
Finding monotone patterns

Shoham Letzter
University College London

joint with Omri Ben-Eliezer and Erik Waingarten

ICALP
July 2022

Shoham Letzter Finding monotone patterns 1 / 12

Property testing

Aim: design fast (randomised) algorithms that determine, with probability at
least 0.99, if a given (large) object

has property P ,
or is far from having property P .

We consider testing with one-sided error: given an object which is far from
having P , provide evidence of not being in P , with high probability.

Shoham Letzter Finding monotone patterns 2 / 12

Property testing

Aim: design fast (randomised) algorithms that determine, with probability at
least 0.99, if a given (large) object

has property P ,
or is far from having property P .

We consider testing with one-sided error:

given an object which is far from
having P , provide evidence of not being in P , with high probability.

Shoham Letzter Finding monotone patterns 2 / 12

Property testing

Aim: design fast (randomised) algorithms that determine, with probability at
least 0.99, if a given (large) object

has property P ,
or is far from having property P .

We consider testing with one-sided error: given an object which is far from
having P , provide evidence of not being in P , with high probability.

Shoham Letzter Finding monotone patterns 2 / 12

Testing for (1...k)-freeness

Fix k Ø 2.
Input. f : [n] æ R with �(n) disjoint increasing k-tuples.

Aim. Find, with high probability, an increasing k-tuple.

We sometimes refer to an increasing k-tuple as a (1...k)-copy.

Shoham Letzter Finding monotone patterns 3 / 12

Testing for (1...k)-freeness

Fix k Ø 2.
Input. f : [n] æ R with �(n) disjoint increasing k-tuples.
Aim. Find, with high probability, an increasing k-tuple.

We sometimes refer to an increasing k-tuple as a (1...k)-copy.

Shoham Letzter Finding monotone patterns 3 / 12

Testing for (1...k)-freeness

Fix k Ø 2.
Input. f : [n] æ R with �(n) disjoint increasing k-tuples.
Aim. Find, with high probability, an increasing k-tuple.

We sometimes refer to an increasing k-tuple as a (1...k)-copy.

Shoham Letzter Finding monotone patterns 3 / 12

History

k = 2: monotonicity testing (with one-sided error).

Ergün–Kannan–Kumar–Rubinfeld–Viswanathan ’98. Optimal non-adaptive

monotonicity testers make �(log n) queries.

(non-adaptivity: queries do not depend on previous outcomes.)

Fischer ’09. Adaptivity does not help monotonicity testing!

Newman–Rabinovich–Rajendraprasad–Sohler ’17. For k Ø 2, there is a

(non-adaptive) tester which makes (log n)
O(k2)

queries.

Shoham Letzter Finding monotone patterns 4 / 12

History

k = 2: monotonicity testing (with one-sided error).

Ergün–Kannan–Kumar–Rubinfeld–Viswanathan ’98. Optimal non-adaptive

monotonicity testers make �(log n) queries.

(non-adaptivity: queries do not depend on previous outcomes.)

Fischer ’09. Adaptivity does not help monotonicity testing!

Newman–Rabinovich–Rajendraprasad–Sohler ’17. For k Ø 2, there is a

(non-adaptive) tester which makes (log n)
O(k2)

queries.

Shoham Letzter Finding monotone patterns 4 / 12

History

k = 2: monotonicity testing (with one-sided error).

Ergün–Kannan–Kumar–Rubinfeld–Viswanathan ’98. Optimal non-adaptive

monotonicity testers make �(log n) queries.

(non-adaptivity: queries do not depend on previous outcomes.)

Fischer ’09. Adaptivity does not help monotonicity testing!

Newman–Rabinovich–Rajendraprasad–Sohler ’17. For k Ø 2, there is a

(non-adaptive) tester which makes (log n)
O(k2)

queries.

Shoham Letzter Finding monotone patterns 4 / 12

History

k = 2: monotonicity testing (with one-sided error).

Ergün–Kannan–Kumar–Rubinfeld–Viswanathan ’98. Optimal non-adaptive

monotonicity testers make �(log n) queries.

(non-adaptivity: queries do not depend on previous outcomes.)

Fischer ’09. Adaptivity does not help monotonicity testing!

Newman–Rabinovich–Rajendraprasad–Sohler ’17. For k Ø 2, there is a

(non-adaptive) tester which makes (log n)
O(k2)

queries.

Shoham Letzter Finding monotone patterns 4 / 12

History

k = 2: monotonicity testing (with one-sided error).

Ergün–Kannan–Kumar–Rubinfeld–Viswanathan ’98. Optimal non-adaptive

monotonicity testers make �(log n) queries.

(non-adaptivity: queries do not depend on previous outcomes.)

Fischer ’09. Adaptivity does not help monotonicity testing!

Newman–Rabinovich–Rajendraprasad–Sohler ’17. For k Ø 2, there is a

(non-adaptive) tester which makes (log n)
O(k2)

queries.

Shoham Letzter Finding monotone patterns 4 / 12

Our results

Theorem (Ben-Eliezer–Canonne–L.–Waingarten)
An optimal non-adaptive algorithm for testing (1...k)-freeness makes
�k

1
(log n)Âlog2 kÊ

2
queries.

Theorem (Ben-Eliezer–L.–Waingarten)
An optimal adaptive algorithm for testing (1...k)-freeness makes �k(log n) queries.

Shoham Letzter Finding monotone patterns 5 / 12

Our results

Theorem (Ben-Eliezer–Canonne–L.–Waingarten)
An optimal non-adaptive algorithm for testing (1...k)-freeness makes
�k

1
(log n)Âlog2 kÊ

2
queries.

Theorem (Ben-Eliezer–L.–Waingarten)
An optimal adaptive algorithm for testing (1...k)-freeness makes �k(log n) queries.

Shoham Letzter Finding monotone patterns 5 / 12

Structure theorem (BCLW ’19) – first outcome
Two outcomes if f : [n] æ R has �(n) disjoint increasing k-tuples:

1 f is chaotic: there are �(n) values of ¸ like this:

¸

Can find (w.h.p.) an increasing k-tuple with �(log n) queries:

�(1) queries to find good ¸,
�(1) queries in [¸, ¸ + 2i] for i œ [log n] and sampled ¸.

Shoham Letzter Finding monotone patterns 6 / 12

Structure theorem (BCLW ’19) – first outcome
Two outcomes if f : [n] æ R has �(n) disjoint increasing k-tuples:

1 f is chaotic:

there are �(n) values of ¸ like this:

¸

Can find (w.h.p.) an increasing k-tuple with �(log n) queries:

�(1) queries to find good ¸,
�(1) queries in [¸, ¸ + 2i] for i œ [log n] and sampled ¸.

Shoham Letzter Finding monotone patterns 6 / 12

Structure theorem (BCLW ’19) – first outcome
Two outcomes if f : [n] æ R has �(n) disjoint increasing k-tuples:

1 f is chaotic: there are �(n) values of ¸ like this:

¸

Can find (w.h.p.) an increasing k-tuple with �(log n) queries:

�(1) queries to find good ¸,
�(1) queries in [¸, ¸ + 2i] for i œ [log n] and sampled ¸.

Shoham Letzter Finding monotone patterns 6 / 12

Structure theorem (BCLW ’19) – first outcome
Two outcomes if f : [n] æ R has �(n) disjoint increasing k-tuples:

1 f is chaotic: there are �(n) values of ¸ like this:

¸

Can find (w.h.p.) an increasing k-tuple with �(log n) queries:

�(1) queries to find good ¸,
�(1) queries in [¸, ¸ + 2i] for i œ [log n] and sampled ¸.

Shoham Letzter Finding monotone patterns 6 / 12

Structure theorem (BCLW ’19) – first outcome
Two outcomes if f : [n] æ R has �(n) disjoint increasing k-tuples:

1 f is chaotic: there are �(n) values of ¸ like this:

¸

Can find (w.h.p.) an increasing k-tuple with �(log n) queries:

�(1) queries to find good ¸,

�(1) queries in [¸, ¸ + 2i] for i œ [log n] and sampled ¸.

Shoham Letzter Finding monotone patterns 6 / 12

Structure theorem (BCLW ’19) – first outcome
Two outcomes if f : [n] æ R has �(n) disjoint increasing k-tuples:

1 f is chaotic: there are �(n) values of ¸ like this:

¸

Can find (w.h.p.) an increasing k-tuple with �(log n) queries:

�(1) queries to find good ¸,
�(1) queries in [¸, ¸ + 2i] for i œ [log n] and sampled ¸.

Shoham Letzter Finding monotone patterns 6 / 12

Structure thereom (BCLW ’19) – second outcome

Two outcomes if f : [n] æ R has �(n) disjoint increasing k-tuples:

2 f is structured:

can cover �(n) entries with disjoint ‘splittable intervals’.

w

�(w) �(w)
�(w)far from

(1...k≠s)-free
far from
(1...s)-free

Shoham Letzter Finding monotone patterns 7 / 12

Structure thereom (BCLW ’19) – second outcome

Two outcomes if f : [n] æ R has �(n) disjoint increasing k-tuples:

2 f is structured: can cover �(n) entries with disjoint ‘splittable intervals’.

w

�(w) �(w)
�(w)far from

(1...k≠s)-free
far from
(1...s)-free

Shoham Letzter Finding monotone patterns 7 / 12

Structure thereom (BCLW ’19) – second outcome

Two outcomes if f : [n] æ R has �(n) disjoint increasing k-tuples:

2 f is structured: can cover �(n) entries with disjoint ‘splittable intervals’.

w

�(w) �(w)
�(w)

far from
(1...k≠s)-free

far from
(1...s)-free

Shoham Letzter Finding monotone patterns 7 / 12

Structure thereom (BCLW ’19) – second outcome

Two outcomes if f : [n] æ R has �(n) disjoint increasing k-tuples:

2 f is structured: can cover �(n) entries with disjoint ‘splittable intervals’.

w

�(w) �(w)

�(w)

far from
(1...k≠s)-free

far from
(1...s)-free

Shoham Letzter Finding monotone patterns 7 / 12

Structure thereom (BCLW ’19) – second outcome

Two outcomes if f : [n] æ R has �(n) disjoint increasing k-tuples:

2 f is structured: can cover �(n) entries with disjoint ‘splittable intervals’.

w

�(w) �(w)

�(w)far from
(1...k≠s)-free

far from
(1...s)-free

Shoham Letzter Finding monotone patterns 7 / 12

A combinatorial lemma
Lemma
Let I be a family of disjoint intervals in [n] s.t. q

IœI |I | Ø –n.

Then there is
J ™ I s.t.

q
JœJ |J | Ø –

4 n,
if an interval K contains J œ J , then q

IœI: I™K |I | Ø –
4 |K |.

Thus, if f is structured, there is a robust collection of disjoint ‘splittable
intervals’ J s.t.

q
JœJ |J | = �(n),

if K contains J œ J then K has �(|K |) disjoint increasing k-tuples.

Shoham Letzter Finding monotone patterns 8 / 12

A combinatorial lemma
Lemma
Let I be a family of disjoint intervals in [n] s.t. q

IœI |I | Ø –n. Then there is
J ™ I s.t.

q
JœJ |J | Ø –

4 n,

if an interval K contains J œ J , then q
IœI: I™K |I | Ø –

4 |K |.

Thus, if f is structured, there is a robust collection of disjoint ‘splittable
intervals’ J s.t.

q
JœJ |J | = �(n),

if K contains J œ J then K has �(|K |) disjoint increasing k-tuples.

Shoham Letzter Finding monotone patterns 8 / 12

A combinatorial lemma
Lemma
Let I be a family of disjoint intervals in [n] s.t. q

IœI |I | Ø –n. Then there is
J ™ I s.t.

q
JœJ |J | Ø –

4 n,
if an interval K contains J œ J , then q

IœI: I™K |I | Ø –
4 |K |.

Thus, if f is structured, there is a robust collection of disjoint ‘splittable
intervals’ J s.t.

q
JœJ |J | = �(n),

if K contains J œ J then K has �(|K |) disjoint increasing k-tuples.

Shoham Letzter Finding monotone patterns 8 / 12

A combinatorial lemma
Lemma
Let I be a family of disjoint intervals in [n] s.t. q

IœI |I | Ø –n. Then there is
J ™ I s.t.

q
JœJ |J | Ø –

4 n,
if an interval K contains J œ J , then q

IœI: I™K |I | Ø –
4 |K |.

Thus, if f is structured, there is a robust collection of disjoint ‘splittable
intervals’ J s.t.

q
JœJ |J | = �(n),

if K contains J œ J then K has �(|K |) disjoint increasing k-tuples.

Shoham Letzter Finding monotone patterns 8 / 12

A combinatorial lemma
Lemma
Let I be a family of disjoint intervals in [n] s.t. q

IœI |I | Ø –n. Then there is
J ™ I s.t.

q
JœJ |J | Ø –

4 n,
if an interval K contains J œ J , then q

IœI: I™K |I | Ø –
4 |K |.

Thus, if f is structured, there is a robust collection of disjoint ‘splittable
intervals’ J s.t.

q
JœJ |J | = �(n),

if K contains J œ J then K has �(|K |) disjoint increasing k-tuples.

Shoham Letzter Finding monotone patterns 8 / 12

A combinatorial lemma
Lemma
Let I be a family of disjoint intervals in [n] s.t. q

IœI |I | Ø –n. Then there is
J ™ I s.t.

q
JœJ |J | Ø –

4 n,
if an interval K contains J œ J , then q

IœI: I™K |I | Ø –
4 |K |.

Thus, if f is structured, there is a robust collection of disjoint ‘splittable
intervals’ J s.t.

q
JœJ |J | = �(n),

if K contains J œ J then K has �(|K |) disjoint increasing k-tuples.

Shoham Letzter Finding monotone patterns 8 / 12

A combinatorial lemma
Lemma
Let I be a family of disjoint intervals in [n] s.t. q

IœI |I | Ø –n. Then there is
J ™ I s.t.

q
JœJ |J | Ø –

4 n,
if an interval K contains J œ J , then q

IœI: I™K |I | Ø –
4 |K |.

Thus, if f is structured, there is a robust collection of disjoint ‘splittable
intervals’ J s.t.

q
JœJ |J | = �(n),

if K contains J œ J then K has �(|K |) disjoint increasing k-tuples.
Shoham Letzter Finding monotone patterns 8 / 12

Handling the structured case

�(1) queries to find x in bottom-left of robust splittable interval I .
�(log n) queries to find y in top-right of I .
y ú = maximal sampled element with f (y ú) > f (x).
If y ú ¥ y :

�(log n) queries to find increasing s-tuple fi1 near x

and
(k ≠ s)-tuple fi2 near y ú and above fi1.

x

y
yú

yú

far from
(1...k≠s)-free

far from
(1...s)-free

Shoham Letzter Finding monotone patterns 9 / 12

Handling the structured case

�(1) queries to find x in bottom-left of robust splittable interval I .

�(log n) queries to find y in top-right of I .
y ú = maximal sampled element with f (y ú) > f (x).
If y ú ¥ y :

�(log n) queries to find increasing s-tuple fi1 near x and
(k ≠ s)-tuple fi2 near y ú and above fi1.

x

y
yú

yú

far from
(1...k≠s)-free

far from
(1...s)-free

Shoham Letzter Finding monotone patterns 9 / 12

Handling the structured case

�(1) queries to find x in bottom-left of robust splittable interval I .
�(log n) queries to find y in top-right of I .

y ú = maximal sampled element with f (y ú) > f (x).
If y ú ¥ y :

�(log n) queries to find increasing s-tuple fi1 near x and
(k ≠ s)-tuple fi2 near y ú and above fi1.

x

y

yú
yú

far from
(1...k≠s)-free

far from
(1...s)-free

Shoham Letzter Finding monotone patterns 9 / 12

Handling the structured case

�(1) queries to find x in bottom-left of robust splittable interval I .
�(log n) queries to find y in top-right of I .

y ú = maximal sampled element with f (y ú) > f (x).
If y ú ¥ y :

�(log n) queries to find increasing s-tuple fi1 near x and
(k ≠ s)-tuple fi2 near y ú and above fi1.

x

y

yú
yú

far from
(1...k≠s)-free

far from
(1...s)-free

Shoham Letzter Finding monotone patterns 9 / 12

Handling the structured case

�(1) queries to find x in bottom-left of robust splittable interval I .
�(log n) queries to find y in top-right of I .
y ú = maximal sampled element with f (y ú) > f (x).

If y ú ¥ y :

�(log n) queries to find increasing s-tuple fi1 near x and
(k ≠ s)-tuple fi2 near y ú and above fi1.

x

y

yú

yú

far from
(1...k≠s)-free

far from
(1...s)-free

Shoham Letzter Finding monotone patterns 9 / 12

Handling the structured case

�(1) queries to find x in bottom-left of robust splittable interval I .
�(log n) queries to find y in top-right of I .
y ú = maximal sampled element with f (y ú) > f (x).
If y ú ¥ y :

�(log n) queries to find increasing s-tuple fi1 near x and
(k ≠ s)-tuple fi2 near y ú and above fi1.

x

y
yú

yú

far from
(1...k≠s)-free

far from
(1...s)-free

Shoham Letzter Finding monotone patterns 9 / 12

Handling the structured case

�(1) queries to find x in bottom-left of robust splittable interval I .
�(log n) queries to find y in top-right of I .
y ú = maximal sampled element with f (y ú) > f (x).
If y ú ¥ y : �(log n) queries to find increasing s-tuple fi1 near x

and
(k ≠ s)-tuple fi2 near y ú and above fi1.

x

y
yú

yú

far from
(1...k≠s)-free

far from
(1...s)-free

Shoham Letzter Finding monotone patterns 9 / 12

Handling the structured case

�(1) queries to find x in bottom-left of robust splittable interval I .
�(log n) queries to find y in top-right of I .
y ú = maximal sampled element with f (y ú) > f (x).
If y ú ¥ y : �(log n) queries to find increasing s-tuple fi1 near x and
(k ≠ s)-tuple fi2 near y ú and above fi1.

x

y
yú

yú

far from
(1...k≠s)-free

far from
(1...s)-free

Shoham Letzter Finding monotone patterns 9 / 12

Handling overshooting in the structured case – I

x in bottom-left of robust splittable interval I ,
y in top-right of I ,
y ú ∫ y and f (y ú) > f (x).

Take consecutive intervals J1, . . . , Jk≠2 ™ [x , y ú] s.t. |Ji+1| ∫ |Ji |.

By robustness: Ji has �(|Ji |) increasing k-tuples.

x

y
yú

J1 J2 J3

Shoham Letzter Finding monotone patterns 10 / 12

Handling overshooting in the structured case – I

x in bottom-left of robust splittable interval I ,
y in top-right of I ,
y ú ∫ y and f (y ú) > f (x).
Take consecutive intervals J1, . . . , Jk≠2 ™ [x , y ú] s.t. |Ji+1| ∫ |Ji |.

By robustness: Ji has �(|Ji |) increasing k-tuples.

x

y

yú

J1 J2 J3

Shoham Letzter Finding monotone patterns 10 / 12

Handling overshooting in the structured case – I

x in bottom-left of robust splittable interval I ,
y in top-right of I ,
y ú ∫ y and f (y ú) > f (x).
Take consecutive intervals J1, . . . , Jk≠2 ™ [x , y ú] s.t. |Ji+1| ∫ |Ji |.
By robustness: Ji has �(|Ji |) increasing k-tuples.

x

y

yú

J1 J2 J3

Shoham Letzter Finding monotone patterns 10 / 12

Handling overshooting in the structured case – II

y ú ∫ y and f (y ú) > f (x).
J1, . . . , Jk≠2 ™ [x , yú] consecutive intervals, Ji has �(|Ji |) increasing k-tuples.

So,
1 Ji has �(|Ji |) increasing (i + 1)-tuples strictly below f (yú) (case Ai), or
2 Ji has �(|Ji |) increasing (k ≠ i)-tuples above f (yú) (case Bi).

B1
A1,

B2

A2,

B3

A3

x

yú

J1 J2 J3

Shoham Letzter Finding monotone patterns 11 / 12

Handling overshooting in the structured case – II

y ú ∫ y and f (y ú) > f (x).
J1, . . . , Jk≠2 ™ [x , yú] consecutive intervals, Ji has �(|Ji |) increasing k-tuples. So,

1 Ji has �(|Ji |) increasing (i + 1)-tuples strictly below f (yú) (case Ai), or
2 Ji has �(|Ji |) increasing (k ≠ i)-tuples above f (yú) (case Bi).

B1
A1,

B2

A2,

B3

A3

x

yú

J1 J2 J3

Shoham Letzter Finding monotone patterns 11 / 12

Handling overshooting in the structured case – II

y ú ∫ y and f (y ú) > f (x).
J1, . . . , Jk≠2 ™ [x , yú] consecutive intervals, Ji has �(|Ji |) increasing k-tuples. So,

1 Ji has �(|Ji |) increasing (i + 1)-tuples strictly below f (yú) (case Ai), or
2 Ji has �(|Ji |) increasing (k ≠ i)-tuples above f (yú) (case Bi).

B1

A1,

B2

A2,

B3

A3

x

yú

J1 J2 J3

Shoham Letzter Finding monotone patterns 11 / 12

Handling overshooting in the structured case – II

y ú ∫ y and f (y ú) > f (x).
J1, . . . , Jk≠2 ™ [x , yú] consecutive intervals, Ji has �(|Ji |) increasing k-tuples. So,

1 Ji has �(|Ji |) increasing (i + 1)-tuples strictly below f (yú) (case Ai), or
2 Ji has �(|Ji |) increasing (k ≠ i)-tuples above f (yú) (case Bi).

B1

A1,

B2
A2,

B3

A3

x

yú

J1 J2 J3

Shoham Letzter Finding monotone patterns 11 / 12

Handling overshooting in the structured case – II

y ú ∫ y and f (y ú) > f (x).
J1, . . . , Jk≠2 ™ [x , yú] consecutive intervals, Ji has �(|Ji |) increasing k-tuples. So,

1 Ji has �(|Ji |) increasing (i + 1)-tuples strictly below f (yú) (case Ai), or
2 Ji has �(|Ji |) increasing (k ≠ i)-tuples above f (yú) (case Bi).

B1

A1, B2

A2,

B3

A3

x

yú

J1 J2 J3

Shoham Letzter Finding monotone patterns 11 / 12

Handling overshooting in the structured case – II

y ú ∫ y and f (y ú) > f (x).
J1, . . . , Jk≠2 ™ [x , yú] consecutive intervals, Ji has �(|Ji |) increasing k-tuples. So,

1 Ji has �(|Ji |) increasing (i + 1)-tuples strictly below f (yú) (case Ai), or
2 Ji has �(|Ji |) increasing (k ≠ i)-tuples above f (yú) (case Bi).

B1
A1,

B2

A2,

B3
A3

x

yú

J1 J2 J3

Shoham Letzter Finding monotone patterns 11 / 12

Handling overshooting in the structured case – II

y ú ∫ y and f (y ú) > f (x).
J1, . . . , Jk≠2 ™ [x , yú] consecutive intervals, Ji has �(|Ji |) increasing k-tuples. So,

1 Ji has �(|Ji |) increasing (i + 1)-tuples strictly below f (yú) (case Ai), or
2 Ji has �(|Ji |) increasing (k ≠ i)-tuples above f (yú) (case Bi).

B1
A1,

B2

A2, B3

A3

x

yú

J1 J2 J3

Shoham Letzter Finding monotone patterns 11 / 12

Handling overshooting in the structured case – II

y ú ∫ y and f (y ú) > f (x).
J1, . . . , Jk≠2 ™ [x , yú] consecutive intervals, Ji has �(|Ji |) increasing k-tuples. So,

1 Ji has �(|Ji |) increasing (i + 1)-tuples strictly below f (yú) (case Ai), or
2 Ji has �(|Ji |) increasing (k ≠ i)-tuples above f (yú) (case Bi).

B1
A1,

B2

A2,

B3

A3 x

yú

J1 J2 J3

Shoham Letzter Finding monotone patterns 11 / 12

Open problems

k not fixed?

Testing for other permutations. E.g. fi = (312).

Newman–Varma ’21: adaptive fi-freeness tester with no(1) queries.
Is there such an algorithm using polylog n queries?

Finding a fi-copy (length k) in a permutation of length n:
Fox, ’13. 2O(k2)n. Better algorithms? Thank you!!!

Shoham Letzter Finding monotone patterns 12 / 12

Open problems

k not fixed?

Testing for other permutations. E.g. fi = (312).

Newman–Varma ’21: adaptive fi-freeness tester with no(1) queries.
Is there such an algorithm using polylog n queries?

Finding a fi-copy (length k) in a permutation of length n:
Fox, ’13. 2O(k2)n. Better algorithms? Thank you!!!

Shoham Letzter Finding monotone patterns 12 / 12

Open problems

k not fixed?

Testing for other permutations.

E.g. fi = (312).

Newman–Varma ’21: adaptive fi-freeness tester with no(1) queries.
Is there such an algorithm using polylog n queries?

Finding a fi-copy (length k) in a permutation of length n:
Fox, ’13. 2O(k2)n. Better algorithms? Thank you!!!

Shoham Letzter Finding monotone patterns 12 / 12

Open problems

k not fixed?

Testing for other permutations. E.g. fi = (312).

Newman–Varma ’21: adaptive fi-freeness tester with no(1) queries.
Is there such an algorithm using polylog n queries?

Finding a fi-copy (length k) in a permutation of length n:
Fox, ’13. 2O(k2)n. Better algorithms? Thank you!!!

Shoham Letzter Finding monotone patterns 12 / 12

Open problems

k not fixed?

Testing for other permutations. E.g. fi = (312).

Newman–Varma ’21: adaptive fi-freeness tester with no(1) queries.
Is there such an algorithm using polylog n queries?

Finding a fi-copy (length k) in a permutation of length n:
Fox, ’13. 2O(k2)n. Better algorithms? Thank you!!!

Shoham Letzter Finding monotone patterns 12 / 12

Open problems

k not fixed?

Testing for other permutations. E.g. fi = (312).

Newman–Varma ’21: adaptive fi-freeness tester with no(1) queries.

Is there such an algorithm using polylog n queries?

Finding a fi-copy (length k) in a permutation of length n:
Fox, ’13. 2O(k2)n. Better algorithms? Thank you!!!

Shoham Letzter Finding monotone patterns 12 / 12

Open problems

k not fixed?

Testing for other permutations. E.g. fi = (312).

Newman–Varma ’21: adaptive fi-freeness tester with no(1) queries.
Is there such an algorithm using polylog n queries?

Finding a fi-copy (length k) in a permutation of length n:
Fox, ’13. 2O(k2)n. Better algorithms? Thank you!!!

Shoham Letzter Finding monotone patterns 12 / 12

Open problems

k not fixed?

Testing for other permutations. E.g. fi = (312).

Newman–Varma ’21: adaptive fi-freeness tester with no(1) queries.
Is there such an algorithm using polylog n queries?

Finding a fi-copy (length k) in a permutation of length n:
Fox, ’13. 2O(k2)n.

Better algorithms? Thank you!!!

Shoham Letzter Finding monotone patterns 12 / 12

Open problems

k not fixed?

Testing for other permutations. E.g. fi = (312).

Newman–Varma ’21: adaptive fi-freeness tester with no(1) queries.
Is there such an algorithm using polylog n queries?

Finding a fi-copy (length k) in a permutation of length n:
Fox, ’13. 2O(k2)n. Better algorithms?

Thank you!!!

Shoham Letzter Finding monotone patterns 12 / 12

Open problems

k not fixed?

Testing for other permutations. E.g. fi = (312).

Newman–Varma ’21: adaptive fi-freeness tester with no(1) queries.
Is there such an algorithm using polylog n queries?

Finding a fi-copy (length k) in a permutation of length n:
Fox, ’13. 2O(k2)n. Better algorithms? Thank you!!!

Shoham Letzter Finding monotone patterns 12 / 12

