

Joint work with António Girão

<u>Clique subdivisions</u>

Bollobas-Thomason / Komlós-Szemerédi '9G: Ec>0 s.t. if G has average deg z.ct² then G has a subdivision of Kt.

Tight (up to a constant factor):
$$G = \mathcal{R}_{\mathbf{k},\mathbf{k}} = \sum_{i=1}^{k} \sum_{j=1}^{k} \sum_{i=1}^{k} \sum_{j=1}^{k} \sum_{j=1}^$$

Best known bounds on least c:

$$\stackrel{?}{=} \frac{4}{64} \left(\text{Luczak} \right)$$

$$\leq \frac{10}{23} \left(\text{Kühn-Osthus '06} \right)$$

What about digraphs?

Rt complete digraph on t vertices.

(1) Is there f(t) s.t.: if G has min in a out-deg > f(t) then G contains a subdivision of $\overline{K_t}$? min out-deg21 \rightarrow subdivision $k^2 + c$ f(2)=1 $q K_2$. - Yes for t=2. - No for t 73 (Mader '85 using construction of Thomassen 85' DeVos-McDonald-Mohar-Scheide '12).

2) Is there f(t) s.t.: if G has min in \pounds out deg \geqslant f(t) then G contains a subdivision of TI_t ?

This is (almost) a conjecture of Mader '96.

Immersions

G immerses H if \exists injection $f: V(H) \rightarrow V(G)$ and edge-disjoint paths P_{uv} , for $uv \in E(H)$, s.t. P_{uv} starts at f(u) and ends at f(v).

DeVos-Dvořák-Fox-McDonald-Mohar-Scheide '14:
If G has average deg
$$\geq 200t$$
 then G immerses K_t .
 $K_{t-1} does$
 $t-1$
Dvořák-Yepremyan '17: min deg $\geq 11t+7 \Rightarrow$ immersion of K_t .
Hong-Wang-Yang '20: average deg $\geq (1+\epsilon)t \approx H$ -free for H bipartite
 \Rightarrow immersion of K_t .

Immersion in digraphs

3 Is there fit s.t.: if G has min in * out-deg > f(t) then G immerses R_t?

No for t>3 (DMMS '12).

 $\frac{Lochet \ '19}{immerses} : \exists f(t) s.t.: if G has min out-deg > f(t) then it immerses II_t.$ Consoirable that can take f(t) = ct.

G is Eulerian if
$$d^+(u) = d^-(u)$$
 for every vertex u .

<u>DeVos-McDonald-Mohar-Scheide '12</u>: If G is Eulerian with min out-deg $\gtrsim t^2$ then it immerses \mathcal{R}_t .

Thm (Girão-L. 22+).
$$\exists c > 0 \text{ s.t.}$$
 if G is Eulerian with min out-deg
at least ct then G immerses \mathbb{R}_{t} .

<u>Lemma</u>. D Eulerian with min out-deg \geq ct \Rightarrow D immerses a oligraph G with $\Theta(t)$ vertices and $\mathcal{R}(t^2)$ edges.

We use 'sparse expanders'.

* Can be found in graphs with average deg at least a large constant. G d(G) 2100

- * many recent applications:
 - odd cycle problem (Liu-Montgomery '20+)
 - clique subdivisions in Cy-free graphs (Ziu-Montgomery '17)

*

- Romlós conjecture on Hamiltonian sets (Rim-Liu-Sharifzadeh-Staden 17)

Our proof is a rare use of expanders in digraphs (Eulerian + immersion help).

<u>Observation</u>: If D is Eulerian and immerses G then it immerses an Eulerian multidigraph $G' \supseteq G$ with V(G') = V(G).

I

Lemma. If G' is an Eulerian multidigraph on n vertices whose
underlying graph (obtained by removing directions and
multiplicities) has min deg
$$\geq \alpha n$$
, then it immerses \overline{K}_{s}^{*} , where
 $s = c'\alpha^{-4}n$.

II

$$I) + II) + III) \implies \text{theorem}.$$

$$D \text{ Eulerian}, \delta^{\dagger} 3 \text{ ct}.$$

$$I) D \longrightarrow G, G \text{ has } \Theta(t) \text{ verticen}, 2 \text{ c't}^{2} \text{ edges}.$$

$$\lim_{i \text{ immetSion}} I) D \longrightarrow G', G' \text{ Eulerian}, \text{ multidigraph } G' \supseteq G, V(G') = V(G)$$

$$II) G' \longrightarrow K_{1}. \qquad =) D \longrightarrow K_{1}.$$

More about III

Then H has average deg R(n).

Thus, by DDFMMS '14: H immerses Kt, where t= n(n).

Each P_{uv} corresponds to paths $u \rightarrow v$ and $v \rightarrow u$ in G that are edge-disjoint.

(1) What is min f(t) s.t. if $\delta^+(G) \ge f(t)$ then G immerses 1_t ? <u>Lochet '19</u>: $f(t) = O(t^3)$. Maybe f(t) = O(t)?

(2) <u>Mader '96</u>: Is there git) s.t. if $S^+(G) \ge g(t)$ then G contains a subdivision of TI_t ?

Finaling C

Lemma 1. D multigraph on n vertices with min out-deg
$$\gg \infty n$$
.
Then Edicycle with $\leq \frac{4}{2}$ simple edges.

immersion.

G immerses H iff H can be obtained from G by: * delete edge /vx * or replace a peth uver by UW.

5+(u) 2 2n

Rtemma a. D oligraph,
$$\omega: V(D) \rightarrow \mathbb{R}^{+}$$
. If $\omega(N^{+}(u)) \geqslant \infty \cdot \omega(V(D))$
then \exists olicycle of length $\leq \frac{4}{\infty}$.

Proof of Lemma 1

 $E(D') = \{ Xy : Xy \text{ is a multiple edge in } D \}.$ $D' \subseteq D$ simple suboligraph, X=Ø $X = \{x \in V(D): d_{x}^{+}(x) = 0\}$. =) J cycle about when no simple about Find sets U(x), x eX, as follows: ((x1)

If
$$\exists edge \times \xrightarrow{D} \mathcal{U}(x)$$
, then $\exists dicycle in D$ with ≤ 1 simple edge.
Suppose $\exists no such edges$.

Do digraph on X with
$$X \rightarrow y$$
 iff $\exists edge X \xrightarrow{D} U(y)$.
Can check: $W(N_{D_0}^+(X)) \ge WW(X) \quad \forall X \in X, \text{ where } W(X) = |U(X)|.$

By Lemma a:
$$\exists$$
 dicycle of length $\leq \frac{4}{2}$ in Do.
 \Rightarrow \exists dicycle in D with $\leq \frac{4}{2}$ simple edges.

