Hypergraphs with no tight cycles

Shoham Letzter UCL

BECMC July 2021

Introduction

<u>Fact</u>. The max number of edges in a graph on n vertices with no cycles is n-1. (Maximisers are trees.) An <u>r-graph</u> (=r-uniform hypergraph) is a hypergraph whose edges consist of r vertices.

<u>Question</u>. What is the maximum possible number of edges in an r-graph on n vertices which has no cycles?

The answer depends on the definition of a cycle. We consider three notions: <u>Berge cycles</u>, <u>loose cycles</u> and <u>tight cycles</u>.

Berge cycles

A <u>Berge cycle</u> is a sequence $e_1, v_1, \dots, e_k, v_k$ where e_1, \dots, e_k are distinct edges, v_1, \dots, v_k are distinct vertices, and $v_i \in e_i \land e_{i+1}$ for $i = 1, \dots, k-1$ and $v_k \in e_k \land e_1$.

<u>Claim</u>. The maximum number of edges in an r-graph on n vertices with no Berge cycles is $\lfloor \frac{n-1}{r-1} \rfloor$.

<u>Proof of upper bound</u>. Not hard to show: no Berge cycle \Rightarrow edges can be ordered as $e_{1, -}, e_m$ s.t. $|e_i \land (e_1 \cup \cup e_{i-1})| \leq 1 \quad \forall i$.

Loose cycles

A <u>loose cycle</u> is a sequence e_1, \dots, e_k of edges s.t. consecutive pairs of edges (and e_k and e_1) have exactly one vertex in common, and non-consecutive pairs are disjoint.

<u>Iheorem (Frankl-Füredi '87)</u>. The maximum number of edges in an r-graph on n vertices with no loose cycles is $\binom{n-1}{r-1}$ (for n large). Actually, FF show that > $\binom{n-1}{r-1}$ edges \implies \exists loose triangle. (cycle of length 3) <u>Proof of lower bound</u>. Consider the r-graph with vertices [n] := [1, _, n] whose edges are all sets of r vertices containing 1.

Tight cycles.

A <u>tight cycle</u> is a sequence $v_{1,-}, v_{k}$ of distinct vertices s.t. $\{v_{i_1}, v_{i+r-1}\}$ is an edge $\forall i$ (indices are modulo k).

 $f_r(n) = max$ number of edges in an r-graph on n vertices with no tight cycles.

Observation. $f_r(n) \ge \binom{n-1}{r-1}$.

<u>Proof</u>. Consider r-graph H with V(H)=[n] and E(H)={r-sets containing 1}.

Conjecture (Sós, Verstraëte '10s).
$$f_r(n) = \binom{n-1}{r-1}$$
 for large n.

<u>Huang-Ma '19</u>. The conjecture is false (for $r \ge 3$). There exists Ce(1,2) s.t. $f_r(n) \ge C\binom{n-1}{r-1}$.

<u>B. Janzer '20</u>. Let 133. There exists Cro s.t. fr(n) > Cn^{r-1}logn log logn.

A result of Erdős ('64) implies $f_r(n) = O(n^{r-2}(n^{-1}))$.

An unpublished result of <u>Verstraëte</u> implies $f_3(n) = O(n^{3/2})$.

Sudakov-Tomon ('21). Let $r \ge 3$. Then $f_r(n) \le n^{r-1} e^{O(r \log n^r)}$. In particular, $f_r(n) = n^{r-1+o(1)}$.

<u>Theorem (L. '21+)</u>. Let r > 3. Then $f_r(n) \leq O(n^{r-1}(\log n)^5)$.

<u>Claim</u>. Let H be an r-graph on m edges. There is an r-partite subhypergraph $H' \subseteq H$ on $\ge \frac{r!}{r} \cdot m$ edges.

<u>Proof</u>. Let $[A_1, ..., A_r]$ be a partition of V(H), chosen uniformly at random, and let N' be the subhypergraph of H obtained by keeping edges e with $|e \cap A_i| = 1$ Vi. For eeH, $\mathbb{P}(eeH') = \frac{r!}{rr} \implies \mathbb{E}(e(H')) = \frac{r!}{rr} \cdot m \implies$ suitable H' exists.

<u>Aim</u>. Let H be an r-partite r-graph, with partition $\{A_1, \dots, A_r\}$, on n vertices with $> aln^{r-1}$ edges, where $d > c \cdot (logn)^5$. Then N contains a tight cycle.

Notation

We represent edges $e \in H$ as (x_1, \dots, x_r) where $x_i \in A_i$.

For edges
$$e = (x_1, ..., x_r)$$
 and $f = (y_1, ..., y_r)$, a tight path from e to f is a tight
path $(z_1, ..., z_k)$ where $z_i = x_i$ for $i \in [r]$ and $z_{k-r+i} = y_i$ for $i \in [r]$.

<u>Lemma (Sudakov-Tomon '21</u>). There is a subhypergraph g⊆H s.t. for every edge eeg and small B⊆V(g) (which is disjoint of e): for almost every edge feg there is a short tight path from e to f that avoids B.

r-partite r-graph, 3 dnr-1 edges

Proof ideas.

* Define r-line graphs, which are graphs associated with r-partite r-graphs.
* Define notions of density and expansion for r-line-graphs.

Connecting edges in expanders.

<u>Theorem (Sudakov-Tomon '21</u>). Let G be an expander. Then * Either for every alisjoint edges e, f there is a tight path from e to f, * Or there is a small dense subhypergraph.

They proceed by a density increment argument.

<u>Theorem (L. 21+)</u>. Let g be an expander. Then g contains a tight cycle.

In fact, we show that there is a tight cycle through almost every two edges.

Let G be an expander with m edges. So, for every $e \in E(G)$ and $B \subseteq V(G)$ with $|B| \leq \frac{R^2}{E}$, which is disjoint of e, for at least (1-E)m edges $f \in E(G)$: there is a tight path from e to f of length $\leq R$ that avoids B.

<u>Lemma (L.)</u>. In G as above, for every edge e there is a set $F(e) \subseteq E(G)$ with $|F(e)| \ge (1-E)m$, and paths P(e,f), for $f \in Ee$, of length $\le l$ from e to f, s.t. no vertex (except for those in e) appears in $> \frac{Em}{l}$ paths P(e,f).

Proof of lemma

- * Let $F(e) \subseteq E(G)$ be maximal s.t. Jpaths P(e,f) of length ≤ 1 from e to f, for $f \in E_e$, s.t. no vertex appears in $> \frac{\epsilon_m}{L}$ paths P(e,f).
- * Let B be the set of vertices in exactly $\frac{\mathcal{E}m}{\mathcal{L}}$ paths $\mathcal{P}(e,f)$. Then $|B| \cdot \frac{\mathcal{E}m}{\mathcal{L}} \leq \mathcal{L} \cdot |F(e)| \leq \mathcal{L}m \Rightarrow |B| \leq \frac{\mathcal{L}^2}{\mathcal{E}}$.
- * By expansion, there is a subset $F'(e) \subseteq E(G)$ of size $\geq (1-E)m$, and paths P'(e,f) for feF'(e), of length $\leq l$ from e to f, that avoids B.
- * If |F(e)| < (1-E)m, let f'EF(e) \F(e).

The set $F(e) \cup \{f'\}$ with paths P(e,f) for $f \in F(e)$ and P'(e,f') for f', contradicts maximality of F(e).

Finding tight cycles

Let G be an expander with m edges. So, for every $e \in E(G)$ and $B \subseteq V(G)$ with $|B| \leq \frac{R^2}{\epsilon}$, which is disjoint of e, for at least (1-E)m edges $f \in E(G)$: there is a tight path from e to f of length $\leq R$ that avoids B.

<u>Theorem (\mathcal{L} . \mathcal{L} +). Let \mathcal{G} be as above. Then \mathcal{G} contains a tight cycle.</u>

<u>Lemma (1.)</u>. In G as above, for every edge e there is a set $F(e) \subseteq E(G)$ with $|F(e)| \ge (1-E)m$, and path P(e,f) of length ≤ 1 from e to f, for fEF(e), s.t. no vertex (except for those in c) appears in $> \frac{Em}{2}$ paths P(e,f).

Proof of theorem

- * For every $e \in E(g)$, let $F(e) \subseteq E(g)$ be a set of size $\ge (1-\varepsilon)m$, and let P(e,f) be a tight path of length ≤ 1 from e to f, for $f \in F(e)$, s.t. no vertex appears in $> \frac{\varepsilon m}{2}$ paths P(e,f) with $f \in F(e)$.
- * For $f \in E(g)$, let B(f) be the set of vertices appearing in $\ge \frac{\varepsilon_m}{\ell}$ paths P(e, f). Then $|B(f)| \cdot \frac{\varepsilon_m}{\ell} \le \ell m \implies |B(f)| \le \frac{\ell^2}{\varepsilon}$.
- * By expansion, for > (1-E)m edges e there is a path Q(f,e) of length ≤l from f to e that avoids B(f).

Many good pairs

<u>Claim</u>. There are at least (1-7E)m² pairs (e,f) with e,fEE(G) s.t.:
(a) Q(f₁e) is defined,
(b) there are at least ^m/₂ edges h s.t. P(e,h) and P(h,f) are defined and the concatenation P(e,h)P(h,f) is a tight path from e to f.

Let D(e) be the oligraph with vertices E(g) where hf is an edge whenever P(e,h), P(h,f) are obtained and P(e,h)P(h,f) is a tight path.

For every h s.t. P(e,h) is defined, h has out-degree at least: #(f \in E(g): P(h,f) is defined) - \leq #(f: v is in P(h,f)) > (1-2E)M. $v \in V(P(e,h))$ $v \notin h$ $\leq \frac{Em}{2}$ ≤ 1

 $\Rightarrow D(e) has \geqslant (1-E)m \cdot (1-2E)m \geqslant (1-3E)m^{2} edges.$ $\Rightarrow D(e) has \geqslant (1-GE)m vertices f with in-degree \geqslant \frac{m}{2}.$ $\Rightarrow (b) is satisfied for \geqslant (1-GE)m^{2} pairs (e,f).$

End of proof of theorem

Let $e_i f \in E(G)$ satisfy: (a) $Q(f_i e)$ is defined,

- (b) there are at least $\frac{m}{2}$ edges h s.t. P(e,h), P(h,f) are defined and the concatenation P(e,h)P(h,f) is a tight path from e to f.
- * There are at most $\frac{\epsilon_m}{\ell} \cdot l = \epsilon_m$ edges h as in (b) s.t. P(e,h) and Q(f,e) have a vertex in common (which is not in e).
- * There are at most $\frac{\epsilon_m}{2} \cdot l = \epsilon_m$ edges h as in (b) s.t. P(h,f) and Q(f,e) have a vertex in common (which is not in f).

 \Rightarrow There are $\gg \frac{m}{2} - 2\epsilon m \gg \frac{m}{4}$ edges h as in (b) s.t. P(e.h)P(h,f)Q(f.e) is a tight Cycle.

The same arguments yield the following results (already proved by <u>O. Janzer '20</u>). * Every properly edge-coloured graph on n vertices with > cn (logn)⁵ edges contains a <u>rainbow</u> cycle. all edges have distinct colours (using tools from <u>Jiang-Methuku-Yepremyan '21</u>; observed by <u>JZMY '21</u>+).

* Every graph on n vertices with > c n^{2-v} (logn)^{3/r} edges contains an <u>r-blowup</u> of a cycle. vertices replaced by independent sets of size r, edges replaced by k_{ri}r (using a result by <u>Morris-Saxton '16;</u> connection observed by <u>TLMY</u>).

Open problems

- * What is $f_r(n) = \max$ number of edges in an r-graph on n vertices with no tight cycles? Best known bounds: $c_1 n^{r-1} \frac{\log n}{\log \log n} \leq f_r(n) \leq c_2 n^{r-1} (\log n)^5$. B. Janzer '20 2. 21+
- * Question (Conlon '11). Is there c=c(r) s.t. if l>r and r|l then r-graphs on n vertices with no tight cycles of length l have O(n^{r-1+♀}) edges? (Every r-partite r-graph has no tight cycles of length l with rfl.)
- * What is g(n) = max number of edges in a properly edge-coloured graph on n vertices with no rainbow cycles?
 Best known bounds: c1n logn ≤ g(n) ≤ C2n (logn)⁴.
 Keevash-Mubayi-Sudakov-Verstraëte '07 O. Janzer '20