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A decomposition of a graph G is a collection Ha,→Hk of subgraphs of G sit .

each edge of G is covered by exactly one graph Hi .

* Ringel's conjecture (
'
63) . Kane decomposes into copies ofT, for every tree T

on n-11 vertices (Proved by Montgomery-Pokrovsky- Sudakov
'21

& Reevash-Staden '
20-1 for large n) .
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* Oberwolfach problem ( Ringel

'
67) . Rs

Glock-Joos- Kim - Kiihn- Osthus '

21
,
Reevash- Staden '22 . Rn decomposes

into copies of F, for every 2-regular n-vx graphFand large odd n .
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Graph decomposition problems

* Gallai 's path decomposition conjecture (60 's) . Every connected n-vertex

graph can be decomposed into t ¥ paths .

Lora'sz '68 : true for paths & cycles .

* Gycirfas 's tree packing conjecture (17-8) . kn can be decomposed into

copies of Ta,- ,Tn-s , for every sequence of trees s.t.ec/i)--i .

Allen-Bottcher-Clemens- Hladky
'

-Piguet -Taraz '
22-1 : true if (Ti) f 18£ .
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Ascending subgraph decompositions
An ascending subgraph decomposition (ASD) of a graph G with (ME)
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An ascending subgraph decomposition (ASD) of a graph G with (ME)

edges is a decomposition Ha ,- , Hm of G s.t.ecHi)=i and Hi is
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Previous results

conjecture (Alavi -Boats-Chartrand- Erdos-Oellermann
'

87) . Every graph G
with (7+1) edges has an ASD .

Known if: ☒ G is a forest (ABCEO , Faudree -Gycirfas - Schelp ' 87) .
* O(G) 5m¥ (Fu '90)

* ☐(G) < (2-E)m (Faudree -Gould- Jacobson- Lesniak '
88) .

* Ma- Zhou-Zhou '94 . Every star forest with (7) edges and components
of size 7m has a star - ASD .

☒ Some results for regular, complete multipartite , almost complete graphs.
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Our results

Theorem ( Katsamaktsis- L . -Pokrovsky-Sadakov22-1) . Every graph with
1m¥) edges , with large m, has an ASD .

5



112

Our results

Theorem ( Katsamaktsis- L . -Pokrovsky-Sudakov 22+1 . Every graph with
1m¥) edges , with large m, has an ASD .

Theorem (Ratsamaktsis-L.-Pokrovsky- Sadakov22-1) . Every star-forest
with (7+1) edges , whose ith component has size 7 min{ 1Gooi , 20m} , has
an ASD into stars.
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Proof plan

we will prove an approximate result:

suppose : e(G)= (I +E)1M¥) and A-(G) 4cm . Then G has a subgraph with

(ME) edges which has an ASD .

Plan: 1) Almost decompose G into three families of isomorphic graphs .
I) combine them to almost decompose G into ¥ isomorphic graphs .
II) obtain an ASD .

Define : 5- {vertices with deg < Fo} , L=V(G) -S .
6
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☒ Find 01m) sets ofsize 0km7 , sit. each pair of vertices is in exactly one set.
(a projective plane) .

* Almost decompose edges in each set into Rue 's (t large constant) .

⇒ every vertex is in f
'¥ Rat 's , any

two are in 0Crm) Rt.t 's .

* Use Pippenger-Spencer
'

89 (about chromatic index of hypergraphs)
to almost decompose GK] into £ ¥M Rt.t- forests .

☒ Rearrange to 7- Rat -forests ofequal size + small remainder .
7-
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☒ Replace each ✗c-L by 1¥51 vertices , each joined to Fo different

neighbours of✗ in S .

☒ New graph is bipartite with Max degrees Fo .
⇒ (Hall) can be decomposed into Fo matchings Ms , - ,Mng .

* Each copy of✗ is in an edge of each Mi . . a
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step-tidecomposingGG.it/graphwithsma1lmaxde#
* Replace each ✗c-L by 1m¥'t vertices , each joined to Fo different

neighbours of✗ in S .

☒ New graph is bipartite with Max degrees Fo .
⇒ (Hall) can be decomposed into Fo matchings Ms , - ,Mng .

* Each copy of✗ is in an edge of each Mi . a a

⇒ Mi corresponds to a star forest ,
"

: ✗
"

a a a ✗

a a

where ✗ has degree 1-dm¥ot £ 10C .

. . . ay
• a Y a

a °' a

* There are < Fo uncovered edges at × . . .
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Step I : decomposing uncovered edges in GCS] uGO.LT

The uncovered edges in Gls]UGG ,☐ span a graph with Max degree < Fo .

* ⇒ (Vizing) they can be decomposed into Fo matchings Ma ,- , Mayo .

* May assume : the Mi 's have the same size (up to ±1) .

7 s g g f f f
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Step -1 : decomposing uncovered edges in GCSJUGG.LT

The uncovered edges inGISJUGCS.is/sanagraphwithmaxdegreesFo .

* ⇒ (Vizing) they can be decomposed into # matchings Ma ,- ,MmTo '

* May assume : the Mi 's have the same size (upto -1-1) .

E s g g 7 i t g g g g f is

, , , , , , ,

⇒
, , , , , , ,

g f f g f 4
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Step It : almost decomposing G into ¥ isomorphic graphs
we almost decomposed G into :

☒ MI Rat- forests of same size Rfs , - , KFE ,
* Fo identical star forests (with components of size £10c) SE , - ,SF% ,
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Step It : almost decomposing G into ¥ isomorphic graphs
we almost decomposed G into :

☒ MI Rat- forests of same size Rfs , - , KFE ,
* Fo identical star forests (with components of size £10c) SE , - , SF% ,
* Fo matchings of same size Ms ,- ,M Fo .

* Almost decompose each SFiuMi into 5 star forests stir , -, SF;s sit .
the Stig are isomorphic .

* Each ST-i.jo KFsi+j contains a copy of H , where e(H)=m-11 and

H = o

F-1=-1%-10
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step II : getting an ASD

copies of "

:
:
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step II : getting an ASD

HE HE -11

Hugs Hmz-12

¥

Hz Hm-1

He Hm
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