Digraph immersions
Shoham Letzter
UCL

Joint work with António Girão

Clique subdivisions
Bollobas-Thomason/Komlós-Szemerédi '96:
$\exists c>0$ s.t. if G has average $\operatorname{deg} \geqslant c t^{2}$ then G has a subdivision of K_{t}.

$$
\begin{aligned}
& \text { Tight (up to a constant factor): } G=k_{k, k} \text { 交 } \leqslant\left\{\begin{aligned}
&\left(\frac{t / 2}{2}\right) \sim \frac{t^{2}}{8} \\
& \text { Best known bounds on least } c: \geqslant \frac{9}{64} \text { (Zuczak) } \\
& \leqslant \frac{10}{23} \text { (Kühn-Osthus 'OG) }
\end{aligned}\right.
\end{aligned}
$$

What about digraphs?
\vec{R}_{t} complete digraph on t vertices.

(1) Is there $f(t)$ s.t.: if G has min in z out-deg $\geqslant f(t)$ then G contains a subdivision of $\overrightarrow{R_{t}}$?
min out-deg $21 \rightarrow$ subolivision

- Yes for $t=2$.

$$
f(2)=1
$$

- No for $t \geqslant 3$
(Mader '85 using construction of Thomassen 85' DeVos-McDonald-Mohar-Scheide '12).
$T T_{t}$ transitive tournament on t vertices.

(2) Is there $f(t)$ sit.: if G has \min in \& out $\operatorname{deg} \geqslant f(t)$ then G contains a subdivision of T_{t} ?

This is (almost) a conjecture of Mader '96.

Immersions
G immerses H if Jinjection $f: V(H) \rightarrow V(G)$ and edge-disjoint paths Puv, for uv $\in E(H)$, s.t. Purr starts at $f(u)$ and ends at $f(v)$.

DeVos-Dvořák_Fox-McDonald-Mohar_Scheide '14:
If G has average $\operatorname{deg} \geqslant 200 t$ then G immerses K_{t-1}. $\begin{aligned} & K_{t-1} \text { does } \\ & \text { not immense } K_{t}\end{aligned}$
Dvơ̌ák-Yepremyan '17: $\min \operatorname{deg} \geqslant 11 t+7 \Rightarrow$ immersion of k_{t}.
Hong_Wang-Yang '20: average deg $\geqslant(1+\varepsilon) t \& H$-free for H bipartite \Rightarrow immersion of Kt_{t}.

Conjecture (Lescure-Meyniel '89): G immerses $K_{x(G)}$.

Immersion in digraphs
(3) Is there $f(t)$ sit.: if G has min in a out-deg $\geqslant f(t)$ then G immerses \vec{R}_{t} ?

No for $t \geqslant 3$ (DMMS '12).

Lochet '19: $\exists f(t)$ s.t.: if G has min out-deg $\geqslant f(t)$ then it immerses $1 T_{t}$.
G is Eulerian if $d^{+}(u)=d^{-}(u)$ for every vertex u.

DeVos-McDonald - Mohar-Scheide '12: If G is Eulerian with min out-deg $\geqslant t^{2}$ then it immerses \vec{R}_{t}.

Thm (Girão-f. $22+$). ヨc>0 s.t. if G is Eulerian with min out-deg at least $c t$ then G immerses \vec{R}_{t}.

Overview of the proof.
I) Let c be a large constant.

Lemma. D Eulerian with min out-deg $\geqslant c t \Rightarrow D$ immerses a digraph G with $\theta(t)$ vertices and $\Omega\left(t^{2}\right)$ edges.

We use 'sparse expanders'.

* Introduced by Romlós-Szemerédi '9G.
* Can be found in graphs with average deg at least a large constant. $G d(G) \geqslant 100$
* many recent applications:
- odd cycle problem (Liu-Montgomery $20+$)
- clique subdivisions in Cu -free graphs (Liu-Montgomery '17)
- Romlós conjecture on Hamiltonian sets (Kim-Liu-Sharifzadeh-Staden '17)

Our proof is a rare use of expanders in digraphs (Eulerian + immersion help).
II) Observation: If D is Eulerian and immerses G then it immerses an Eulerian multidigraph $G^{\prime} \supseteq G$ with $V\left(G^{\prime}\right)=V(G)$.

III) Lemma. If G^{\prime} is an Eulerian multidigraph on n vertices whose underlying graph (obtained by removing directions and multiplicities) has min deg $\geqslant \alpha n$, then it immerses \vec{R}_{s}, where $s=c^{\prime} \alpha^{-4} n$.
I) + II) + III \Rightarrow theorem.

D Eubrian, $\delta^{\dagger} \geqslant c t$.
I) $D \leadsto G$, G has $\theta(t)$ vertices, $\geqslant c^{\prime} t^{2}$ edges.
II) $D \sim$ immersion $\rightarrow G^{\prime}, G^{\prime}$ Eulerian, multidigraph $G^{\prime} \supseteq G, V\left(G^{\prime}\right)=V(G)$
III) $G^{\prime} \leadsto \vec{k}_{t}$. $\quad \Rightarrow D \leadsto \vec{k}_{l}$.

More about III
We will find a collection C of $\Omega\left(n^{2}\right)$ edge-disjoint dicycles in G^{\prime} each containing an edge which is simple in $\cup_{C \in \mathcal{E}} C$.

Let H be the undirected graph formed by the purple (simple) edges.

Then H has average $\operatorname{deg} \Omega(n)$.
Thus, by DDFMMS 14: H immerses K_{t}, where $t=\Omega(n)$.

Each $P_{u v}$ Corresponds to paths $u \rightarrow v$ and $v \rightarrow u$ in \mathcal{G}^{\prime} 'that are edge-disjoint.

$\Rightarrow G^{\prime}$ immerses \vec{K}_{t}.

Open problems
(1) What is min $f(t)$ s.t. if $\delta^{+}(G) \geqslant f(t)$ then G immerses $T T_{t}$?

Lochet '19: $f(t)=O\left(t^{3}\right)$.
Maybe $f(t)=O(t)$?
(2) Mader ' 96 : Is there $g(t)$ s.t. if $\delta^{+}(G) \geqslant g(t)$ then G contains a subdivision of Ktt ? $^{\text {? }}$
(3) Conjecture (Lescure-Meyniel '89): G immerses $\mathcal{R}_{x(G)}$.

Finding C
Lemma 1. D multigraph on n vertices with min out-deg $\geqslant \alpha n$.
Then \exists dicycle with $\leqslant \frac{4}{\alpha}$ simple edges.

Apply Lemma 1 repeatedly to find E.
preprocessing of G^{\prime} that ensures that we don't, have a dipath of tenth 2 with two multiple edges.

immersion.
G immerses H if H can be obtained from G by: * delete edge /va

* or replace a path user by uaw.

Proof of Lemma 1

Lemma 2. D digraph, $\omega: V(D) \rightarrow \mathbb{R}^{+}$. If $\omega\left(N^{+}(\omega) \geqslant \alpha \cdot \omega(V(D))\right.$ then \exists dicycle of length $\leqslant \frac{4}{\alpha}$.
$D^{\prime} \subseteq D$ simple subdigraph, $E\left(D^{\prime}\right)=\{x y: x y$ is a multiple edge in $D\}$.

$$
X=\left\{x \in V\left(D^{\prime}\right): d_{D^{\prime}}^{+}(x)=0\right\} . \quad \begin{aligned}
& X=\varnothing \\
& \Rightarrow \text { cycle } \\
& \text { wi no simple }
\end{aligned}
$$

Find sets $U(x), x \in X$, as follows:

If Jedge $x \xrightarrow{D} U(x)$, then \exists dicycle in D with $\leqslant 1$ simple edge. Suppose ono such edges.

Do digraph on X with $x \rightarrow y$ iff Jedge $x \xrightarrow{D} u(y)$.
Can check: $\omega\left(\mathcal{N}_{D_{0}}^{+}(x)\right) \geqslant \alpha \omega(X) \quad \forall x \in X$, where $\omega(x)=|u(x)|$.

By Lemma 2: Jdicycle of length $\leqslant \frac{4}{\alpha}$ in D_{0}.
\Rightarrow Jdicycle in D with $\leqslant \frac{4}{\alpha}$ simple edges.

