Hypergraphs with no tight cycles
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Abstract

We show that every r-uniform hypergraph on n vertices which does not contain a tight cycle has
at most O(n"~!(logn)®) edges. This is an improvement on the previously best-known bound,
of n"~1e@WVlogn) " due to Sudakov and Tomon, and our proof builds up on their work. A recent

construction of B. Janzer implies that our bound is tight up to an O((logn)*loglogn) factor.

1 Introduction

It is well known, and easy to see, that the maximum number of edges in a graph on n vertices with
no cycles is n — 1. It is natural to consider an analogous problem for hypergraphs: what is the
maximum possible number of edges in an r-uniform hypergraph (henceforth r-graph) on n vertices
which does not contain a cycle? Unlike the graph case, there are multiple natural notions of cycles

in hypergraphs, the most notable of which are Berge cycles, loose cycles and tight cycles.

A Berge cycle of length ¢ is a sequence (vi,eq,...,vsep) such that vq,...,v, are distinct vertices,
e1,...,ep are distinct edges, and v; € e;—1 N e; (subtraction of indices is taken modulo ¢). We claim
that the maximum possible number of edges in an n-vertex r-graph with no Berge cycles is L%J
For the upper bound, it suffices to show that the edges of an r-graph with no Berge cycles can be
ordered as ey, ..., e, so that |e; N (e U...Ue;—1)| <1 for every ¢ € [m], which is not hard to prove.
To see the lower bound, form an r-graph on at most n vertices by taking {%J pairwise disjoint sets

of size r — 1, and joining each of them to the same new vertex.

A loose cycle of length ¢ is a sequence (e, ..., ep) of distinct edges such that two consecutive edges
(as well as the first and last) have exactly one vertex in common, and non-consecutive edges are
disjoint. Frankl and Fiiredi [3] showed that any n-vertex r-graph with no loose triangles (i.e. loose
cycles of length 3) has at most (ij) edges, whenever n is sufficiently large. Note that there exists
an n-vertex r-graph with no loose cycles with this number of edges: take its edges to be all r-sets
that contain a certain vertex u. It thus follows that the answer to the above question for loose cycles
is (7).
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An r-uniform tight cycle of length ¢ is a sequence (v1,...,v) of distinct vertices, satisfying that
(Viy ..., Vitr—1) is an edge for every ¢ € [(] (with addition of indices taken modulo ¢). Denote the
family of all tight cycles by C, and let ex,(n,C) be the maximum possible number of edges in an
n-vertex r-graph with no tight cycles. The question from the first paragraph, for tight cycles, can

be restated as follows: what is ex,(n,C)?

It might be tempting to guess that ex,(n,C) = (Zj), similarly to the loose cycles case. Indeed,
this was conjectured by Sé6s and, independently, Verstraéte (see [10, 13]). This conjecture was
disproved by Huang and Ma [7], who showed that for every r there exists ¢ = ¢(r) € (1,2) such that
ex,(n,C) > c- (fj) Very recently, B. Janzer improved this lower bound on ex,(n,C) substantially,

showing that ex,(n,C) = Q(n" . 101;?()2”)-

Until recently, the best upper bound on ex,(n,C) for general r was ex,(n,C) = O(n”_r(ril)), which
follows from a result of Erdés [2] about the extremal number of a complete r-partite r-graph with
vertex classes of size 2. For r = 3, an unpublished result of Verstraéte regarding the extremal
number of a tight cycle of length 24 implies that exz(n,C) = O(n®/?). A recent result of Tomon and
Sudakov [12] shows that ex,(n,C) < n"~1eOWI1081) " greatly improving on previous bounds, and thus

establishing that ex,(n,C) = n"~ o),

We prove the following result about the extremal number of tight cycles in r-graphs, which lowers

the e@(V19g7) error term in Sudakov and Tomon’s bound to a polylogarithmic term.

Theorem 1. Suppose that H is an r-graph on n vertices which does not contain a tight cycle. Then
H has O(n"~(logn)>) edges.

In other words, we show that ex;,(n,C) = O(n"~(logn)?). In light of Janzer’s result [3], this is tight
up to an O((logn)*loglogn) factor.

We give an overview of our proof in Section 2, mention relevant tools and definitions from [12] in
Section 3, and prove our main result in Section 4. We conclude the paper in Section 5 with some
closing remarks. Throughout the paper, logarithms are understood to be in base 2, and floor and

ceiling signs are often dropped.

2 Overview of the proof

Our proof builds up on ideas Sudakov and Tomon’s work [12]. They introduce the notions of r-
line-graphs, which are graphs that correspond naturally to r-partite r-graph, and expansion in such
graphs. They show that, given a dense enough r-partite r-graph H, the r-line-graph that corresponds
to ‘H contains a dense expander G. Next, they define o-paths and o-cycles, which correspond to tight
paths and cycles in the original hypergraph H. It thus suffices to show that every r-line-graph which
is a dense expander contains a o-cycle. Sudakov and Tomon are not able to prove this. Instead,
they show that every expander contains either a o-cycle or a very dense subgraph, and proceed via

a density increment argument.



Our main contribution is to show that every r-line-graph which is a dense expander indeed contains
a o-cycle (see Theorem 6). A key step in our proof is to show that in such an expander G, for every
vertex © € V(G), almost every other vertex y € V(G) can be reached from x via a short o-path
P(z,y) in a ‘robust’ way, meaning that no vertex in the underlying r-graph H meets too many of
the paths P(z,y) (see Lemma 5). If the robustness requirement is dropped, we obtain a lemma from
[12]. To prove the robust version, we use the non-robust version from [12] as a black box, along with
another lemma from the same paper, which asserts that the removal of a small number of vertices

from the underlying r-graph H does not ruin the expansion.

To find a o-cycle, let P(z,y) be paths as above, defined for almost every =,y € V(G). Note that
while we are guaranteed that, for every z € V(G), no vertex v of H meets too many paths P(z,y), we
do not have any control over the number of times v meets a path P(z,y), for a given y. Nevertheless,
since the paths P(x,y) are short, for every y € V(G) there are few vertices in H that meet many
path P(z,y); denote the set of such vertices in H by F(y). Using tools mentioned above, for every
y and almost every z there is a short o-path Q(y,x) from y to x that avoids F(y). To complete
the proof, we note that the robustness implies that for almost every x,y € V(G) the path Q(y,x)
is defined, and there are linearly many z € V(G) for which P(z,2)P(z,y) is a o-path from z to y.
Using robustness and the choice of Q(y,x), the concatenation P(x,z)P(z,y)Q(y,x) is a o-cycle for
linearly many z € V(G).

3 Expansion in r-line-graphs

We say that G is an r-line-graph if the vertex set of GG is a set of r-tuples in Ay x ... x A,, where
Aq, ..., A, are pairwise disjoint, and x and y are joined by an edge if and only if z and y differ in

exactly one coordinate. Observe that an r-partite r-graph naturally corresponds to an r-line-graph.

Let G be an r-line-graph with V(G) C A; x ... x A,. We will refer to the vertices of A;U...UA, as
coordinates. For a set of vertices X in G, let co(X) be the set of coordinates that appear in tuples

in X. For a vertex x we write co(z) as a shorthand for co({z}).

For a vertex z and i € [r], define N()(z) to be the set of vertices y in G that differ from  in the
i-th coordinate only. An i-block in G is a set of form {z} U N®(z), for z € V(G) and i € [r]. Let
p(G) be the number of blocks in G, and define the density of G, denoted dens(G), as

_ 2plBl _ G|
dens(G) = pr) = o(G) (1)

where the sum is over all blocks B in G. In words, the density is the average size of a block.

The i-degree of a vertex x, denoted dg) (2), is defined to be |[N®)(z)| + 1. The minimum degree of G,
denoted §(G), is defined to be the minimum of d¥)(x), over z € V(G) and i € [r] (this is not quite

the same as the usual notion of a minimum degree of a graph).

For a graph H, say that H is a A-expander if every set of vertices X with |X| < %\H | satisfies



IN(X)| > A|X|, where N(X) is the set of vertices in V/(H) \ X that are neighbours of at least one
vertex in X. For an r-line-graph G, say that G is a (\, d)-ezpander if G is a A-expander and 6(G) > d.

The following lemma from [12] allows us to find expanders in r-line-graphs that are sufficiently dense.
It is reminiscent of a similar result of Shapira and Sudakov [11] about the existences of expanders in
graphs.

Lemma 2 (Lemma 3.3 in [12]). Let G be an r-line-graph on n vertices with density at least d, and

suppose that 0 < X\ < 57—

STogn” Then G contains a subgrah of density at least d(1 — Alogn) which is a

(A, %)—ezpander.

The following lemma, also from [12], shows that the notion of expansion is robust, in the sense that

the removal of a small number of coordinates does not affect the expansion too much.

Lemma 3 (Lemma 3.5 in [12]). Let r,u,d be positive integers, let A € (0,1) and suppose that u < %.
Let G be an r-line-graph on n vertices with V(G) C Ay X ... X A, which is a (\,d)-expander. Suppose
that H is a subgraph of G obtained by removing at most u coordinates in A1 U...UA, from G (along

with edges of G that meet these coordinates). Then H is an r-line graph on at least (1 — §)n vertices

which is a (%, 9)-ezpander.

Next, we need the notions of o-neighbours, o-paths and o-cycles. Let G be an r-line-graph with
V(G) C A1 x...x A,. Given a permutation o € S, and vertices x = (z1,...,2,) and y = (y1,...,Yr)
in G, we say that y is a o-neighbour of x if co(z) and co(y) are disjoint, and the r-tuples 2o, ..., z,

defined as follows, are vertices in G.

z; o () >
(Zi)j:{ ’ (‘7)>.

yj o '(j) <.

Note that zg = = and z, = y. If o is the identity permutation, we have z; = (Y1, ..., Yi—1, Ti, - ., Tp).
Observe that z; € N(@@)(z;,_;) for i € [r]. Also note that if y is a o-neighbour of z then the sequence
(To(1)s -+ To(r)s Yo(1)s - - - » Yo(r)) IS @ tight path in the r-graph that corresponds to G.!

A o-path in G is a sequence (z1,...,xy) of vertices in G whose coordinate sets are pairwise disjoint,
and such that ;1 is a o-neighbour of z; for i € [k—1]. Similarly, a o-cycle is a sequence (z1, ..., xx)
of vertices in G whose coordinate sets are pairwise disjoint, such that z;; is a o-neighbour of x;, for
i € [k] (with indices taken modulo k). Writing z; = (z;1,...,%is), if x1,..., 2, is a o-path (o-cycle),
then (21501, T1,0(r)s -+ s Thio(1)s - - - Thoo(r)) 15 @ tight path (cycle) in the r-graph corresponding
to G. It would thus be useful to show that r-line-graphs that are dense expanders have o-cycles; we

do so in Theorem 6 below.

The order of a o-path or o-cycle (1, ...,xy) is k. If there is a o-path (z1,...,zx) in G, we say that

xy can be reached from x1 by a o-path of order k. The following lemma from [12] shows that, given

IFor the purpose of this paper it suffices to fix o to be any particular permutation in S,. We state the definitions
and results for general o to mirror [12].



a vertex x in an r-line-graph G which is a dense expander, almost every vertex in G can be reached

from = by a relatively short o-path.

Lemma 4 (Lemma 4.4 in [12]). Let o € Sy, let e, A € (0,1) and let n and d be positive integers such
that 500r* logn < €2\2d. Suppose that G is an r-line-graph on n vertices which is a (), d)-expander,
and let x € V(G). Then at least (1 — €)n vertices in G can be reached from x by a o-path of length

57 logn

at most 5\

4 Existence of o-cycles in expanders

Recall that co(X), where X is a set of vertices in an r-line-graph, is the set of coordinates in tuples
in X. The following key lemma is the first new ingredient in our proof. It shows that for every vertex
x in an r-line-graph G which is a dense expander, almost every vertex in GG can be reached from x by
a short o-path, such that no coordinate (other than the coordinates in z) is met by too many such

o-paths.

and let n,d,l,t be positive integers such that ¢ = 10r€1§gn’

Lemma 5. Let 0 € S, let e,\ € (0,1)

t < %, 4000r*logn < €2X\%d and 4—/\7, < e. Suppose that G is an r-line-graph on n wvertices, with
V(G) C Ay X ... x A,, which is a (\,d)-expander, and let x € V(G). Then there is a set Y C V(G)
of size at least (1 — 2e)n such that every y € Y can be reached from x by a o-path P(y) of order at
most £, and every w € (AyU...UA,;)\ co(x) is in co(P(y)) for at most % values of y.

Proof. Write A=A, U...UA, and u = t/. SouS%and%Se.

Let Yy be a subset of V(G) of maximum size such that there exists a collection of o-paths (P(y))yevp,
such that P(y) is a o-path from x to y of order at most ¢ for y € Yy, and every w € A\ co(x) is
m]-;(y)) for at most % values of y; fix such a collection (P(y))yey,. Our task is to show that
|Yo| > (1 — 2¢)n, so suppose otherwise.

Let I be the set of coordinates w € A\ co(z) such that w € co(P(y)) for exactly % values of y € Yp.
By choice of F' and the upper bound on the order of P(y), we have

[F|n
L
<

> leo(P(y))| < n. (2)

yeYD
It follows that |F| < tf = u.

Let H be the graph obtained from G by removing the vertices that meet the set F. By Lemma 3,

H is an r-line-graph on at least (1 — 4)n > (1 — &)n vertices which is a (%, %)—expander. Note that

x is in H because F is disjoint of co(z). Thus, by Lemma 4, there is a subset Y7 C V(H), with
V1| > (1 —¢)|H| > (1 —€)?n > (1 — 2¢)n, such that the vertices in ¥ can be reached from x by a

o-path in H of order at most ¢ (here we use the inequality 50004 log |H| < 500r* logn < &2 (%)2 (%))

By assumption on the size of Yj, there is a vertex y € Y7 \ Yp. Let P(y) be a o-path in H from z to



y whose order is at most ¢; so P(y) is a path in G that avoids F. It follows that every w € A\ co(x)
is in co(P(y)) for at most % values of y in Yo U {y}. This is a contradiction to the maximality of Yj.
Thus |Yp| > (1 — 2¢)n, as required. O

We now prove the main ingredient in our proof, namely that r-line-graphs which are dense expanders

contain (short) o-cycles.

Theorem 6. Let 0 € S,, let e, € (0,1), and let n and d be positive integers such that d >

4 2
W, 4—’\7, <e< % and n is sufficienlty large. Let G be an r-line-graph on n vertices which is

30rlogn

a (A, d)-expander. Then G contains a o-cycle of order at most =2

Proof. Let Ay,..., A, be disjoint sets such that V(G) C A; x ... x A, and write A = A;U...UA,.
Let u = Z\L—f, write £ = 1021# and let t = . We claim that the following inequalities hold: 4 < e
and %Z < &. The former is easy to check by the definition of u and the lower bound on €. The latter

is more tedious but follows directly from the choices of u, ¢, ¢ and the lower bound on t.

For each vertex z in G, let Y (z) C V(G) be a set of size at least (1 —2¢)n and let P(z,y) be a o-path
of length at most ¢ in G from z to y, for y € Y (x), such that

every w € A\ co(z) is in co(P(x,y)) for at most ? vertices y in Y (z), for z € V(G). (3)

Such set Y (z) and paths P(x,y) exist by Lemma 5. For each vertex y in G, let F'(y) be the set
of elements w € A\ co(y) that appear in more than % sets co(P(xz,y)) with € V(G). Using a
calculation as in (2), it is easy to see that |F(y)| < u for every y € V(G). Let G(y) be the graph
obtained from G by removing all vertices that meet F(y). It follows from Lemma 3 that G(y) is an
r-line-graph on at least (1 — %)n > (1 — ¢)n vertices, and it is also a (3, 2)-expander. By Lemma 4,
there is a subset X (y) of V(G(y)) with | X (y)| > (1 —¢)?n > (1 — 2¢)n, and o-paths Q(y, ) in G(y)

from y to = whose order is at most ¢, for x € X (y).

Consider a vertex x in G. Let D(x) be a directed graph on vertices V(G) where yz is an edge if
paths P(z,y) and P(y, z) are defined and co(P(z,y)) N co(P(y, z)) = co(y); equivalently, yz is an
edge if the concatenation of P(z,y) and P(y, z) forms a o-path in G from z to z. Given y for which
P(x,y) is defined, the number of vertices z for which P(y, z) is defined but yz is not an edge in D(x)
is at most ”% < en, by (3). Since P(y, z) is defined for at least (1 — 2¢)n vertices z, this implies that
every vertex in X (y) has out-degree at least (1 — 3¢)n. It follows that the number of edges in D(z)
is at least (1 —2¢e)n-(1—3e)n > (1 —5e)n?, and thus there are at least (1 — 10e)n vertices in G' with

in-degree at least 7 in D(x).

The previous paragraph implies that the number of pairs (x,y) with z,y € V(G), such that y has
in-degree at least 2 in D(z), is at least (1 — 10e)n®. Recall that the number of pairs (z,y) with
z,y € V(G), such that Q(y,r) is defined, is at least (1 — 2¢)n?. It follows that there are at least
(1—12¢)n? pairs (z,y) such that y has in-degree at least % in D(z) and Q(y,z) is defined. We claim
that every such pair yields a o-path in G that passes through = and y.



To see this, fix a pair (z,y) as in the previous paragraph. Write S = co(Q(y,x)) \ (co(x) U co(y)).
Then |S| < r¢, and S is disjoint of F(y), by choice of Q(y,x). Let Z be the in-neighbourhood of
y in D(x); so |Z| > 5. We claim that there is a vertex z in Z such that P(x,z) and P(z,y) both
avoid S. To see this, first note that, by (3), there are at most ’"l% < en vertices z in Z such that
P(x,z) intersects S. Similarly, as S is disjoint of F'(y) and by choice of F(y), there are at most
”% < en vertices z in Z such that P(z,y) meets S. It follows that there are at least |Z| —2en > %
vertices z € Z such that co(P(z,y)) and co(P(y, z)) are disjoint of S. Fix such z. The concatenation
P(z,2)P(z,y)Q(y, z) is a o-cycle in G (of order at most 3¢). O

Finally, we prove our main result, Theorem 1. It follows easily from the results above.

Proof of Theorem 1. Let H be an r-graph on N vertices which does not contain a tight cycle. By
considering a random partition of V() into r parts, we can find an r-partite subgraph H’ of H with
at least TT—,[ -e(H) edges.

Write e(H') = AN n = e(H'), A = @

sponds to H'. Then dens(G) = o = Trd]]\xrjll =d (see (1)). By Lemma 2, there is a subgraph G’ of
d

, Z)—expanderuBy Theorem 6, we find that
on m ver+\Con
d 40007 (logm)?

8 6 4 5

and € = 2—10. Consider the r-line-graph G that corre-

G which is an r-line-graph and a (A

Indeed, otherwise Theorem 6 yields a o-cycle in G’ (of length at most 7 - %@‘S 120073 (log n)?),
which corresponds to a tight cycle in H’, contradicting the assumption on H. It follows that d <
10°r°(log n)® < 10%71%(log N)® (using n < N"), implying that

<

r 109 r+10
' . G(H/) < Ti

e(H) < < - N""!(log N)* = O(N""*(log N)*),

r!

i

as required. O

5 Conclusion

We proved that the maximum possible number of edges in an n-vertex r-graph with no tight cycles
is at most O(n"~!(logn)®), thus pinning down this extremal number up to a polylogarithmic factor.
Specifically, we showed that every r-line-graph G which is a (A, d)-expander, with d sufficiently large,
contains a o-cycle. In fact, our proof implies that there is a o-cycle between almost every two vertices
in G. However, it is not clear if the same should hold for every two vertices in G whose coordinate
sets are disjoint. Even the following, slightly weaker question, remains open: in an r-line-graph which

is a dense expander, can every two vertices which do not share coordinates be joined by a o-path?

It is natural to consider a similar question to the one discussed in this paper, where instead of

forbidding all tight cycles, we forbid a tight cycle of given length ¢. This was addressed for ¢ which



is linear in n by Allen, Bottcher, Cooley and Mycroft [!], and an unpublished result of Verstraéte
considered the case £ = 24 and » = 3. When ¢ is not divisible by r, there exist n-vertex r-graphs with
Q(n") edges and no tight cycles of length ¢; indeed, any dense r-partite r-graph would do. Conlon
(see [10]) asked the following question for fixed ¢ which is divisible by r.

Question 7 (Conlon). Given r > 3, is there ¢ = ¢(r) such that whenever £ > r and { is divisible by
r, every n-vertex r-graph with no tight cycle of length ¢ has at most O(n"~+¢/t) edges?

We note that a lot more is known about the number of edges in an r-graph with no Berge or loose

cycle of given lengths; see, e.g., [3, 4, 5, 6, 9].
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