Ascending subgraph decompositions
Shoham Letzter
University College London

DMV meeting Berlin
September 2022

Joint with Ryriakos Katsamaktsis, Alexey Pokrovskiy and Benny Sudakov

Graph decomposition problems
A decomposition of a graph G is a collection $H_{1,}$,, H_{k} of subgraphs of G sit. each edge of G is covered by exactly one graph H_{i}.

Graph decomposition problems
A decomposition of a graph G is a collection $H_{1}, \ldots H_{k}$ of subgraphs of G sit. each edge of G is covered by exactly one graph H_{i}.

* Ringel's conjecture ('63). $K_{2 n+1}$ decomposes into copies of T, for every tree T on $n+1$ vertices

Graph decomposition problems
A decomposition of a graph G is a collection $H_{1, \ldots}, H_{k}$ of subgraphs of G sit. each edge of G is covered by exactly one graph H_{i}.

* Ringel's conjecture ('63). $K_{2 n+1}$ decomposes into copies of T, for every tree T on $n+1$ vertices

Graph decomposition problems
A decomposition of a graph G is a collection $H_{1, \ldots}, H_{k}$ of subgraphs of G sit. each edge of G is covered by exactly one graph H_{i}.

* Ringel's conjecture ('63). K anti decomposes into copies of T, for every tree T on $n+1$ vertices (Proved by Montgomery-Pokrouskiy-Sudakov ' 21
* Reevash-Staden '20+ for large n).

Graph decomposition problems
A decomposition of a graph G is a collection $H_{1, \ldots}, H_{k}$ of subgraphs of G sit. each edge of G is covered by exactly one graph H_{i}.

* Ringel's conjecture ('63). K anti decomposes into copies of T, for every tree T on $n+1$ vertices (Proved by Montgomery-Pokrouskiy-Sudakov ' $\alpha 1$

2 Reevash-Staden '20+ for large n).

R_{5}

* Oberwolfach problem (Ringel '67).

Glock-Joos-Kim-Kühn-Osthus '21, Reevash-Staden '22. Rn decomposes into copies of F, for every 2 -regular n-vx graph F and large odd n.

Graph decomposition problems

* Gallai's path decomposition conjecture (60^{\prime}). Every connected n-vertex graph can be decomposed into $\leq \frac{n+1}{2}$ paths.

Graph decomposition problems

* Gallai's path decomposition conjecture (60^{\prime}). Every connected n-vertex graph can be decomposed into $\leq \frac{n+1}{2}$ paths.
 Lovász '68: true for paths \& cycles.

Graph decomposition problems

* Gallai's path decomposition conjecture (60's). Every connected n-vertex graph can be decomposed into $\leq \frac{n+1}{2}$ paths. Lovász '68: true for paths \& cycles.

* Gyárfás's tree packing conjecture (178). Kn can be decomposed into copies of T_{1}, \ldots, T_{n-1}, for every sequence of trees s.t. $e\left(T_{i}\right)=i$.

Graph decomposition problems

* Gallai's path decomposition conjecture (60^{\prime}). Every connected n-vertex graph can be decomposed into $\leqslant \frac{n+1}{2}$ paths.
Lovász '68: true for paths \& cycles.

* Gyárfás's tree packing conjecture (178). Kn can be decomposed into copies of T_{1}, \ldots, T_{n-1}, for every sequence of trees s.t. $e\left(T_{i}\right)=i$.
Allen-Böttcher-Clemens-Hladkj-Piguet-Taraz '22t: true if $\Delta\left(T_{i}\right) \leqslant \frac{\mathrm{Cn}}{\log n}$.

Ascending subgraph decompositions
An ascending subgraph decomposition (ASD) of a graph G with $\binom{m+1}{2}$ edges is a decomposition H_{1}, \ldots, H_{m} of G st. $e\left(H_{i}\right)=i$ and H_{i} is isomorphic to a subgraph of H_{i+1}.

Ascending subgraph decompositions
An ascending subgraph decomposition (ASD) of a graph G with $\binom{m_{+1}}{2}$ edges is a decomposition H_{1}, \ldots, H_{m} of G st. $e\left(H_{i}\right)=i$ and H_{i} is isomorphic to a subgraph of H_{i+1}.

* ADDs of K_{5} :

Ascending subgraph decompositions
An ascending subgraph decomposition (ASD) of a graph G with $\binom{m_{2}+1}{2}$ edges is a decomposition H_{1}, \ldots, H_{m} of G st. $e\left(H_{i}\right)=i$ and H_{i} is isomorphic to a subgraph of H_{i+1}.

* ADDs of K_{5} :

Conjecture (Alavi-Boals-Chartrand-Erdös-Oellermann '87). Every graph G with $\binom{m+1}{2}$ edges has an ASD.

Previous results

Conjecture (Alavi-Boals-Chartrand-Erdös-Oellermann '87). Every graph G with $\binom{m+1}{2}$ edges has an ASD.

Previous results

Conjecture (Alavi-Boals-Chartrand-Erdös-Oellermann '87). Every graph G with $\binom{m+1}{2}$ edges has an ASD.

Known if: * G is a forest (ABCEO, Faudree-Gyärfás -Schelp '87).

Previous results

Conjecture (Alavi-Boals-Chartrand-Erdös-Oellermann '87). Every graph G with $\binom{m+1}{2}$ edges has an ASD.

Known if: * G is a forest (ABCEO, Faudree-Gyärfás -Schelp '87).

$$
\text { * } \Delta(G) \leq \frac{m-1}{2} \quad \text { (Fur '90) }
$$

Previous results

Conjecture (Alavi-Boals-Chartrand-Erdös-Oellermann '87). Every graph G with $\binom{m+1}{2}$ edges has an ASD.

Known if: * G is a forest (ABCEO, Faudree-Gyärfás -Schelp '87).

* $\Delta(G) \leqslant \frac{m-1}{2}$ (Fu '90)
* $\Delta(G)<(\alpha-\sqrt{2}) m$ (Faudree-Gould-Jacobson-Lesniak' '8s).

Previous results

Conjecture (Alavi-Boals-Chartrand-Erdös-Oellermann '87). Every graph G with $\binom{m+1}{2}$ edges has an ASD.

Known if: * G is a forest (ABCEO, Faudree-Gyärfás -Schelp '87).

* $\Delta(G) \leqslant \frac{m-1}{2}$ (Fur '90)
* $\Delta(G)<(\alpha-\sqrt{2}) m$ (Faudree-Gould-Jacobson-Lesniak' '88).
* Ma-Zhou-Zhou'94. Every star forest with $\binom{m+1}{2}$ edges and components of size $\geqslant m$ has a star-ASD.

Previous results
Conjecture (Alavi-Boals-Chartrand-Erdös-Oellermann '87). Every graph G with $\binom{m+1}{2}$ edges has an ASD.

Known if: * G is a forest (ABCEO, Faudree-Gyärfás -Schelp '87).

* $\Delta(G) \leqslant \frac{m-1}{2}$ (Fur '90)
* $\Delta(G)<(\alpha-\sqrt{2}) m$ (Faudree-Gould-Jacobson-Lesniak' 'ss).
* Ma-Zhou-Zhou'94. Every star forest with $\binom{m+1}{2}$ edges and components of size $\geqslant m$ has a star-ASD.
* Some results for regular, complete multipartite, almost complete graphs. $4 / 12$

Our results

Theorem (Katsamaktsis-L.-Pokrovskiy-Sudakov 22+). Every graph with $\binom{m+1}{2}$ edges, with large m, has an ASD.

Our results

Theorem (Katsamaktsis_L.-Pokrovskiy-Sudakov 22+). Every graph with $\binom{m+1}{2}$ edges, with large m, has an ASD.

Theorem (Ratsamaktsis-L. - Pokrovskiy-Sudakov 22+). Every star-forest with $\binom{m+1}{2}$ edges, whose $i^{\text {th }}$ component has size $\geqslant \min \left\{16000^{\circ}, 20 m\right\}$, has an ASD into stars.

Proof plan
We will prove an approximate result:
Suppose: $e(G)=(1+\varepsilon)\binom{m+1}{2}$ and $\Delta(G) \leqslant c m$. Then G has a subgraph with $\binom{m+1}{2}$ edges which has an ASD.

Proof plan
We will prove an approximate result:
Suppose: $e(G)=(1+\varepsilon)\binom{m+1}{2}$ and $\Delta(G) \leqslant c m$. Then G has a subgraph with $\binom{m+1}{2}$ edges which has an ASD.

Plan: I) Almost decompose G into three families of isomorphic graphs.
I) Combine them to almost decompose G into $\frac{m}{2}$ isomorphic graphs.

Proof plan
We will prove an approximate result:
Suppose: $e(G)=(1+\varepsilon)\binom{m+1}{2}$ and $\Delta(G) \leqslant c m$. Then G has a subgraph with $\binom{m+1}{2}$ edges which has an ASD.

Plan: I) Almost decompose G into three families of isomorphic graphs.
I) Combine them to almost decompose G into $\frac{m}{2}$ isomorphic graphs.

Proof plan
We will prove an approximate result:
Suppose: $e(G)=(1+\varepsilon)\binom{m+1}{2}$ and $\Delta(G) \leqslant c m$. Then G has a subgraph with $\binom{m+1}{2}$ edges which has an ASD.

Plan: I) Almost decompose G into three families of isomorphic graphs.

Proof plan
We will prove an approximate result:
Suppose: $e(G)=(1+\varepsilon)\binom{m+1}{2}$ and $\Delta(G) \leqslant c m$. Then G has a subgraph with $\binom{m+1}{2}$ edges which has an ASD.

Plan: I) Almost decompose G into three families of isomorphic graphs.
I) Combine them to almost decompose G into $\frac{m}{2}$ isomorphic graphs. III) Obtain an ASD.

Define: $S=\left\{\right.$ vertices with $\left.\operatorname{deg}<\frac{m}{10}\right\}, L=V(G)-S$.

Step I: almost decomposing $G[L]$

Step I: almost decomposing $G[L]$

* Find $O(m)$ sets of size $O(m)$, sit. each pair of vertices is in exactly one set. (a projective plane).

Step I: almost decomposing $G[L]$

* Find $O(m)$ sets of size $O(\mathrm{~m})$, sit. each pair of vertices is in exactly one set. (a projective plane).
* Almost decompose edges in each set into $K_{i, t}$'s (t large constant). .

Step I: almost decomposing G[L]

* Find $O(m)$ sets of size $O(m)$, sit. each pair of vertices is in exactly one set. (a projective plane).
* Almost decompose edges in each set into $K_{t, t}$'s (t large constant). 需 \Rightarrow every vertex is in $\leqslant \frac{\mathrm{cm}}{t} R_{t, t}$'s, any two are in $O(\sqrt{\mathrm{~m}}) R_{t, t}$'s.

Step I: almost decomposing $G[L]$

* Find $O(m)$ sets of size $O(\mathrm{~m})$, st. each pair of vertices is in exactly one set. (a projective plane).
* Almost decompose edges in each set into $K_{t, t}$'s (t large constant). 霊 \Rightarrow every vertex is in $\leqslant \frac{\mathrm{cm}}{t} R_{t, t}$'s, any two are in $O(\sqrt{\mathrm{~m}}) \mathrm{K}_{t, t}$'s.
* Use Pippenger-Spencer ' 89 (about chromatic index of hypergraphs) to almost decompose $G[L]$ into $\frac{2 \mathrm{~cm}}{t} K_{t, t}$-forests.

Step I: almost decomposing $G[L]$

* Find $O(m)$ sets of size $O(\mathrm{~m})$, st. each pair of vertices is in exactly one set. (a projective plane).
* Almost decompose edges in each set into $K_{i, t}$'s (t large constant). 再 \Rightarrow every vertex is in $\leqslant \frac{\mathrm{cm}}{t} R_{t, t}$'s, any two are in $O(\sqrt{\mathrm{~m}}) \mathrm{K}_{t, t}$'s.
* Use Pippenger-Spencer ' 89 (about chromatic index of hypergraphs) to almost decompose $G[L]$ into $\frac{2 \mathrm{~cm}}{t} K_{t, t}$-forests. 遍
* Rearrange to $\frac{m}{2} K_{t, t}$-forests of equal size + small remainder.

Step I: decomposing $G[S, L]$-(graph with small max deg)

$$
8 / 12
$$

Step I: decomposing $G[S, L]$-(graph with small max deg)

* Replace each $x \in L$ by $\left\lfloor\frac{d(x)}{m / 10}\right\rfloor$ vertices, each joined to $\frac{m}{10}$ different neighbours of x in S.

Step I: decomposing $G[S, L]$-(graph with small max deg)

* Replace each $x \in L$ by $\left\lfloor\frac{d(x)}{m / 10}\right\rfloor$ vertices, each joined to $\frac{m}{10}$ different neighbours of x in S.
* New graph is bipartite with max degree $\leqslant \frac{m}{10}$.

Step I: decomposing $G[S, L]$-(graph with small max deg)

* Replace each $x \in L$ by $\left\lfloor\frac{d(x)}{m / 10}\right\rfloor$ vertices, each joined to $\frac{m}{10}$ different neighbours of x in S.
* New graph is bipartite with max degree $\leq \frac{m}{10}$.
\Rightarrow (Hall) can be decomposed into $\frac{m}{10}$ matchings $M_{1,-}, M_{\frac{m}{10}}$.

$8 / 12$

Step I: decomposing $G[S, L]$-(graph with small max deg)

* Replace each $x \in L$ by $\left\lfloor\frac{d(x)}{m / 10}\right\rfloor$ vertices, each joined to $\frac{m}{10}$ different neighbours of x in S.
* New graph is bipartite with max degree $\leq \frac{m}{10}$.
\Rightarrow (Hall) can be decomposed into $\frac{m}{10}$ matchings $\mu_{1,-}, \mu_{\frac{m}{10}}$.
* Each copy of x is in an edge of each M_{i}.

Step I: decomposing $G[S, L]$-(graph with small max deg)

* Replace each $x \in L$ by $\left\lfloor\frac{d(x)}{m / 10}\right\rfloor$ vertices, each joined to $\frac{m}{10}$ different neighbours of x in S.
* New graph is bipartite with max degree $\leq \frac{m}{10}$.
\Rightarrow (Hall) can be decomposed into $\frac{m}{10}$ matchings $M_{1,-}, M_{\frac{m}{10}}$.
* Each copy of x is in an edge of each M_{i}.
$\Rightarrow M_{i}$ corresponds to a star forest, where x has degree $\left\lfloor\frac{d(x)}{m / 10}\right\rfloor \leqslant 10 \mathrm{C}$.

Step I: decomposing $G[S, L]$-(graph with small max deg)

* Replace each $x \in L$ by $\left\lfloor\frac{d(x)}{m / 10}\right\rfloor$ vertices, each joined to $\frac{m}{10}$ different neighbours of x in S.
* New graph is bipartite with max degree $\leqslant \frac{m}{10}$.
\Rightarrow (Hall) can be decomposed into $\frac{m}{10}$ matchings $\mu_{1,-}, \mu_{\frac{m}{10}}$.
* Each copy of x is in an edge of each M_{i}.
$\Rightarrow M_{i}$ corresponds to a star forest, where x has degree $\left\lfloor\frac{d(x)}{m / 10}\right\rfloor \leqslant 10 \mathrm{C}$.
* There are $<\frac{m}{10}$ uncovered edges at x.

$8 / 12$

Step I: decomposing uncovered edges in $G[S] \cup G[S, L]$
$9 / 12$

Step I: decomposing uncovered edges in $G[S] \cup G[S, L]$
The uncovered edges in $G[S] \cup G[S, L]$ span a graph with max degree $<\frac{m}{10}$.

Step I: decomposing uncovered edges in $G[S] \cup G[S, L]$
The uncovered edges in $G[S] \cup G[S, L]$ span a graph with max degree $<\frac{m}{10}$.

* \Rightarrow (Vizing) they can be decomposed into $\frac{m}{10}$ matchings $M_{1}, \ldots, M_{\frac{m}{10}}$.

Step I: decomposing uncovered edges in $G[S] \cup G[S, L]$
The uncovered edges in $G[S] \cup G[S, L]$ span a graph with max degree $<\frac{m}{10}$.

* \Rightarrow (Vizing) they can be decomposed into $\frac{\mathrm{m}}{10}$ matchings $M_{1},, M_{\frac{\mathrm{m}}{}}$.
* May assume: the M_{i} 's have the same size (up to ± 1).

Step I: decomposing uncovered edges in $G[S] \cup G[S, L]$
The uncovered edges in $G[S] \cup G[S, L]$ span a graph with max degree $<\frac{m}{10}$.

* \Rightarrow (Vizing) they can be decomposed into $\frac{m}{10}$ matching $M_{1}, \ldots, M_{\frac{m}{10}}$.
* May assume: the M_{i} 's have the same size (up to ± 1).

Step I: decomposing uncovered edges in $G[S] \cup G[S, L]$
The uncovered edges in $G[S] \cup G[S, L]$ span a graph with max degree $<\frac{m}{10}$.

* \Rightarrow (Vizing) they can be decomposed into $\frac{\mathrm{m}}{10}$ matchings $M_{1},, M_{\frac{\mathrm{m}}{}}$.
* May assume: the M_{i} 's have the same size (up to ± 1).

Step II: almost decomposing G into $\frac{m}{2}$ isomorphic graphs
We almost decomposed G into:

* $\frac{m}{2} K_{t, t}$-forests of same size $K F_{1}, \ldots, K F_{\frac{m}{2}}$,
* $\frac{m}{10}$ identical star forests (with components of size $\leqslant 10 C$) $S F_{1}, \ldots, S F_{101}$,
* $\frac{m}{10}$ matchings of same size $M_{1}, \ldots, M_{\frac{m}{10}}$.

Step II: almost decomposing G into $\frac{m}{2}$ isomorphic graphs
We almost decomposed G into:

* $\frac{m}{2} K_{t, t}$-forests of same size $K F_{1}, \ldots, K F_{\frac{m}{2}}$,
* $\frac{m}{10}$ identical star forests (with components of size $\leqslant 10 C$) $S F_{1}, \ldots, S F_{101}$,
* $\frac{m}{10}$ matchings of same size $M_{1}, \ldots, M_{\frac{m}{10}}$.
* Almost decompose each $S F_{i} \cup M_{i}$ into 5 star forests $S F_{i 1}, \ldots, S F_{i, s}$ sit. the $S F_{i j}$ are isomorphic.

Step II: almost decomposing G into $\frac{m}{2}$ isomorphic graphs
We almost decomposed G into:

* $\frac{m}{2} K_{t, t}$-forests of same size $K F_{1}, \ldots, K F_{\frac{m}{2}}$,
* $\frac{m}{10}$ identical star forests (with components of size $\leqslant 10 C$) $S F_{1}, \ldots, S F_{101}$,
* $\frac{m}{10}$ matchings of same size $M_{1}, \ldots, M_{\frac{m}{10}}$.
* Almost decompose each $S F_{i} \cup M_{i}$ into 5 star forests $S F_{i 1,}, S F_{i, 5}$ sit. the $S F_{i j}$ are isomorphic.
* Each SF $F_{i, j} \cup K F_{\text {sit }}$ contains a copy of H, where $e(H)=m+1$

$$
10 / 12
$$

Step II: almost decomposing G into $\frac{m}{2}$ isomorphic graphs
We almost decomposed G into:

* $\frac{m}{2} K_{t, t}$-forests of same size $K F_{1}, \ldots, K F_{\frac{m}{2}}$,
* $\frac{m}{10}$ identical star forests (with components of size $\leqslant 10 C$) $S F_{1},-S F_{10}$,
* $\frac{m}{10}$ matchings of same size $M_{1}, \ldots, M_{\frac{m}{10}}$.
* Almost decompose each $S F_{i} \cup M_{i}$ into 5 star forests $S F_{i 1}, \ldots, S F_{i, s}$ sit. the $S F_{i j}$ are isomorphic.
* Each SFiijuKF si+j contains a copy of H, where $e(H)=m+1$ and

Step III: getting an ASD
$\|\wedge \wedge \wedge\| \wedge \wedge \wedge$
$\|\wedge \wedge \wedge\|$
$\|\wedge \wedge \wedge\|$ $\|\wedge \wedge \wedge\| \wedge \wedge \wedge$ $\|\wedge \wedge \wedge\|$ $\frac{m}{2}$ copies of H

$11 / 12$

Step III：getting an ASD
${ }_{H_{3} \| \wedge \wedge \wedge}\| \| \wedge \wedge \wedge{ }_{\text {Hen }}$ ${ }_{4}\left\|_{1}\right\| \uparrow \wedge \wedge \|$
 II イヘィ $\| \wedge \wedge \wedge$ $\|\uparrow \uparrow \wedge\|^{\|}$
$\mathrm{H}_{2}\|\uparrow \wedge \wedge\| \|_{\mathrm{H}}$ $\mathrm{m}_{2}\|\wedge \wedge \wedge\|$

Open problems

$$
12 / 12
$$

Open problems

Theorem. Every graph with $\binom{m+1}{2}$ edges, with large m, has an ASD.

Open problems
Theorem. Every graph with $\binom{m+1}{2}$ edges, with large m, has an ASD.
Question. Is there always an ASD into star forests?

Open problems
Theorem. Every graph with $\binom{m+1}{2}$ edges, with large m, has an ASD.
Question. Is there always an ASD into star forests?

Theorem. Every star-forest with $\binom{m+1}{2}$ edges, whose $i^{\text {th }}$ component has size $\geqslant \min \{1600 i, 20 \mathrm{~m}\}$, has an ASD into stars.

Open problems
Theorem. Every graph with $\binom{m+1}{2}$ edges, with large m, has an ASD.
Question. Is there always an ASD into star forests?

Theorem. Every star-forest with $\binom{m+1}{2}$ edges, whose $i^{\text {th }}$ component has size $\geqslant \min \{1600 i, 20 m\}$, has an ASD into stars.

Question. Which star forests with $\left(\begin{array}{c}m_{2}+1\end{array}\right)$ edges have an ASD?

Open problems
Theorem. Every graph with $\binom{m+1}{2}$ edges, with large m, has an ASD.
Question. Is there always an ASD into star forests?

Theorem. Every star-forest with $\binom{m+1}{2}$ edges, whose $i^{\text {th }}$ component has size $\geqslant \min \{1600 i, 20 \mathrm{~m}\}$, has an ASD into stars.

Question. Which star forests with $\left(\begin{array}{c}m_{2}+1\end{array}\right)$ edges have an ASD?
Thant you for listening!

