Ascending subgraph decompositions

Shoham Letzter

University College London

DMV meeting Berlin

September 2022

Joint with Kyriakos Katsamaktsis, Alexey Pokrovskiy and Benny Sudakov

A <u>decomposition</u> of a graph G is a collection H_{1, \dots, H_k} of subgraphs of G s.t. each edge of G is covered by exactly one graph H_i .

A <u>decomposition</u> of a graph G is a collection H_{1}, \ldots, H_{k} of subgraphs of G s.t. each edge of G is covered by exactly one graph H_{i} .

* <u>Ringel's conjecture ('63)</u>. Kant decomposes into copies of T, for every tree T on n+1 vertices

A <u>decomposition</u> of a graph G is a collection H_{1}, \ldots, H_{k} of subgraphs of G s.t. each edge of G is covered by exactly one graph H_{i} .

* <u>Ringel's conjecture ('63)</u>. Kant decomposes into copies of T, for every tree T on n+1 vertices

A <u>decomposition</u> of a graph G is a collection H_{1}, \ldots, H_{k} of subgraphs of G s.t. each edge of G is covered by exactly one graph H_{i} .

<u>Ringel's conjecture ('63)</u>. Kan+1 decomposes into copies of T, for every tree T
 on n+1 vertices (Proved by Montgomery-Pokrovskiy-Sudakov 'd1
 <u>Reevash-Staden '20+ for large n</u>).

A <u>decomposition</u> of a graph G is a collection H_{1}, \dots, H_{k} of subgraphs of G s.t. each edge of G is covered by exactly one graph H_{i} .

* <u>Ringel's conjecture ('63)</u>. Kant decomposes into copies of T, for every tree T on n+1 vertices (Proved by Montgomery-Pokrovskiy-Sudakov '21 Reevash-Staden '20+ for large n). Oberwolfach problem (Ringel '67). * Glock-Joos-Kim-Kühn-Osthus '21, Reevash-Staden '22. Kn decomposes into copies of F, for every 2-regular n-vx graph F and large odd n. /12

* <u>Gallai's path decomposition conjecture (60's</u>). Every connected n-vertex graph can be decomposed into $\leq \frac{n+1}{2}$ paths.

* <u>Gallai's path decomposition conjecture (60's)</u>. Every connected n-vertex graph can be decomposed into $\leq \frac{n+1}{2}$ paths. <u>Lovász '68</u>: true for paths & cycles.

* <u>Gallai's path decomposition conjecture (00's)</u>. Every connected n-vertex graph can be decomposed into $\leq \frac{n+1}{2}$ paths. <u>Lovász '68</u>: true for paths & cycles.

* <u>Gyárfás's tree packing conjecture ('78)</u>. Kn can be decomposed into copies of T1,_,Tn-1, for every sequence of trees s.t. c(Ti)=i.

* <u>Gallai's path decomposition conjecture (60's)</u>. Every connected n-vertex graph can be decomposed into $\leq \frac{n+1}{2}$ paths. <u>Lovász '68</u>: true for paths & cycles.

★ Gyárfás's tree packing conjecture ('78). Kn can be decomposed into copies of T₁, _, T_{n-1}, for every sequence of trees s.t. c(T_i)=i. <u>Allen-Böltcher-Clemens-Hladký-Piguet-Taraz '22+</u>: true if ∆(T_i) ≤ Cn logn.

2/12

Ascending subgraph decompositions

An <u>ascending subgraph decomposition</u> (ASD) of a graph G with $\binom{m+1}{2}$ edges is a decomposition H_1, \ldots, H_m of G s.t. $e(H_i)=i$ and H_i is isomorphic to a subgraph of H_{i+1} .

Ascending subgraph decompositions

An <u>ascending subgraph decomposition</u> (ASD) of a graph G with $\binom{m+1}{2}$ edges is a decomposition H_1, \ldots, H_m of G s.t. $e(H_i)=i$ and H_i is isomorphic to a subgraph of H_{i+1} .

An <u>ascending subgraph decomposition</u> (ASD) of a graph G with $\binom{m+1}{2}$ edges is a decomposition H_1, \ldots, H_m of G s.t. $e(H_i) = i$ and H_i is isomorphic to a subgraph of H_{i+1} .

* ASDs of K5:

$$\frac{Conjecture (Alavi-Boals-Chartrand-Erdős-Dellermann '87)}{2}. Every graph Gwith $\binom{m+1}{2}$ edges has an ASD.$$

3/12

Known if: * G is a forest (ABCEO, Faudree-Gyárfás-Schelp '87).

Conjecture (Alavi-Boals-Chartrand-Erdős-Dellermann '87). Every graph G with
$$\binom{m+1}{2}$$
 edges has an ASD.

Known if: * G is a forest (ABCEO, Faudree-Gyárfás-Schelp '87). * $\Delta(G) \leq \frac{m-1}{2}$ (Fu '90)

Conjecture (Alavi-Boals-Chartrand-Erdős-Oellermann '87). Every graph G
with
$$\binom{m+1}{2}$$
 edges has an ASD.

Known if: * G is a forest (ABCEO, Faudree-Gyárfás-Schelp '87). * $\Delta(G) \leq \frac{m-1}{2}$ (Fu '90) * $\Delta(G) < (2-\sqrt{2})m$ (Faudree-Gould-Jacobson-Lesniak '88).

<u>Conjecture (Alavi-Boals-Chartrand-Erdős-Oellermann '87)</u>. Every graph G with $\binom{m+1}{2}$ edges has an ASD.

Known if: * G is a forest (ABCEO, Faudree-Gyárfás-Schelp '87). * $\Delta(G) \leq \frac{m-1}{2}$ (Fu '90) * $\Delta(G) < (a-\sqrt{2})m$ (Faudree-Gould-Jacobson-Lesniak '88).

* <u>Ma-Zhou-Zhou '94</u>. Every star forest with $\binom{m+1}{2}$ edges and components of size \ge m has a star-ASD.

<u>Conjecture (Alavi-Boals-Chartrand-Erdős-Oellermann '87)</u>. Every graph G with $\binom{m+1}{2}$ edges has an ASD.

Known if: * G is a forest (ABCEO, Faudree-Gyárfás-Schelp '87). * Δ(G) ≤ ^{m-1}/₂ (Fu '90) * Δ(G) < (2-√2)M (Faudree-Gould-Jacobson-Lesniak '88).

- * <u>Ma-Zhou-Zhou '94</u>. Every star forest with $\binom{m+1}{2}$ edges and components of size \ge m has a star-ASD.
- * Some results for regular, complete multipartite, almost complete graphs. 4/12

<u>Theorem (Katsamaktsis-2.-Pokrovskiy-Sudakov 22+)</u>. Every star-forest with $\binom{m+1}{2}$ edges, whose ith component has size \geq minfl600i, 20m², has an ASD into stars.

We will prove an approximate result:

Suppose: $e(G) = (1+\varepsilon)\binom{m+1}{2}$ and $\Delta(G) \leq Cm$. Then G has a subgraph with $\binom{m+1}{2}$ eolges which has an ASD.

We will prove an approximate result:

Suppose: $e(G) = (1+\epsilon)\binom{m+1}{2}$ and $\Delta(G) \leq cm$. Then G has a subgraph with $\binom{m+1}{2}$ edges which has an ASD.

<u>Plan</u>: I) Almost decompose G into three families of isomorphic graphs. I) Combine them to almost decompose G into $\frac{M}{2}$ isomorphic graphs.

We will prove an approximate result:

Suppose: $e(G) = (1+\epsilon)\binom{m+1}{2}$ and $\Delta(G) \leq cm$. Then G has a subgraph with $\binom{m+1}{2}$ edges which has an ASD.

<u>Plan</u>: I) Almost decompose G into three families of isomorphic graphs. I) Combine them to almost decompose G into $\frac{M}{2}$ isomorphic graphs.

We will prove an approximate result:

Suppose: $e(G) = (1+\epsilon)\binom{m+1}{2}$ and $\Delta(G) \leq cm$. Then G has a subgraph with $\binom{m+1}{2}$ edges which has an ASD.

<u>Plan</u>: I) Almost decompose G into three families of isomorphic graphs.

We will prove an approximate result:

Suppose: $e(G) = (1+\varepsilon)\binom{m+1}{2}$ and $\Delta(G) \leq cm$. Then G has a subgraph with $\binom{m+1}{2}$ edges which has an ASD.

<u>Plan</u>: I) Almost decompose G into three families of isomorphic graphs.
 I) Combine them to almost decompose G into ^M/₂ isomorphic graphs.
 II) Obtain an ASD.

6/12

Define: $S = \{ \text{vertices with deg} < \frac{m}{10} \}, L = V(G) - S.$

* Find O(m) sets of size O(m), s.t. each pair of vertices is in exactly one set.
 (a projective plane).

- * Find O(m) sets of size O(m), s.t. each pair of vertices is in exactly one set.
 (a projective plane).
- * Almost decompose edges in each set into $K_{t,t}$'s (t large constant). $\overline{\mathbb{M}}$

- * Find O(m) sets of size O(m), s.t. each pair of vertices is in exactly one set.
 (a projective plane).
- * Almost decompose edges in each set into $K_{t,t}$'s (t large constant). \implies every vertex is in $\leq \frac{CM}{T} K_{t,t}$'s, any two are in $O(Vm) K_{t,t}$'s.

- * Find O(m) sets of size O(m), s.t. each pair of vertices is in exactly one set.
 (a projective plane).
- * Almost decompose edges in each set into $K_{t,t}$'s (t large constant). \implies every vertex is in $\leq \stackrel{\text{cm}}{=} K_{t,t}$'s, any two are in O(vm) $K_{t,t}$'s.
- * Use Pippenger-Spencer '89 (about chromatic index of hypergraphs) to almost decompose G[L] into $\leq \frac{2CM}{L}$ $K_{L,L}$ -forests. M = M = M

<u>Step I: almost decomposing G[1]</u>

- * Find O(m) sets of size O(m), s.t. each pair of vertices is in exactly one set.
 (a projective plane).
- * Almost decompose edges in each set into $K_{t,t}$'s (t large constant). \implies every vertex is in $\leq \stackrel{\text{cm}}{=} K_{t,t}$'s, any two are in O(vm) $K_{t,t}$'s.
- * Use Pippenger-Spencer '89 (about chromatic index of hypergraphs) to almost decompose G[L] into $\leq \frac{2CM}{L}$ $K_{L,L}$ -forests. M = M

* Rearrange to $\frac{m}{2}$ K_{tit}-forests of equal size + small remainder.

8/12

Step I: decomposing G[S,L] - (graph with small max deg)* Replace each xeL by $\lfloor \frac{d(x)}{m/10} \rfloor$ vertices, each joined to $\frac{m}{10}$ different neighbours of x in S.

Step I: decomposing G[S,L]-(graph with small max deg)

- * Replace each xeL by $\lfloor \frac{d(x)}{m/10} \rfloor$ vertices, each joined to $\frac{m}{10}$ different neighbours of x in S.
- * New graph is bipartite with max degree $\leq \frac{m}{10}$.

Step I: decomposing G[S,L]-(graph with small max deg)

- * Replace each xeL by $\lfloor \frac{d(x)}{m/10} \rfloor$ vertices, each joined to $\frac{m}{10}$ different neighbours of x in S.
- * New graph is bipartite with max degree $\leq \frac{m}{10}$. \Rightarrow (Hall) can be decomposed into $\frac{m}{10}$ matchings $M_{1,-}, M_{\frac{m}{10}}$.

Step I: decomposing G[S,L]-(graph with small max deg)

- * Replace each $x \in L$ by $\lfloor \frac{d(x)}{m/10} \rfloor$ vertices, each joined to $\frac{m}{10}$ different neighbours of x in S.
- * New graph is bipartite with max degree $\leq \frac{m}{10}$. \Rightarrow (Hall) can be decomposed into $\frac{m}{10}$ matchings $M_{\pm}, -, M_{\frac{m}{10}}$.
- * Each copy of x is in an edge of each Mi.

Step I: decomposing G[S,L]-(graph with small max deg)

- * Replace each $x \in L$ by $\lfloor \frac{d(x)}{m/10} \rfloor$ vertices, each joined to $\frac{m}{10}$ different neighbours of x in S.
- * New graph is bipartite with max degree $\leq \frac{m}{10}$. \Rightarrow (Hall) can be decomposed into $\frac{m}{10}$ matchings $M_{\pm}, ..., M_{\frac{m}{10}}$.
- * Each copy of x is in an edge of each Mi. \implies Mi corresponds to a star forest, where x has degree $\lfloor \frac{d(x)}{m/10} \rfloor \leq 10C$.

Step I: decomposing G[S,L]-(graph with small max deg)

- * Replace each xeL by $\lfloor \frac{d(x)}{m/10} \rfloor$ vertices, each joined to $\frac{m}{10}$ different neighbours of x in S.
- * New graph is bipartite with max degree $\leq \frac{m}{10}$. \Rightarrow (Hall) can be decomposed into $\frac{m}{10}$ matchings $\mathcal{M}_{\perp}, \dots, \mathcal{M}_{\frac{m}{10}}$.
- * Each copy of x is in an edge of each Mi. \implies Mi corresponds to a star forest, where x has degree $\lfloor \frac{d(x)}{m/10} \rfloor \leq 10C$.
- * There are $< \frac{m}{10}$ uncovered edges at x.

The uncovered edges in $G[S] \cup G[S, L]$ span a graph with max degree $< \frac{m}{10}$.

The uncovered edges in $G[S] \cup G[S,L]$ span a graph with max degree $< \frac{M}{10}$.

* \Rightarrow (Vizing) they can be decomposed into $\frac{m}{10}$ matchings $M_{1}, \dots, M_{\frac{m}{10}}$.

The uncovered edges in $G[S] \cup G[S,L]$ span a graph with max degree $< \frac{M}{10}$.

* \Rightarrow (Vizing) they can be decomposed into $\frac{m}{10}$ matchings $M_{1}, \dots, M_{\frac{m}{10}}$.

* May assume: the Mi's have the same size (up to ±1).

The uncovered edges in $G[S] \cup G[S,L]$ span a graph with max degree $< \frac{M}{10}$.

* \Rightarrow (Vizing) they can be decomposed into $\frac{m}{10}$ matchings $M_{1}, \dots, M_{\frac{m}{10}}$.

* May assume: the M_i 's have the same size (up to ± 1).

The uncovered edges in $G[S] \cup G[S, L]$ span a graph with max degree < $\frac{M}{10}$.

* \Rightarrow (Vizing) they can be decomposed into $\frac{m}{10}$ matchings $M_{1}, \dots, M_{\frac{m}{10}}$.

* May assume: the M_i 's have the same size (up to ± 1).

- We almost decomposed G into:
- * $\frac{m}{2}$ K_{t.t}-forests of same size KF₁, __, KF₂,
- * $\frac{m}{10}$ identical star forests (with components of size $\leq 10c$) SF1, _, SF $\frac{m}{10}$,
- * no matchings of same size M1, __, Mno.

- We almost decomposed G into:
- * $\frac{m}{2}$ K_{t.t}-forests of same size KF₁, __, KF₂,
- * $\frac{m}{10}$ identical star forests (with components of size $\leq 10c$) SF₁, SF₂,
- * To matchings of same size M1, __, Mm.
- * Almost alecompose each SFiuMi into 5 star forests SFit, _, SFis s.t. the SFij are isomorphic.

- We almost decomposed G into:
- * $\frac{m}{2}$ K_{t.t}-forests of same size KF₁, __, KF₂,
- * To identical star forests (with components of size \leq 10c) SF₁, SF₇₇₆,
- * To matchings of same size M1, __, Mm.
- * Almost alecompose each SFiuMi into 5 star forests SFit, _, SFis s.t. the SFij are isomorphic.
- * Each SFi.ju KFsi+j Contains a copy of H, where e(H)=m+1

- We almost decomposed G into:
- * $\frac{m}{2}$ K_{t.t}-forests of same size KF₁, __, KF₂,
- * $\frac{m}{10}$ identical star forests (with components of size $\leq 10c$) SF₁, SF₂,
- * To matchings of same size M1, __, Mm.
- * Almost alecompose each SFiuMi into 5 star forests SFit, _, SFis s.t. the SFij are isomorphic.

11/12

<u>Open problems</u>

<u>Open problems</u>

<u>Question</u>. Is there always an ASD into star forests?

<u>Open problems</u>

Question. Is there always an ASD into star forests?

<u>Theorem</u>. Every star-forest with $\binom{m+1}{2}$ edges, whose ith component has size > min{1600i, 20m}, has an ASD into stars.

<u>Open problems</u>

Question. Is there always an ASD into star forests?

<u>Theorem</u>. Every star-forest with $\binom{m+1}{2}$ edges, whose ith component has size > min{1600i, 20m}, has an ASD into stars.

Question. Which star forests with $\binom{m+1}{2}$ edges have an ASD?

12/12

<u>Open problems</u>

Question. Is there always an ASD into star forests?

<u>Theorem</u>. Every star-forest with $\binom{m+1}{2}$ edges, whose ith component has size > min{1600i, 20m}, has an ASD into stars.

Question. Which star forests with $\binom{m+1}{2}$ edges have an ASD?