Finding monotone patterns

Shoham Letzter

University College London

joint with Omri Ben-Eliezer and Erik Waingarten

ICALP

July 2022

Aim: design fast (randomised) algorithms that determine, with probability at least 0.99, if a given (large) object

- has property \mathcal{P} ,
- or is far from having property \mathcal{P} .

Aim: design fast (randomised) algorithms that determine, with probability at least 0.99, if a given (large) object

- has property \mathcal{P} ,
- or is far from having property \mathcal{P} .

We consider testing with **one-sided error**:

Aim: design fast (randomised) algorithms that determine, with probability at least 0.99, if a given (large) object

- has property \mathcal{P} ,
- or is far from having property \mathcal{P} .

We consider testing with **one-sided error**: given an object which is far from having \mathcal{P} , provide evidence of not being in \mathcal{P} , with high probability.

Fix $k \ge 2$.

Input. $f : [n] \to \mathbb{R}$ with $\Omega(n)$ disjoint increasing k-tuples.

Fix $k \geq 2$.

- **Input.** $f : [n] \to \mathbb{R}$ with $\Omega(n)$ disjoint increasing k-tuples.
- **Aim.** Find, with high probability, an increasing *k*-tuple.

Fix $k \geq 2$.

- **Input.** $f : [n] \to \mathbb{R}$ with $\Omega(n)$ disjoint increasing k-tuples.
- Aim. Find, with high probability, an increasing *k*-tuple.

We sometimes refer to an increasing k-tuple as a (1...k)-copy.

History

Ergün–Kannan–Kumar–Rubinfeld–Viswanathan '98. Optimal non-adaptive monotonicity testers make $\Theta(\log n)$ queries.

(non-adaptivity: queries do not depend on previous outcomes.)

Ergün–Kannan–Kumar–Rubinfeld–Viswanathan '98. Optimal non-adaptive monotonicity testers make $\Theta(\log n)$ queries.

(non-adaptivity: queries do not depend on previous outcomes.)

Fischer '09. Adaptivity does not help monotonicity testing!

Ergün–Kannan–Kumar–Rubinfeld–Viswanathan '98. Optimal non-adaptive monotonicity testers make $\Theta(\log n)$ queries.

(non-adaptivity: queries do not depend on previous outcomes.)

Fischer '09. Adaptivity does not help monotonicity testing!

Newman–Rabinovich–Rajendraprasad–Sohler '17. For $k \ge 2$, there is a (non-adaptive) tester which makes (log n)^{$O(k^2)$} queries.

Theorem (Ben-Eliezer–Canonne–L.–Waingarten)

An optimal non-adaptive algorithm for testing (1...k)-freeness makes $\Theta_k((\log n)^{\lfloor \log_2 k \rfloor})$ queries.

Theorem (Ben-Eliezer–Canonne–L.–Waingarten)

An optimal non-adaptive algorithm for testing (1...k)-freeness makes $\Theta_k((\log n)^{\lfloor \log_2 k \rfloor})$ queries.

Theorem (Ben-Eliezer–L.–Waingarten)

An optimal adaptive algorithm for testing (1...k)-freeness makes $\Theta_k(\log n)$ queries.

Two outcomes if $f : [n] \to \mathbb{R}$ has $\Omega(n)$ disjoint increasing k-tuples:

Two outcomes if $f : [n] \to \mathbb{R}$ has $\Omega(n)$ disjoint increasing k-tuples:

1 *f* is chaotic:

Two outcomes if $f : [n] \to \mathbb{R}$ has $\Omega(n)$ disjoint increasing k-tuples:

1 *f* is chaotic: there are $\Omega(n)$ values of ℓ like this:

Two outcomes if $f : [n] \to \mathbb{R}$ has $\Omega(n)$ disjoint increasing k-tuples:

1 f is chaotic: there are $\Omega(n)$ values of ℓ like this:

Can find (w.h.p.) an increasing k-tuple with $\Theta(\log n)$ queries:

Two outcomes if $f : [n] \to \mathbb{R}$ has $\Omega(n)$ disjoint increasing k-tuples:

1 f is chaotic: there are $\Omega(n)$ values of ℓ like this:

Can find (w.h.p.) an increasing k-tuple with $\Theta(\log n)$ queries:

```
• \Theta(1) queries to find good \ell,
```

Two outcomes if $f : [n] \to \mathbb{R}$ has $\Omega(n)$ disjoint increasing k-tuples:

1 f is chaotic: there are $\Omega(n)$ values of ℓ like this:

Can find (w.h.p.) an increasing k-tuple with $\Theta(\log n)$ queries:

- $\Theta(1)$ queries to find good ℓ ,
- $\Theta(1)$ queries in $[\ell, \ell + 2^i]$ for $i \in [\log n]$ and sampled ℓ .

Two outcomes if $f : [n] \to \mathbb{R}$ has $\Omega(n)$ disjoint increasing k-tuples:

2 *f* **is structured**:

Two outcomes if $f : [n] \to \mathbb{R}$ has $\Omega(n)$ disjoint increasing k-tuples:

Two outcomes if $f : [n] \to \mathbb{R}$ has $\Omega(n)$ disjoint increasing k-tuples:

Two outcomes if $f : [n] \to \mathbb{R}$ has $\Omega(n)$ disjoint increasing k-tuples:

Two outcomes if $f : [n] \to \mathbb{R}$ has $\Omega(n)$ disjoint increasing k-tuples:

Lemma

Let \mathcal{I} be a family of disjoint intervals in [n] s.t. $\sum_{I \in \mathcal{I}} |I| \ge \alpha n$.

Lemma

•
$$\sum_{J\in\mathcal{J}}|J|\geq \frac{lpha}{4}n$$
,

Lemma

- $= \sum_{J\in\mathcal{J}} |J| \geq \frac{\alpha}{4}n,$
- if an interval K contains $J \in \mathcal{J}$, then $\sum_{I \in \mathcal{I}: I \subseteq K} |I| \ge \frac{\alpha}{4} |K|$.

Lemma

- $= \sum_{J\in\mathcal{J}} |J| \geq \frac{\alpha}{4}n,$
- if an interval K contains $J \in \mathcal{J}$, then $\sum_{I \in \mathcal{I}: I \subseteq K} |I| \ge \frac{\alpha}{4} |K|$.

Lemma

- $= \sum_{J\in\mathcal{J}} |J| \geq \frac{\alpha}{4}n,$
- if an interval K contains $J \in \mathcal{J}$, then $\sum_{I \in \mathcal{I}: I \subseteq K} |I| \ge \frac{\alpha}{4} |K|$.

Lemma

- $= \sum_{J\in\mathcal{J}} |J| \geq \frac{\alpha}{4}n,$
- if an interval K contains $J \in \mathcal{J}$, then $\sum_{I \in \mathcal{I}: I \subseteq K} |I| \ge \frac{\alpha}{4} |K|$.

Lemma

Let \mathcal{I} be a family of disjoint intervals in [n] s.t. $\sum_{I \in \mathcal{I}} |I| \ge \alpha n$. Then there is $\mathcal{J} \subseteq \mathcal{I}$ s.t.

- $= \sum_{J\in\mathcal{J}} |J| \geq \frac{\alpha}{4}n,$
- if an interval K contains $J \in \mathcal{J}$, then $\sum_{I \in \mathcal{I}: I \subseteq K} |I| \ge \frac{\alpha}{4} |K|$.

Thus, if *f* is structured, there is a **robust collection** of disjoint 'splittable intervals' \mathcal{J} s.t.

•
$$\sum_{J\in\mathcal{J}}|J|=\Omega(n),$$

• if K contains $J \in \mathcal{J}$ then K has $\Omega(|K|)$ disjoint increasing k-tuples.

• $\Theta(1)$ queries to find x in bottom-left of robust splittable interval *I*.

- $\Theta(1)$ queries to find x in bottom-left of robust splittable interval *I*.
- $\Theta(\log n)$ queries to find y in top-right of I.

- $\Theta(1)$ queries to find x in bottom-left of robust splittable interval *I*.
- $\Theta(\log n)$ queries to find y in top-right of I.

- $\Theta(1)$ queries to find x in bottom-left of robust splittable interval *I*.
- $\Theta(\log n)$ queries to find y in top-right of I.
- y^* = maximal sampled element with $f(y^*) > f(x)$.

- $\Theta(1)$ queries to find x in bottom-left of robust splittable interval I.
- $\Theta(\log n)$ queries to find y in top-right of I.
- $y^* = \text{maximal sampled element with } f(y^*) > f(x)$.
- If $y^* \approx y$:

- $\Theta(1)$ queries to find x in bottom-left of robust splittable interval *I*.
- $\Theta(\log n)$ queries to find y in top-right of I.
- y^* = maximal sampled element with $f(y^*) > f(x)$.
- If $y^* \approx y$: $\Theta(\log n)$ queries to find increasing *s*-tuple π_1 near *x*

- $\Theta(1)$ queries to find x in bottom-left of robust splittable interval I.
- $\Theta(\log n)$ queries to find y in top-right of I.
- y^* = maximal sampled element with $f(y^*) > f(x)$.
- If y^{*} ≈ y: Θ(log n) queries to find increasing s-tuple π₁ near x and (k − s)-tuple π₂ near y^{*} and above π₁.

- x in bottom-left of robust splittable interval *I*,
- y in top-right of I,
- $y^* \gg y$ and $f(y^*) > f(x)$.

- x in bottom-left of robust splittable interval *I*,
- y in top-right of I,
- $y^* \gg y$ and $f(y^*) > f(x)$.
- Take consecutive intervals $J_1, \ldots, J_{k-2} \subseteq [x, y^*]$ s.t. $|J_{i+1}| \gg |J_i|$.

- x in bottom-left of robust splittable interval *I*,
- y in top-right of I,
- $y^* \gg y$ and $f(y^*) > f(x)$.
- Take consecutive intervals $J_1, \ldots, J_{k-2} \subseteq [x, y^*]$ s.t. $|J_{i+1}| \gg |J_i|$. By robustness: J_i has $\Omega(|J_i|)$ increasing k-tuples.

•
$$y^* \gg y$$
 and $f(y^*) > f(x)$.

■ $J_1, \ldots, J_{k-2} \subseteq [x, y^*]$ consecutive intervals, J_i has $\Omega(|J_i|)$ increasing k-tuples.

• $y^* \gg y$ and $f(y^*) > f(x)$.

■ $J_1, \ldots, J_{k-2} \subseteq [x, y^*]$ consecutive intervals, J_i has $\Omega(|J_i|)$ increasing k-tuples. So,

1 J_i has $\Omega(|J_i|)$ increasing (i + 1)-tuples strictly below $f(y^*)$ (case Ai), or **2** J_i has $\Omega(|J_i|)$ increasing (k - i)-tuples above $f(y^*)$ (case Bi).

• $y^* \gg y$ and $f(y^*) > f(x)$.

■ $J_1, \ldots, J_{k-2} \subseteq [x, y^*]$ consecutive intervals, J_i has $\Omega(|J_i|)$ increasing k-tuples. So,

1 J_i has $\Omega(|J_i|)$ increasing (i + 1)-tuples strictly below $f(y^*)$ (case Ai), or **2** J_i has $\Omega(|J_i|)$ increasing (k - i)-tuples above $f(y^*)$ (case Bi).

• $y^* \gg y$ and $f(y^*) > f(x)$.

■ $J_1, \ldots, J_{k-2} \subseteq [x, y^*]$ consecutive intervals, J_i has $\Omega(|J_i|)$ increasing k-tuples. So,

1 J_i has $\Omega(|J_i|)$ increasing (i + 1)-tuples strictly below $f(y^*)$ (case Ai), or **2** J_i has $\Omega(|J_i|)$ increasing (k - i)-tuples above $f(y^*)$ (case Bi).

Shoham Letzter

• $y^* \gg y$ and $f(y^*) > f(x)$.

■ $J_1, \ldots, J_{k-2} \subseteq [x, y^*]$ consecutive intervals, J_i has $\Omega(|J_i|)$ increasing k-tuples. So,

1 J_i has $\Omega(|J_i|)$ increasing (i + 1)-tuples strictly below $f(y^*)$ (case Ai), or **2** J_i has $\Omega(|J_i|)$ increasing (k - i)-tuples above $f(y^*)$ (case Bi).

• $y^* \gg y$ and $f(y^*) > f(x)$.

• $J_1, \ldots, J_{k-2} \subseteq [x, y^*]$ consecutive intervals, J_i has $\Omega(|J_i|)$ increasing k-tuples. So,

1 J_i has $\Omega(|J_i|)$ increasing (i + 1)-tuples strictly below $f(y^*)$ (case Ai), or **2** J_i has $\Omega(|J_i|)$ increasing (k - i)-tuples above $f(y^*)$ (case Bi).

Shoham Letzter

A2.

• $y^* \gg y$ and $f(y^*) > f(x)$.

• $J_1, \ldots, J_{k-2} \subseteq [x, y^*]$ consecutive intervals, J_i has $\Omega(|J_i|)$ increasing k-tuples. So,

1 J_i has $\Omega(|J_i|)$ increasing (i + 1)-tuples strictly below $f(y^*)$ (case Ai), or **2** J_i has $\Omega(|J_i|)$ increasing (k - i)-tuples above $f(y^*)$ (case Bi).

• $y^* \gg y$ and $f(y^*) > f(x)$.

• $J_1, \ldots, J_{k-2} \subseteq [x, y^*]$ consecutive intervals, J_i has $\Omega(|J_i|)$ increasing k-tuples. So,

1 J_i has $\Omega(|J_i|)$ increasing (i + 1)-tuples strictly below $f(y^*)$ (case Ai), or **2** J_i has $\Omega(|J_i|)$ increasing (k - i)-tuples above $f(y^*)$ (case Bi).

k not fixed?

- k not fixed?
- **Testing for other permutations**.

- k not fixed?
- Testing for other permutations. E.g. $\pi = (312)$.

- k not fixed?
- Testing for other permutations. E.g. $\pi = (312)$.

- k not fixed?
- Testing for other permutations. E.g. $\pi = (312)$.

Newman–Varma '21: adaptive π -freeness tester with $n^{o(1)}$ queries.

- k not fixed?
- Testing for other permutations. E.g. $\pi = (312)$.

Newman–Varma '21: adaptive π -freeness tester with $n^{o(1)}$ queries. Is there such an algorithm using polylog *n* queries?

- k not fixed?
- Testing for other permutations. E.g. $\pi = (312)$.

Newman–Varma '21: adaptive π -freeness tester with $n^{o(1)}$ queries. Is there such an algorithm using polylog *n* queries?

Finding a *π*-copy (length *k*) in a permutation of length *n*:
Fox, '13. 2^{O(k²)} n.

- k not fixed?
- Testing for other permutations. E.g. $\pi = (312)$.

Newman–Varma '21: adaptive π -freeness tester with $n^{o(1)}$ queries. Is there such an algorithm using polylog *n* queries?

Finding a *π*-copy (length *k*) in a permutation of length *n*:
Fox, '13. 2^{O(k²)} n. Better algorithms?

- k not fixed?
- Testing for other permutations. E.g. $\pi = (312)$.

Newman–Varma '21: adaptive π -freeness tester with $n^{o(1)}$ queries. Is there such an algorithm using polylog *n* queries?

Finding a π-copy (length k) in a permutation of length n:
Fox, '13. 2^{O(k²)} n. Better algorithms?

