Hypergraphs with no tight cycles

Shoham Leteter
UCL
BECMC
July acas

Introduction
Fact. The max number of edges in a graph on n vertices with no cycles is $n-1$. (Maximisers are trees.)

An r-graph (=r-uniform hypergraph) is a hypergraph whose edges consist of r vertices.

Question. What is the maximum possible number of edges in an r-graph on n vertices which has no cycles?

The answer depends on the definition of a cycle.
We consider three notions: Berge cycles, loose cycles and tight cycles.

Barge cycles
A Berge cycle is a sequence $e_{1}, v_{1,1}, e_{k}, v_{k}$ where $e_{1,}, e_{k}$ are distinct edges, $v_{1,-}, v_{k}$ are distinct vertices, and $v_{i} \in e_{i} \cap e_{i+1}$ for $i=1,-, k-1$ and $v_{k} \in e_{k} \cap e_{1}$.

Claim. The maximum number of edges in an r-graph on n vertices with no Berge cycles is $\left\lfloor\frac{n-1}{r-1}\right\rfloor$.

Proof of upper bound. Not hard to show: no Beige cycle \Rightarrow edges can be ordered as e_{1}, e_{m} s.t. $\left|e_{i} \cap\left(e_{1} v — v e_{i-1}\right)\right| \leqslant 1 \forall{ }_{i}$.

Proof of lower bound.

Loose cycles
A loose cycle is a sequence e_{1}, \ldots, e_{k} of edges s.t. consecutive pairs of edges (and e_{k} and e_{1}) have exactly one vertex in common, and non-consecutive pairs are disjoint.

Theorem (Frankl-Füredi '87). The maximum number of edges in an r-graph on n vertices with no loose cycles is $\binom{n-1}{r-1}$ (for n large). Actually, FF show that $>\binom{n-1}{r-1}$ edges \Rightarrow I loose triangle. (cycle of length 3)
Proof of lower bound. Consider the r-graph with vertices $[n]:=\{1,-n\}$ whose edges are all sets of r vertices containing 1 .

Tight cycles.

A tight cycle is a sequence $v_{1}, \rightarrow, v_{k}$ of distinct vertices s.t. $\left\{v_{i 1}, v_{i+r-1}\right\}$ is an edge $\forall i$ (indices are modulo k).
$f_{r}(n)=\max$ number of edges in an r-graph on n vertices with no tight cycles.

Lower bounds

Observation. $f_{\tau}(n) \geqslant\binom{ n-1}{r-1}$.
Proof. Consider r-graph H with $V(H)=[n]$ and $E(H)=\{r$-sets containing 1 $\}$.

Conjecture (Sós, Verstraëte '10s). $f_{r}(n)=\binom{n-1}{r-1}$ for large n.

Huang- M_{a} '19. The conjecture is false (for $r \geqslant 3$).
There exists $c \in(1,2)$ sit. $f_{p}(n) \geqslant c\binom{n-1}{r-1}$.
B. Janzer '20. Let $r \geqslant 3$. There exists $c>0$ s.t. $f_{r}(n) \geqslant \frac{c n^{r-1} \log n}{\log \log n}$.

Upper bounds
A result of Erdös ('64) implies $f_{r}(n)=O\left(n^{r-2^{-(r-1)}}\right)$.
An unpublished result of Verstraëte implies $f_{3}(n)=O\left(n^{3 / 2}\right)$.
Sudakov-Tomon ('21). Let $r \geqslant 3$. Then $f_{r}(n) \leqslant n^{r-1} e^{O(\sqrt{\log n})}$.
In particular, $f_{r}(n)=n^{r-1+o(1)}$.

Theorem $\left(L_{0}^{\prime} 21+\right)$. Let $r \geqslant 3$. Then $f_{r}(n) \leqslant O\left(n^{r-1}(\log n)^{5}\right)$.
(This is tight up to a factor of $O\left((\log n)^{4} \log \log n\right) \cdot$)
r-partite r-graphs

Claim. Let H be an r-graph on m edges. There is an r-partite subhypergraph $\mathcal{H}^{\prime} \subseteq \mathcal{H}$ on $\geqslant \frac{r!}{r^{r}} \cdot m$ edges.

Proof. Let $\left\{A_{1}, \ldots, A_{r}\right\}$ be a partition of $V(H)$, chosen uniformly at random, and let H^{\prime} be the subhypergraph of H obtained by keeping edges e with $\left|e n A_{i}\right|=1 \forall i$.
For $e \in H, \mathbb{P}\left(e \in H^{\prime}\right)=\frac{r!}{r^{r}} \Rightarrow \mathbb{E}\left(e\left(\mathcal{L}^{\prime}\right)\right)=\frac{r!}{r^{r}} \cdot m \Rightarrow$ suitable \mathcal{H}^{\prime} exists.

Aim. Let H be an r-partite r-graph, with partition $\left\{A_{1},-A_{r}\right\}$, on n vertices with $\geqslant d n^{r-1}$ edges, where $d \geqslant c \cdot(\log n)^{5}$. Then H contains a tight cycle.

Notation

We represent edges $e \in \mathcal{H}$ as $\left(x_{1}, \ldots, x_{r}\right)$ where $x_{i} \in A_{i}$.

For edges $e=\left(x_{1},-, x_{r}\right)$ and $f=\left(y_{1,}, y_{r}\right)$, a tight path from e to f is a tight path $\left(z_{1}, \ldots, z_{k}\right)$ where $z_{i}=x_{i}$ for $i \in[r]$ and $z_{k-r+i}=y_{i}$ for $i \in[r]$.

Expanders
r-partite r-graph, $\geqslant d r^{r-1}$ edges
Lemma (Sudakov-Tomon '21). There is a subhypergraph $\mathcal{G} \subseteq \mathcal{H}$ s.t. for every edge $e \in \mathscr{G}$ and small $B \subseteq V(\mathscr{y})$ (which is disjoint of e): for almost every edge $f \in \mathscr{G}$ there is a short tight path from e to f that avoids B.

Proof ideas.

* Define r-line graphs, which are graphs associated with r-partite r-graphs.
* Define notions of density and expansion for r-line-graphs.

Call such y an expander.

Connecting edges in expanders.

Theorem (Sudakov-Tomon'21). Let g be an expander. Then

* Either for every disjoint edges e, f there is a tight path from e to f,
* Or there is a small dense subhypergraph.

They proceed by a density increment argument.

Theorem (L. 21t). Let g be an expander. Then g contains a tight cycle.

In fact, we show that there is a tight cycle through almost every two edges.

Robust reachability

Let g be an expander with m edges. So, for every $e \in E(g)$ and $B \subseteq V(G)$ with $|B| \leq \frac{\ell^{2}}{\varepsilon}$, which is disjoint of e, for at least $(1-\varepsilon) m$ edges $f \in E(\mathscr{y})$: there is a tight path from e to f of length $\leqslant \ell$ that avoids B.

Lemma (t_{0}). In y as above, for every edge e there is a set $F(e) \subseteq E(\xi)$ with $|F(e)| \geqslant(1-\varepsilon) m$, and paths $P(e, f)$, for $f \in E_{e}$, of length $\leqslant \ell$ from e to f, s.t. no vertex (except for those in e) appears in $>\frac{\varepsilon_{m}}{l}$ paths $P(e, f)$.

Proof of lemma

* Let $F(e) \subseteq E(y)$ be maximal sit. paths $P(e, f)$ of length $\leqslant \ell$ from e to f, for $f \in E_{e}$, s.t. no vertex appears in $>\frac{\varepsilon m}{\ell}$ paths $P(e, f)$.
* Let B be the set of vertices in exactly $\frac{\varepsilon m}{l}$ paths $P(e, f)$.

Then $|B| \cdot \frac{\varepsilon m}{\ell} \leqslant \ell \cdot|F(e)| \leq \ell m \Rightarrow|B| \leqslant \frac{\ell^{2}}{\varepsilon}$.

* By expansion, there is a subset $F^{\prime}(e) \subseteq E(y)$ of size $\geqslant(1-\varepsilon) m$, and paths $P^{\prime}(e, f)$ for $f \in F^{\prime}(e)$, of length $\leq \ell$ from e to f, that avoids B.
* If $|F(e)|<(1-\varepsilon) m$, let $f^{\prime} \in F^{\prime}(e) \cdot F(e)$.

The set $F(e) \cup\left\{f^{\prime}\right\}$ with paths $P(e, f)$ for $f \in F(e)$ and $P^{\prime}\left(e, f^{\prime}\right)$ for f^{\prime}, contradicts maximality of $F(e)$.

Finding tight cycles

Let g be an expander with m edges. So, for every $e \in E(g)$ and $B \subseteq V(\xi)$ with $|B| \leq \frac{\ell^{2}}{\varepsilon}$, which is disjoint of e, for at least $(1-\varepsilon) m$ edges $f \in E(\mathscr{y})$: there is a tight path from e to f of length $\leqslant \ell$ that avoids B.

Theorem (R. 21+). Let \mathcal{G} be as above. Then g contains a tight cycle.

Lemma (L.). In y as above, for every edge e there is a set $F(e) \subseteq E(y)$ with $|F(e)| \geqslant(1-\varepsilon) m$, and path $P(e, f)$ of length $\leqslant \ell$ from e to f, for $f \in F(e)$, sit. no vertex (except for those in e) appears in $>\frac{\varepsilon m}{\ell}$ paths $P(e, f)$.

Proof of theorem

* For every $e \in E(\xi)$, let $F(e) \subseteq E(y)$ be a set of size $\geqslant(1-\varepsilon) m$, and let $P(e, f)$ be a tight path of length $\leqslant l$ from e to f, for $f \in F(e)$, s.t. no vertex appears in $>\frac{\varepsilon m}{\ell}$ paths $P(e, f)$ with $f \in F(e)$.
* For $f \in E(\xi)$, let $B(f)$ be the set of vertices appearing in $\geqslant \frac{\varepsilon m}{\ell}$ paths $P(e, f)$.

Then $|B(f)| \cdot \frac{\varepsilon m}{l} \leqslant l m \Rightarrow|B(f)| \leqslant \frac{l^{2}}{\varepsilon}$.

* By expansion, for $\geqslant(1-\varepsilon) m$ edges e there is a path $Q(f, e)$ of length $\leqslant \ell$ from f to e that avoids $B(f)$.

Many good pairs

Claim. There are at least $(1-7 \varepsilon) m^{2}$ pairs (e, f) with $e, f \in E(g)$ sit.:
(a) $Q(f, e)$ is defined,
(b) there are at least $\frac{m}{2}$ edges h s.t. $P(e, h)$ and $P(h, f)$ are defined and the concatenation $P(e, h) P(h, f)$ is a tight path from e to f.

Proof of claim

Let $D(e)$ be the digraph with vertices $E(\xi)$ where $h f$ is an edge whenever $P(e, h), P(h, f)$ are defined and $P(e, h) P(h, f)$ is a tight path.

For every h s.t. $P(e, h)$ is defined, h has out-degree at least:
$\Rightarrow D(e)$ has $\geqslant(1-\varepsilon) m \cdot(1-2 \varepsilon) m \geqslant(1-3 \varepsilon) m^{2}$ edges.
$\Rightarrow D(e)$ has $\geqslant(1-6 \varepsilon) m$ vertices f with in-degree $\geqslant \frac{m}{2}$.
$\Rightarrow(b)$ is satisfied for $\geqslant(1-6 \varepsilon) m^{2}$ pairs (e, f).

End of proof of theorem
Let $e_{1} f \in E(g)$ satisfy:
(a) $Q(f, e)$ is defined,
(b) there are at least $\frac{m}{2}$ edges h sit. $P(e, h), P(h, f)$ are defined and the concatenation $P(e, h) P(h, f)$ is a tight path from e to f.

* There are at most $\frac{\varepsilon m}{l} \cdot l=\varepsilon m$ edges h as in (b) sit. $P(e, h)$ and $Q(f, e)$ have a vertex in common (which is not in e).
* There are at most $\frac{\varepsilon m}{\ell} \cdot l=\varepsilon m$ edges h as in (b) sit. $P(h, f)$ and $Q(f, e)$ have a vertex in common (which is not in f).
\Rightarrow There are $\geqslant \frac{m}{2}-2 \varepsilon m \geqslant \frac{m}{4}$ edges h as in (b) s.t. $P(e, h) P(h, f) Q(f, e)$ is a tight cycle.

Other applications

The same arguments yield the following results (already proved by 0. Janzer '20).

* Every properly edge-coloured graph on n vertices with $\geqslant c n(\log n)^{5}$ edges contains a rainbow cycle.
all edges have distinct colours (using tools from Jiang-Methuku-Yepremyan '21; observed by JLMY '21+).
* Every graph on n vertices with $\geqslant c n^{2-1 / r}(\log n)^{5 / r}$ edges contains an r-blowup of a cycle.
vertices replaced by independent sets of size r, edges replaced by terr
 (using a result by Morris-Saxton '16; connection observed by JLMY).

Open problems

* What is $f_{r}(n)=\max$ number of edges in an r-graph on n vertices with no tight cycles? Best known bounds: $c_{1} n^{r-1} \underset{\text { B. panzer '20 }}{\log n} \log _{2.21+} \leq f_{r}(n) \leqslant c_{2} n^{r-1}(\log n)^{5}$.
* Question (Conlon '11). Is there $c=C(r)$ s.t. if ℓ or and $r \mid \ell$ then r-graphs on n vertices with no tight cycles of length ℓ have $O\left(n^{r-1+\frac{c}{r}}\right)$ edges? (Every r-partite r-graph has no tight cycles of length l with $r \nmid l_{0}$)
* What is $g(n)=$ max number of edges in a properly edge-coloured graph on n vertices with no rainbow cycles?
Best known bounds: $c_{1} n \log n \leqslant g(n) \leqslant c_{2} n(\log n)^{4}$.
Reevash-Mubayi-Sudakov-Verstraëte "07

$$
\text { O. Janzer } 120
$$

Thant your

