, d)-ST-expander is a graph H which has minimum degree6

at least d, and where every vertex set U ⊆ V (H) satisfies |N(U)| ≥ λ|U |.

They then prove an existence result, showing that every r-line-graph G of density d (with an appropriate

definition of density) contains a subgraph H which is a (λ, d′)-ST-expander, with λ = Ω(1/ log n) and

d′ = Ω(d), and has density at least d/2. This proof is inspired by similar arguments made by Shapira

and Sudakov [78] to prove an existence result for expanders as in Definition 3.4.

Notice that for this notion of expansion to be effective in expanding a single vertex, one would like to

have d = Ω(log n). This is indeed the case here; in fact, we have d = eΩ(
√
logn). A key property of

expanders in r-line-graphs that is proved here is that for every vertex e in an (λ, d)-ST-expander H

(with appropriate parameters), which is an r-line-graph, one can reach almost every other vertex f via

a short tight path in the hypergraph corresponding to H. Observe that, because of the nature of tight

paths, this does not imply that every two vertices can be joined via a short tight path, analogously to

Theorem 2.5, even if we insist that these vertices correspond to disjoint edges.

In order to find a tight cycle, the authors split the underlying vertex set of H into two sets, denoting

the two corresponding r-line-graphs by H1, H2. If they could prove that each graph Hi maintains the

expansion properties of H, then they would be able to find two tight paths, one from an r-set e to

another r-set f in H1, and one from f to e in H2, using disjoint vertex sets (other than the vertices in

6Their definition of the minimum degree of an r-line-graph is somewhat different to the usual definition of the minimum
degree. Denote byH the underlying r-partite r-graph and by (U1, . . . , Ur) an appropriate partition of V (H). Theminimum
degree of H is defined to be the minimum, over all i ∈ [r] and vertices x in H, of the number of neighbours of x in H that
agree with x on Uj for all j ∈ [r]− {i} (plus 1).
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e, f), thereby yielding a tight cycle, as required. The authors are unable to do so. Instead, they use

the existence result from above to almost decompose each of H1 and H2 into expanders. If any of them

are small, then we get a much denser expander than the original one, and the same argument is then

repeated in this denser expander. Otherwise, the total number of expanders used in the decompositions

is small, and then the expansion property can be used to essentially realise the strategy outlined above

to get a tight cycle. Since the density cannot be increased indefinitely, at some iteration the latter

option holds, yielding a tight cycle, as required.

In [60], the author improved Sudakov and Tomon’s bound, proving the almost tight bound exr(n, C) =

O
(
nr−1(log n)5

)
.

Theorem 6.3 (Letzter [60]). Let r ≥ 3. Every n-vertex r-uniform hypergraph with no tight cycles has

at most O(nr−1(log n)5) edges.

Using the setup from [80], the improvement came from proving that every r-line-graph H, which is

an ST-expander with appropriate parameters, and has sufficiently large density, has a tight cycle (so

there is no need for a density increment argument as above). An important idea was to strengthen

the expansion property above, showing that for every vertex e in an r-line-graph H as above, almost

every vertex f in H can be reached from e via a short tight path, in such a way that no vertex of the

underlying graph is used in too many of these paths (except for the vertices in e). Another trick is then

needed to overcome the directed nature of the problem.

It would be interesting to prove an even tighter bound on exr(n, C). Recall that the best known lower

bound [45] is exr(n, C) = Ω
(
nr−1 · logn

log logn

)
.

Problem 6.4. Determine exr(n, C) asymptotically. Is exr(n, C) = O
(
nr−1 · logn

log logn

)
? A bit more

crudely, is exr(n, C) = nr−1 · (log n)1+o(1)?

It is plausible that ideas described in subsequent subsections could yield a somewhat better than the one

in Theorem 6.3, perhaps decreasing the exponent of log n (though likely they would require significant

technical work), but it seems that to get a tight bound, new ideas will be needed.

6.2 Rainbow clique subdivisions

A similar notion of expansion was used by Jiang, Methuku, and Yepremyan [49] to tackle a rain-

bow Turán problem. A rainbow graph is an edge-coloured graph whose edges have distinct colours.

Keevash, Mubayi, Sudakov, and Verstraëte [50] defined the rainbow Turán number of a graph H, de-

noted ex∗(n,H), as the maximum number of edges in an n-vertex properly edge-coloured graph which

has no rainbow copies of H; a similar definition could be made for a collection of graphs H.

A particularly interesting question here is to determine the rainbow Turán number of cycles, namely

the maximum number of edges in an n-vertex properly edge-coloured graph which has no rainbow

cycles, which we denote by ex∗(n, C). It is easy to see that the hypercube Qd, where edges are

coloured according to their direction, is a properly edge-coloured graph with no rainbow cycles, showing

ex∗(n, C) = Ω(n log n). The authors of [50] conjectured that the latter bound is tight, up to a constant

factor.
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Conjecture 6.5 (Keevash–Mubayi–Sudakov–Verstraëte [50]). Every n-vertex properly edge-coloured

graph with no rainbow cycles has O(n log n) edges.

Janzer [46] proved that ex∗(n, C) = O
(
n(log n)4

)
, getting quite close to proving the conjecture. His

main tool was an upper bound on the number of homomorphic copies of an even cycle with some

degeneracy, and he used this method to prove several other Turán type questions.

The problem Jiang, Methuku, and Yepremyan [49] considered was the following: for a constant k, what

is the maximum number of edges in a properly edge-coloured n-vertex graph which has no rainbow

subdivisions of Kk? Clearly, this number is at least ex∗(n, C) = Ω(n log n). The authors of [49] proved

the following bound, showing that the answer is n1+o(1).

Theorem 6.6. Let k ≥ 3. If G is an n-vertex properly edge-coloured graph with no rainbow Kk-

subdivision, then e(G) ≤ n · eO(
√
logn).

An attentive reader might notice the similarity between this bound and that of Sudakov and Tomon

[80] in Theorem 6.1. This is not an accident: the outline of the proof here is very similar to that in [80].

The authors use a variant of expanders as in Definition 6.2, focusing on the edge boundary of vertex

sets rather than the vertex boundary, and prove that in a properly-coloured expander, for every vertex

u, almost every other vertex v can be reached from u via a short rainbow path. They then follow a

density increment argument, similar to the one described above, to find a rainbow subdivision of Kk.

This bound was subsequently improved to a tighter O(n(log n)53) by Jiang, Letzter, Methuku, and

Yepremyan [48].

Theorem 6.7 (Jiang–Letzter–Methuku–Yepremyan [48]). Let k ≥ 3. If G is an n-vertex properly

edge-coloured graph with no rainbow Kk-subdivision, then e(G) = O(n(log n)53).

Like the improvement of [60] regarding the Turán number of tight cycles, the key here was to prove

that in a given properly-coloured expander there is a rainbow Kk-subdivision. To do so, the authors

considered almost-regular expanders (meaning that the ratio between the minimum and maximum

degree is at most polylogarithmic in n), and proved an appropriate existence result for almost-regular

expanders. Next, the authors used the fact that random walks mix rapidly in expanders, as well as tools

from [46] regarding homomorphism counts, to find the desired rainbow Kk-subdivision in a sufficiently

dense almost-regular expander. The bound in Theorem 6.7 was improved further, first by Tomon [85]

and then by Wang [92]; more on this soon.

6.3 Cycles with many chords

The connection between random walks and almost-regular expanders, described above, was used re-

cently by Draganić, Methuku, Munhá-Correia, and Sudakov [25] to prove the following.

Theorem 6.8 (Draganić–Methuku–Munhá-Correia–Sudakov [25]). There is a constant c > 0 such that

every n-vertex graph with at least c · n(log n)8 edges contains a cycle C with at least |C| chords.

This result is tight up to the polylogarithmic factor. It is plausible that a linear bound in n suffices.
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Question 6.9. Is there c > 0 such that every n-vertex graph with at least cn edges contains a cycle C

with at least |C| chords?

The significantly lower exponent of log n here, when compared with Theorem 6.7, is at least in part

due to the use of a sharper existence result, showing that in a graph G there is an 100-almost regular

(namely, the ration between the maximum and minimum degrees is at most 100) expander H with

d(H) = Ω(d(G)/ log n).7 Using, among other things, the fact that random walks mix rapidly in

expanders, the authors show that a random walk W of appropriate length t is, with positive probability:

self-avoiding (i.e. a path); spans more than 2t edges among the middle t/2 vertices; and has an edge

between the first and last t/4 vertices. This clearly yields a cycle of length at most t with at least t

chords, as required.

6.4 A sampling trick

Theorem 6.7 was recently improved by Tomon [85], who showed that n(log n)6+Ω(1) edges suffice to

guarantee the existence of a rainbow Kk-subdivision.

Theorem 6.10 (Tomon [85]). Let k ≥ 3. If G is an n-vertex properly edge-coloured graph which has

no rainbow Kk-subdivisions, then e(G) ≤ n · (log n)6+o(1).

A key component in Tomon’s proof is a clever sampling trick, which allowed him to prove the following

lemma:

❀ In a properly edge-coloured expander H (with an appropriate definition of expanders8), if U

and C are random sets of vertices and colours, obtained by including each vertex or colour with

probability p, independently, then for every vertex v at least Ω(n) vertices in H can be reached

from v via a short rainbow path whose colours are in C and interior vertices are in U , as long as

d(H) is large enough with respect to p.

Let us say a few words about the proof of ❀. Using the ‘sprinkling’ method, think of U and as the

union of smaller disjoint random sets U1, . . . , Uℓ, and similarly think of C as the union of smaller disjoint

random C1, . . . , Cℓ. Now define Bi to be the set of vertices reachable from v via a rainbow path of

length at most i with interior in U1 ∪ . . . ∪ Ui and colours in C1 ∪ . . . ∪ Ci; importantly, vertices in Bi

need not be in U1 ∪ . . . ∪ Ui. Now it suffices to show that the sets |Bi| grow sufficiently rapidly, until

reaching size Ω(n). To prove this, Tomon distinguishes between the cases where the neighbourhood of

Bi has many vertices with few neighbours in Bi, and vice versa.

Lemma ❀ implies that many pairs of vertices have many rainbow paths joining them, which have

pairwise disjoint interiors and pairwise disjoint colour sets. It is then not hard to find a rainbow clique

subdivision. Variants of this lemma allowed Tomon to improve the bound on the rainbow Turán number

of cycles to ex∗(n, C) ≤ n(log n)2+o(1), and to obtain interesting Turán type results about triangulations

of the cylinder and Möbius strip in 3-uniform hypergraphs.

7the notion of expansion here is similar to the one used in [48].
8Tomon defines an α-maximal graph to be a graph G satisfying d(G)

|G|α ≥ d(H)
|H|α for every subgraph H ⊆ G, and shows

that α-maximal graphs have strong expansion properties. In his paper α is taken to be either Θ(1/ logn) or a constant,
depending on the context.
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6.5 Further improvements on rainbow cycles and clique subdivisions

Tomon’s bound on the number of edges guaranteeing a rainbow Kt-subdivision was subsequently im-

proved by Wang [92], who showed that n(log n)2+Ω(1) edges suffice.

Theorem 6.11. Let k ≥ 3. If G is an n-vertex properly edge-coloured graph with no rainbow Kk-

subdivisions, then e(G) ≤ n · (log n)2+o(1).

He did so by optimising Tomon’s argument in the context of rainbow clique subdivisions, showing that

in a properly edge-coloured expander (Wang used yet another notion which is quite similar to that in

Definition 2.2), for every vertex v, if W is a small set of forbidden colours and C is a random colour

set obtained by including each colour with probability 1/2, independently, then, with high probability,

more than half the vertices in the graph are reachable from v via a short rainbow path using colours

in C −W . This readily implies that if W is a small set of forbidden colours, then every two vertices

can be joined by a rainbow path. One can then construct a rainbow Kk-subdivision greedily.

Very recently, Tomon’s bound on the rainbow Turán number of cycles was improved slightly, to

ex∗(n, C) = O(n(log n)2), by Janzer and Sudakov [47], and, independently, by Kim, Lee, Liu, and

Tran [51].

Theorem 6.12 (Janzer–Sudakov [47] and Kim–Lee–Liu–Tran [51]). Let G be an n-vertex properly

edge-coloured graph with no rainbow cycles. Then e(G) = O(n · (log n)2).

Neither paper used expanders. Instead, they used inequalities regarding homomorphism counts, rem-

iniscent of Janzer’s methods from [46], with [47] considering a weighted count, and [51] using an

unweighted count along with regularisation.

6.6 An almost tight result regarding rainbow cycles

Even more recently9, Alon, Bucić, Sauermann, Zakharov, and Zamir [4] proved the following almost

tight bound on the number of edges in a properly coloured graph with no rainbow cycles.

Theorem 6.13 (Alon–Bucić–Sauermann–Zakharov–Zamir [4]). Let G be a properly edge-coloured n-

vertex graph with no rainbow cycles. Then e(G) ≤ O(n log n log log n).

In their proof of Theorem 6.13 the authors use the following notion of expanders.

Definition 6.14 (Alon–Bucić–Sauermann–Zakharov–Zamir [4]). An n-vertex graph G is an ABSZZ-

expander if, for every ε with 0 ≤ ε ≤ 1, every subset U ⊆ V (G) with 1 ≤ |U | ≤ n1−ε, and every subset

F ⊆ E(G) with |F | ≤ (ε/3)d(G)|U |, we have |NG−F (U)| ≥ (ε/3)|U |.

Observe that in an n-vertex ABSZZ-expander, vertex sets U of size at most n0.99, say, expand linearly

(namely |N(U)| ≥ 1
100 |U |, because we can take ε = 1

100), and set of size at most n/2 expand at a rate

of at least 1
logn (by taking ε = 1

logn).

These expanders are relevant in the setting of Theorem 6.13 due to the following lemma.

9and after this survey was submitted for publication
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Lemma 6.15 (Alon–Bucić–Sauermann–Zakharov–Zamir [4]). Every graph G with at least one edge

contains an ABSZZ-expander H with

d(H) ≥ 1

3
· log |H|

log |G| · d(G).

In particular, this lemma implies that if d(G) ≥ 3c · log |G| log log |G| then there is an ABSZZ-expander

H ⊆ G with d(H) ≥ c · log |H| log log |H|. Thus, it suffices to show that, if H is a properly coloured

n-vertex ABSZZ-expander with d(H) ≥ c · log n log logn, where c is a large constant, then H has a

rainbow cycle. Similarly to Tomon [85] (see ❀), the authors prove the following.

✽ Let H be an n-vertex properly coloured ABSZZ-expander with d(H) ≥ c · log n log logn, where

c is a large constant, and let v be a vertex in H. Let C be a random set of colours, obtained

by including each colour in H with probability 1/2, independently. Then, with probability larger

than 1/2, at least n+1
2 vertices in H can be reached from v via a rainbow path whose colours are

in C.

Notice that ✽ readily implies Theorem 6.13. Indeed, as pointed out, it suffices to show that every

expander H as in ✽ contains a rainbow cycle. Let {C1, C2} be a random partition of the colour set of

H. Then, by ✽, with positive probability the sets U1, U2, of vertices that are reachable from v through a

rainbow path with colours in C1, C2, respectively, satisfy |U1|, |U2| > n/2. Fix such a partition {C1, C2},

and let u ∈ U1 ∩ U2. Then there is a rainbow closed walk through v and u, which in turn contains a

rainbow cycle, as required.

A key novelty in the proof of ✽ is another sampling trick. Define C0 as above, namely to include each

colour in H with probability 1/2, independently. For appropriate t and p, define C1, . . . , Ct so that Ci

is obtained from Ci−1 by removing each element of Ci−1 with probability p, independently. Now define

Ui to be the set of vertices reachable from v via a rainbow path with colours in Ci. Roughly speaking,

the authors of [4] show that, in expectation,

|Ui−1| ≥ (1 + Ω(ε))|Ui+1|, (1)

where ε satisfies |Ui| = n1−ε. Assuming the Ui’s indeed follow this behaviour (not just in expectation),

then the parameters are such that |U0| > n/2, as required. Turning this into an actual proof involves

various probabilistic ideas that we do not mention here. Instead, we sketch how to prove that (1) holds

in expectation.

Fix Ui, a corresponding ε (so that |Ui| = n1−ε), and Ci. Then every colour in Ci is not in Ci+1 with

probability p, and one can check that every colour not in Ci is in Ci−1 with probability Ω(p). The

authors first prove a dichotomy, somewhat in spirit of ✧ below, according to which there are many

edges E leaving Ui such that either E is coloured in Ci and no vertex in Ui is incident to many edges

of E, or no edges in E are coloured in Ci and no vertex outside of Ui is incident to many edges in E.

Suppose the latter holds. Notice that every vertex outside Ui that is incident to an edge in E whose

colour is in Ci−1 is in Ui−1. Hence, using that E is large, no vertex outside of Ui is incident with many

edges in E, and that the colour of every edge in E is in Ci−1 with probability Ω(p), we get that, in
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expectation, |Ui−1| ≥ (1 + Ω(ε))|Ui|. Now consider the former case. Observe that if u ∈ Ui is incident

to an edge uw in E whose colour is not in Ci+1 then u /∈ Ui+1. Indeed, otherwise w would be in Ui

(because there would be a rainbow path from v to u coloured in Ci+1, which can be extended by uw to

a rainbow path from v to w coloured in Ci), a contradiction. Similar arguments to the previous case

now show that, in expectation, |Ui| ≥ (1 + Ω(ε))|Ui+1|. Either way, (✽) holds.

6.7 Cycles with all diagonals

A diagonal in a cycle C is a chord joining two vertices at distance ⌊|C|/2⌋ in C. Erdős [27] asked the

following question regarding cycles with all diagonals: what is the maximum number of edges in a graph

on n vertices that has no cycle containing all diagonals? Notice that a cycle with all diagonals contains

Figure 10: A cycle with all diagonals

every cycle of length 4. Hence, since there are graphs on n vertices with Ω(n3/2) edges and no 4-cycles,

the answer is at least Ω(n3/2). Erdős observed also that K3,3 is a 6-cycle with all diagonals, and so

the answer is at most the Turán number ex(n,K3,3) of K3,3, which is O(n5/3). Very recently, Bradać,

Methuku, and Sudakov [13] gave a tight answer to the above question (up to a constant factor).

Theorem 6.16 (Bradać–Methuku–Sudakov [13]). Every n-vertex graph with no cycles containing all

diagonals has O(n3/2) edges.

While the proof of Theorem 6.16 uses expanders, it does not fall under the scope of this survey, as

the expansion rate in their expanders is linear. Nevertheless, their proof uses the notion of expansion

introduced by Tomon [85] in his proof of Theorem 6.10, and ideas of the author [60] used in her proof

of Theorem 6.3, so we briefly sketch it.

An interesting new idea here is a way to find an almost spanning expander. They start with a bipartite

n-vertex graph with at least cn3/2 edges, for some (large) constant c. Within this graph, they find an

expander (using Tomon’s setup and an additional cleanup step) H, which has m vertices, at least c′m3/2

edges for an appropriate constant c′, and maximum degree O(m1/2). They then define an auxiliary

graph Γ, whose vertices are the edges of H, and where two edges xy and uv are joined if (xyuv) is a

4-cycle in H. The main novelty in their proof is a way of finding an expander Γ′ which is an almost

spanning subgraph of Γ. This is achieved by showing that every set of vertices in Γ, which is not too

large or too small, expands. They then use the expansion properties of Γ′, and ideas from [60], to find

an odd cycle (e1 . . . eℓ) in Γ, where the ei’s, viewed as edges of H, are pairwise vertex-disjoint. This

readily implies the existence of a 2ℓ-cycle in H that contains all diagonals (using that H is bipartite;

see Figure 11).
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Figure 11: A 5-cycle in Γ whose vertices are pairwise vertex-disjoint edges in H
(denoted by red striped edges). The vertices of the 5-cycle are the diagonals in a
10-cycle in H.

7 Decompositions and separation

All the results we have mentioned so far find certain substructures in graphs G with some properties

(typically, with large average degree), which might be much smaller or sparse than G. In particular,

these results do not aspire to say anything global about G. Often, they find an expander H within G,

which might be much smaller than G, and focus just on H. In this section we will see how sublinear

expanders can be used to prove more global results.

7.1 Decomposing graphs into cycles and edges

A decomposition of a graph G is a collection of subgraphs of G such that each edge in G appears in

exactly one of these subgraphs. In the 1960’s a lot of questions regarding decompositions of a given

graph into simpler subgraphs were considered (see, e.g., [39, 66, 90]). One example of a conjecture

along these lines is the following conjecture due to Erdős and Gallai.

Conjecture 7.1 (Erdős–Gallai (see [30])). There is a constant c > 0 such that every n-vertex graph

can be decomposed into at most cn cycles and edges.

Notice that allowing edges in the decomposition is necessary, due to the potential existence of odd

degree vertices. Moreover, at least n− 1 edges and cycles are necessary, as can be seen by considering

a tree. A greedy algorithm that picks a longest cycle and removes it from the graph, one by one, yields

a decomposition into O(n log n) cycles and edges. The first improvement on this was achieved in 2014

by Conlon, Fox, and Sudakov [20], who proved that O(n log log n) cycles and edges suffice. This was

recently improved upon significantly by Bucić and Montgomery [15].

Theorem 7.2 (Bucić–Montgomery [15]). Every n-vertex graph can be decomposed into O(n log⋆ n)

cycles and edges.

Here log⋆ n is the iterated logarithm, namely the minimum number of times the (say) base 2 logarithm

has to be applied, sequentially, to n, to reach a number which is at most 1.

To prove Theorem 7.2, the authors iterate the following statement:
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❖ If G is an n-vertex graph with average degree d, then G can be decomposed into O(n) cycles and

O
(
n(log d)O(1)

)
edges.

Notice that ❖ implies Theorem 7.2: iterating this statement c log⋆ n times, for large enough c, brings

the average degree down from at most n to at most O(1), using O(n) edges at each step, and then the

remaining edges can be covered by single edges, thereby using O(n log⋆ n) edges in total.

The high level sketch of the proof of ❖ is as follows.

� First, remove, one by one and as long as possible, cycles of length at least d.

� Next, decompose the remainder into (sublinear) expanders (on at most O
(
d(log d)O(1)

)
vertices),

which are almost vertex-disjoint.

� Finally, decompose each expander H into O(|H|) cycles and O
(
|H|(log d)O(1)

)
edges.

This outline is inspired by the proof of Conlon, Fox, and Sudakov [20], who used much denser expanders,

to show that O(n) cycles suffice to reduce the average degree from d to O(d1−Ω(1)). As such, the details

are rather different, and quite a lot of new ideas were needed here.

The definition of expanders used in [15] is similar to the robust expanders defined in Definition 2.14.

Definition 7.3 (Bucić–Montgomery [15]). An n-vertex graph G is an (ε, s)-BM-expander if for every

vertex set U ⊆ V (G) and subgraph F ⊆ G, satisfying |U | ≤ 2n/3 and e(F ) ≤ s|U |, the following holds:

|NG−F (U)| ≥ ε|U |
(logn)2

.

To realise the second step above, the authors prove a decomposition result.

Lemma 7.4 (Lemma 14 in [15]). Let G be an n-vertex graph. Then it can be decomposed into (ε, s)-

BM-expanders G1, . . . , Gr, with
∑ |Gi| = O(n), and O(sn log n) edges.

To complete the second step, the authors apply the lemma with s = 0, and prove that every n-vertex

(ε, 0)-expander contains a cycle of length Ω(n(log n)−4), using a DFS algorithm. This shows that the

expanders in the decomposition are rather small (they have at most O
(
d(log d)O(1)

)
vertices), because

the graph that remains after the first step has no cycles of length at least d.

The main challenge is in the proof of the final step. Applying the Lemma 7.4 again to each expander

H, with s = (log n)c for some constant c, it suffices to show that every n-vertex (ε, s)-expander can be

decomposed into O(n) cycles and at most n(log n)O(1) edges.

A key result in this direction is the following (see Lemma 19 in [15]).

✧ Given an n-vertex (ε, s)-expander H, if V is a random set of vertices that includes each vertex

with probability 1/3, independently, then, with high probability, for every vertex set U , and small

subgraph F (of size at most |U |/(log n)27), more that |V |/2 vertices in V can be reached from U

through a relatively short path with interior in V .
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The proof of this uses the sampling trick of Tomon [85] described before (see Theorem 6.10 and ❀),

as well as an expansion dichotomy for vertex sets U in (ε, s)-expanders (see Propositions 12 and 13 in

[15]):

✮ If |U | ≤ 2n/3 and e(F ) ≤ s|U |/2, then either the neighbourhood NG−F (U) is very large, or many

vertices in the neighbourhood NG−F (U) have many neighbours in U .

The authors use this dichotomy to apply the union bound effectively. Using the key result ✧, and a

result about matchings in hypergraphs due to Aharoni and Haxell [2], they prove two results about

joining pairs of vertices through a random vertex set, which they then use to complete the third step.

7.2 Separating the edges of a graph by paths

A separating path system for a graph G is a collection P of paths such that for every two edges e and

f there is a path P ∈ P that contains e but not f . This notion was introduced by Katona (2013).

Writing sep(G) for the size of a smallest separating path system for G, and sep(n) for the maximum of

sep(G) over all n-vertex graphs, Katona asked to determine sep(n). We claim that sep(n) = O(n log n).

Indeed, given an n-vertex graph G, consider a collection G of O(log n) subgraphs of G that separates

the edges of G, meaning that for every two edges e and f in G there is a subgraph in G that contains

e but not f (that such a collection exists follows by noticing that every set of size m can be separated

using O(logm) sets, an easy exercise). Using a result of Lovász [66], asserting that the edges of every

n-vertex graph can be decomposed into at most n paths, for each H ∈ G there is a collection PH of

at most n paths decomposing the edges of H. It is easy to verify that
⋃

H∈G PH is a separating path

system for G, which has size O(n log n).

The first improvement on this initial bound was achieved by the author [59].

Theorem 7.5 (Letzter [59]). Every n-vertex graph has a separating path system of size O(n log⋆ n).

The proof draws on many ideas from Bucić and Montgomery [15]. One difference is that here, unlike in

[15], one needs to work with relatively sparse graphs, making the decomposition lemma (Lemma 7.4)

too weak at times. To overcome this, we introduce a variant of BM-expanders.

Definition 7.6 (Letzter [59]). An n-vertex graph G is an (ε, s, t)-L-expander if for every vertex set

U ⊆ V (G) and subgraph F ⊆ G, such that 1 ≤ |U | ≤ 2n/3 and |F | ≤ s · min{|U |, t}, we have

|NG−F (U)| ≥ ε|U |
(log |U |+1)2

.

We also prove an analogue of Lemma 7.4.

Lemma 7.7. If G is an n-vertex graph, then it can be decomposed into (ε, s, t)-L-expanders G1, . . . , Gr

with
∑ |Gi| = O(n) and O(sn(log t)2) edges.

The role of the parameter t is to allow for the expanders in the decomposition to have good expansion

properties for small sets U , while not causing too many edges in G to remain uncovered.
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To prove Theorem 7.5, a basic idea is that it is easy to find, given an n-vertex graph G, collections of

paths P and matchings M, of size O(n), that separate the edges of G. As such, using the decomposition

lemma, it suffices to be able to extend a given matching M to a path that avoids a small subgraph

(corresponding to paths in P that intersect M). This is achieved for dense expanders using variants of

tools from [15], and for sparse graphs using methods developed for KS-expanders, dealing separately

with edges touching large degree vertices.

Shortly after [59] appeared, Bonamy, Botler, Dross, Naia, and Skokan [12] proved that sep(n) ≤ 19n,

using a simple inductive argument. This is tight up to the factor 19, confirming a conjecture from [7]

and [33]. They raised the following question.

Question 7.8 (Bonamy–Botler–Dross–Naia–Skokan [12]). Is there a constant c > 0 such that the edges

of every properly edge-coloured n-vertex graph can be covered by O(n) rainbow paths?

This can be shown to imply the existence of a separating path system of size O(n), via Lovász’s result

about decomposing a graph into paths.

8 Counting Hamiltonian sets

An interesting different direction that has been addressed using sublinear expander involves the number

of Hamiltonian sets. In a graph G, a set of vertices U is called Hamiltonian if G[U ] has a Hamiltonian

cycle. Denote by h(G) the number of Hamiltonian sets in G.

8.1 Maximising h(G) among graphs with given average degree

Komlós (see [86, 87, 88]) conjectured that among graphs G with minimum degree at least d, the

complete graph Kd+1 minimises h(G); namely: if δ(G) ≥ d then h(G) ≥ h(Kd+1). In 2017, Kim, Liu,

Sharifzadeh, and Staden [52] proved this conjecture (for large d).

Theorem 8.1 (Kim–Liu–Sharifzadeh–Staden [52]). Let d be large, and suppose that G is a graph with

d(G) ≥ d. Then G has at least h(Kd+1) = 2d+1 −
(
d+1
2

)
− (d + 1) − 1 Hamiltonian sets.

In fact, they prove that if d(G) ≥ d and G is not isomorphic to Kd+1 or to the union of two Kd+1’s that

share a single vertex, then h(G) ≥ (2 + o(1))2d+1 (notice that h(Kd+1) ≈ 2d+1 and h(H) ≈ 3
2 · 2d+1 for

H the union of two Kd+1’s sharing a single vertex). They also sketch how their methods can be used

to address a bipartite version of the same problem.

As a first step, the authors find an n-vertex (ε1, ε2d)-expander H with δ(H) = Ω(d) and ∆(H) = O(d),

with d = o(n). To do so, suppose there is no such expander. By analysis of “blocks” (maximal 2-

connected subgraphs), assuming that G is a minimal counterexample to Theorem 8.1, and by a proof

of Theorem 8.1 for dense graphs (using the regularity lemma), they may essentially assume that G

is 2-connected and of order ω(d). Now, after removing the few large degree vertices, either there are

two disjoint dense subexpanders H1, H2 with average degree a at least a bit below d, or there is a

subexpander H with the required properties. Either way, this leads to a contradiction: either to the G

being a counterexample, or to there being no expanders as above.
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Now, given an almost-regular expander H as above, the authors again consider two cases: dense

(d ≥ (log n)c) and sparse (otherwise). In the sparse case, they find a set Z of 200d vertices that are

far apart, and show that for every U ⊆ Z of size 100d there is a cycle C with V (C) ∩ Z = U , yielding(
200d
100d

)
Hamiltonian sets. This can be done in a routine way, by joining pairs of vertices in U by short

paths avoiding the vicinity of other vertices in U . The dense case is a little more involved. They first

find 200d many (h0, h1, h2, h3)-webs (see Definition 2.16; here h0, h1, h3 = (log n)Θ(1) and h2 = Θ(d)),

whose sets of non-leaf vertices are pairwise disjoint. Denoting the set of roots by Z, for every U ⊆ Z

of size 100d, they find a cycle C that avoids Z − U and contains at least 98d vertices of U (this yields

at least the following number of different Hamiltonian sets
(
200d
100d

)
/
(
102d
2d

)
≥ Θ(d−1/22200d/2102d) ≥ 250d,

with room to spare in the last inequality). To do so, they join vertices in U one by one through the

webs, avoiding vertices with overused leaf sets.

8.2 Maximising h(G) among graphs with given average degree and number of ver-

tices

Cambie, Gao, and Liu [17] considered a similar question: among n-vertex graphs G with δ(G) ≥ d, how

small can h(G) be? To describe their result, we need the notion of ‘crux’, given in Definition 2.10.

Theorem 8.2 (Cambie–Gao–Liu [17]). Let G be a graph, d = d(G), and t = c1/5(G). Then

h(G) ≥ n · 2Ω(t (log t)−16).

At least in some regimes, this is tight up to the polylogarithmic factor, as can be seen by considering

a disjoint union of ⌊n/(d + 1)⌋ copies of Kd+1.

The main technical result towards the proof of the above is the following.

✤ If |G| = n, d(G) ≥ d, and t = cα(G), then there is a vertex in at least 2Ω(t (log t)−c) different

Hamiltonian sets.

To prove ✤, they consider an (ε1, ε2d)-KS-expander H on k vertices, find many disjoint cycles of length

(log k)Θ(1), and join k(log k)−Θ(1) into a ‘chain’ by vertex-disjoint paths (see Figure 12). Then, every

vertex in one of the connecting paths is in 2k(log k)
−Θ(1)

different Hamiltonian sets, because in forming

a cycle through the chain, for each cycle there are two possible choices of a path through it to the next

connecting path. By the definition of crux, we have k ≥ t, and hence there is a vertex in at least the

required number of different Hamiltonian sets.

Now, to get the main result, consider a graph G which is a minimal counterexample to the main result.

First, remove, one by one, vertices which are in many different Hamiltonian sets, and denote the sets of

removed vertices by S. Notice that G−S has small average degree, because otherwise one could apply

✤ to a subexpander of G − S with large enough average degree, contradicting the choice of S. Next,

repeat a similar procedure in G[S, V (G) − S], and move, one by one, a vertex from V (G) − S to S if if

is in many different Hamiltonian sets in G[S, V (G) − S]. If the resulting S is large, then h(G) is large

enough for a contradiction. Otherwise, it is small but has large average degree. This gives an upper

bound on the crux of G, which together with the minimality assumption on G yields a contradiction.
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Figure 12: A ‘chain’ of cycles. Each of the vertices in the ‘connecting paths’ is
in 32 cycles; one of them is marked in blue.

Recall that Theorem 8.2 is close to tight, but unlikely to be tight. As such, it might be interesting to

try to improve the bound.

Problem 8.3. Prove a tighter lower bound on h(G) for an n-vertex graph G with average degree at

least d. In particular, is it true that h(G) ≥ n · 2Ω(t), where t = c1/5(G)?

9 Other results

In this section we briefly mention a few other results, that used sublinear expanders in their proof. The

first two are extremal results, showing that a large average degree implies the existence of a certain

structure, the third is a result in Ramsey theory.

9.1 Nested cycles

In 1975 Erdős [27] made two conjectures about the existence of nested cycles in graph with large average

degree. The first conjecture asserts that there exists d0 such that every graph G with d(G) ≥ d0

contains two edge-disjoint cycles C1, C2 such that V (C2) ⊆ V (C1). The second is a strengthening of

the former, additionally requiring that the cyclic ordering of C2 respects that of C1. More precisely, if

C1 = (v1 . . . vℓ) then there exist i1, . . . , ik, such that 1 ≤ i1 < . . . < ik ≤ ℓ and C2 = (vi1 . . . vik). We

refer to a sequence of nested cycles C1, . . . , Ck (with V (C1) ⊇ . . . ⊇ V (Ck)), where the cyclic order of

Ci+1 respects that of Ci, as a sequence of nested cycles without crossings (see Figure 13).

The former conjecture was proved by Bollobás [10] in 1978, and extended by Chen, Erdős, and Staton

[18] in 1996 to longer sequences of nested cycles10. Gil Fernández, Kim, Kim, and Liu [36] recently

proved the latter conjecture.

10Bollobás [10] proved that an average degree of 14 guarantees the existence of two edge-disjoint nested cycles, and this
was improved by Chen, Erdős, and Staton [18] to 10. For general k they showed that an average degree of 6k guarantees
the existence of a sequence of k nested edge-disjoint cycles.
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Figure 13: Two pairs of nested cycles (without and with crossings)

Theorem 9.1 (Gil Fernández–Kim–Kim–Liu [36]). There exists d0 such that every graph G with d(G) ≥
d0 has two nested cycles without crossings.

The authors do not give an explicit value of d0 for which the statement holds. Roughly speaking,

their proof yields a value of d0 which is large, but not regularity lemma large. I am not aware of any

non-trivial lower bounds on d0 for which the statement in Theorem 9.1 holds.

Very briefly, the idea here is to take a shortest cycle C = (v1 . . . vℓ) in an expander H, which is going

to be the shorter cycle C2, and then it suffices to find paths P1, . . . , Pℓ, whose interiors are pairwise

vertex-disjoint and vertex-disjoint of C, such that Pi joins vi with vi+1 (where vℓ+1 := v1). To find

these paths, they first join each vertex vi to either two vertices of large degree, or to two large sets with

small diameter (they call this structure a ‘kraken’). Next, they join up these vertices of large degree,

or the large sets with small diameter, to obtain the required connections between the vertices.

Theorem 9.1 raises the following interesting question.

Question 9.2. Does there exist d0(k) such that, for every k ≥ 3, every graph G with d(G) ≥ d0(k) has

a sequence C1, . . . , Ck of nested cycles with no crossings?

9.2 Pillars

In 1989 Thomassen [84] conjectured that large average degree guarantees the existence of a ‘pillar’,

defined to consist of two vertex-disjoint cycles of the same length, denoted C1 = (v1 . . . vℓ) and C2 =

(u1 . . . uℓ), and vertex-disjoint paths P1, . . . , Pℓ of the same length such that Pi joins vi with ui (see

Figure 14).

His conjecture was confirmed by Gil Fernández and Liu [37].

Theorem 9.3 (Gil Fernández and Liu [37]). There exists d0 such that every graph G with d(G) ≥ d0

contains a pillar.

In fact, the authors proved a more general result, about the existence of ‘Kk-pillars’ (involving k cycles,

any two of which are joined as above).

To prove this, the authors work with an expander H which is Q3-free (because the hypercube Q3

contains a pillar). They then find many disjoint large ‘krakens’ (the structures used in [36]). Two of

these would have the same cycle length, and then the kraken’s ‘legs’ can be joined together by disjoint

paths of the same length, using the approach of Liu and Montgomery [63].
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Figure 14: A pillar

9.3 Ramsey goodness of cycles

A final, quite different result we mention here involves Ramsey numbers. The Ramsey number of H1

and H2, denoted r(H1, H2), is the minimum n such that every red-blue colouring of Kn contains a red

copy of H1 or a blue copy of H2. Here we consider the case where H1 is a cycle. It is well-known (and

easy to see) that

r(Cn, H) ≥ (n− 1)(χ(H) − 1) + σ(H), (2)

where χ(H) is the chromatic number of H, and σ(H) is the minimum possible size of a colour class in

a proper χ(H)-colouring of H. Burr [16] proved that, if n is sufficiently large in terms of H, then the

bound in (2) is tight (in which case it is said that Cn is H-good). Allen, Brightwell, and Skokan [3]

conjectured that the bound is tight already when n ≥ |H| ·χ(H). Haslegrave, Hyde, Kim, and Liu [41]

proved an even stronger statement, as follows.

Theorem 9.4 (Haslegrave–Hyde–Kim–Liu [41]). There exists a constant c > 0 such that, if n ≥
c|H|(logχ(H))4, then r(Cn, H) = (n− 1)(χ(H) − 1) + σ(H).

Their approach uses ideas from Liu and Montgomery [63], specifically about the construction of ad-

justers (see Definition 5.5) in sublinear expanders, and is also inspired by a result of Pokrovskiy and

Sudakov [75] who proved that (2) is tight when n ≥ 1060|H| and σ(H) ≥ χ(H)22.

The lower bound on n in Theorem 9.4 is close to optimal; the authors provide an example showing that

n has to be taken to be at least |H|(1 + o(1)). It would be nice to get rid of the polylogarithmic factor

in χ(H).

Question 9.5 (Haslegrave–Hyde–Kim–Liu [41]). Is there a constant c > 0 such that, if n ≥ c|H|, then
r(Cn, H) = (n− 1)(χ(H) − 1) + σ(H)?

9.4 Transversals in Latin squares

A Latin square is an n× n grid filled with n symbols so that each symbol appears exactly once in each

row and column. A transversal in a Latin Square is a collection of cells that share no symbol, row, or

column. A transversal in an n× n Latin square is said to be full if it has size n. (See Figure 15.)
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Figure 15: A 4 × 4 Latin square with a transversal of size 3 (and with no full
transversals), and a 5 × 5 Latin square with a full transversal

The study of Latin Squares dates back to the 18th century, during which Euler [32] considered Latin

squares that can be decomposed into full transversals, and has been very prolific (see the surveys of

Andersen [6], Wanless [93], and a forthcoming survey of Montgomery [70]). Ryser [76], Brualdi (see

[14]), and Stein [79] made several related conjectures, which are now known in a combined form as the

Ryser–Brualdi–Stein conjecture.

Conjecture 9.6 (Ryser–Brualdi–Stein conjecture [14, 76, 79]). Every n×n Latin square has a transver-

sal of size n− 1, and a full transversal if n is odd.

In a very recent breakthrough paper, Montgomery [72] proved the first part of this well-known conjec-

ture, for large n.

Theorem 9.7 (Montgomery [72]). For every large enough n, every n×n Latin square has a transversal

of size n− 1.

The substantial proof of Theorem 9.7 contains many ideas and techniques. One of them is the use of

sublinear expanders, similar to (δ, n)-SS-expanders (see Definition 3.4) and to (λ, d)-ST-expanders (see

Definition 6.2). Due to the length of the paper [72], and the fact that this paper came out after the

current survey was submitted for publication, we do not elaborate on the use of expanders in this proof.

One can of course refer to [72] for more details, as well as to Montgomery’s forthcoming survey [70].
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