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Ramsey theory for directed graphs

We consider tournaments: directed graphs where for every
two vertices x and y , exactly one of xy and yx is an edge.

Basic question. which digraphs appear as monochromatic
subgraphs of every 2-coloured tournament of order n?
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Monochromatic directed paths

Note: can only hope for acyclic monochromatic subgraphs.

We focus on directed paths ( ).
Let
−→
Pl be the directed path on l vertices.

Definition
l(T ) = max

{
l : every 2-colouring of T has a monochromatic

−→
Pl
}

.
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Lower bound on l(T )

Theorem (Bermond; Chvátal; Gyárfás and Lehel ’70s)

l(T ) ≥
√

n for every tournament T on n vertices.

Proof.
Gallai-Hasse-Roy-Vitaver:

if χ(G) ≥ l , then
−→
Pl ⊆ G .

TR - graph of red edges, TB - blue edges.

Then either χ(TR) ≥
√

n or χ(TB) ≥
√

n.

By GHRV theorem, there is a monochromatic
−−→
P√n.
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Minimum / maximum of l(T )

Claim. The theorem is tight for transitive tournaments,

where vertices can be ordered such that xy is an edge iff x<y .

√
n

√
n

So, min{l(T ) : T is a tournament on n vertices} =
√

n.

Question

What is max{l(T ) : T is a tournament on n vertices}?
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Upper bound on l(T )

Proposition (Ben-Eliezer, Krivelevich, Sudakov ’12)

l(T ) ≤ 2n√
log n

.

Fact. every tournament on m vertices contains a transitive
tournament on log m vertices.

logn
2 ≤

√
n

Monochromatic paths have length at most
√

log n
2 ·

2n
log n +

√
n ≤ 2n√

log n
.
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Our result

Question. is the bound l(T ) ≤ 2n√
log n

tight?

Intuition. consider random tournaments.
Let Tn be the random tournament on n vertices.

Theorem (Ben-Eliezer, Krivelevich, Sudakov ’12)

Let T = Tn. Then, with high probability, l(T ) ≥ cn
log n .

Theorem (Bucić, L., Sudakov ’17+)

Let T = Tn. Then, with high probability, l(T ) ≥ cn√
log n

.
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Preliminaries

Fact (pseudo-randomness). w.h.p., if A and B are disjoint
sets of size at least α log n, then there are at least 2

5 |A||B|
edges from A to B.

We call a cycle C


short
medium
long

if |C | ≤ β log n.
if |C | ∈ [β log n, 50β log n].
if |C | ≥ 50β log n.
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Case 1: many disjoint blue cycles

Case 1.

C1, . . . ,Ck are vertex-disjoint blue medium cycles,
covering at least n/4 vertices.

Define an auxiliary digraph H :
vertices [k],
ij is a blue edge if at least β

4 log n vertices of Ci send a
blue edge to Cj ;

otherwise, ij is red.

Note: H is a 2-colouring of the complete directed graph on k
vertices.
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Case 1 continued - a long blue path in H

Suppose that H has a blue
−−→
Pk/2.

We find a blue path of length n/200 in T :

O.w., there is a matching of k/4 two-sided red edges ( ).
Indeed, if there is no such matching, there is a blue
tournament on k/2 vertices, which has a Hamiltonian path.
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Case 1 continued - a large red matching in H

Suppose that there is a matching of k/4 two-sided red edges
( ).

So, there are vertex-disjoint blue medium cycles C ′1, . . . ,C ′k/4
and vertex-disjoint red medium cycles C ′′1 , . . . ,C ′′k/4, such that
|V (C ′i ) ∩ V (C ′′i )| ≥ γ log n.
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Case 1 - completed

C ′1, . . . ,C ′k/4 vertex-disjoint blue medium cycles; C ′′1 , . . . ,C ′′k/4
vertex-disjoint red medium cycles; |V (C ′i )∩V (C ′′i )| ≥ γ log n.

Define an auxiliary graph H ′ as before, on vertex set [k/4],
with respect to edges between the sets V (C ′i ) ∩ V (C ′′i ).

Theorem (Raynaud ’73)

In every 2-colouring of the complete digraph on n vertices
there is a monochromatic

−−→
Pn/2.

Hence, there is a monochromatic
−−→
Pk/8. Continue as before.
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Case 2: no medium monochromatic cycles

Case 2.

U is a set of n/2 vertices with no monochromatic
medium cycles.

There are no long blue cycles.
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Case 2: no medium monochromatic cycles

Case 2. U is a set of n/2 vertices with no monochromatic
medium cycles.

There are no long blue cycles.
There is an order of U with O(n log n) blue back edges.

There is a partition {A1, . . . ,Al} of U , such that

|Ai | = δ log n,

Almost all edges from Ai to Aj are

{
blue if i < j
red if j < i .
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Case 2 continued

√
logn

δ logn

We found a monochromatic path of length Ω
(

n√
log n

)
.
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Size Ramsey numbers

We write G → H if in every 2-colouring of G there is a
monochromatic H .

Definition (Erdős, Faudree, Rousseau, Schelp ’72)

The size Ramsey number of H, denoted by re(H), is
re(H) = min{e(G) : G → H}.

Somewhat surprisingly, Beck (’83) showed: re(Pn) = O(n).
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Oriented size Ramsey numbers

An oriented graph

is a directed graph, where for every two
vertices x and y , at most one of xy and yx is an edge.

Definition
The oriented size Ramsey number of H

is
−→re (H) = min{e(G) : G → H , G is oriented}.

Question
What is −→re (

−→
Pn)?
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Oriented size Ramsey number of a directed path

Theorem (Ben-Eliezer, Krivelevich, Sudakov ’12)

−→re (
−→
Pn) ≥ cn2 log n

(log log n)3 .

This lower bound is close to being tight.

Corollary (of our main result)

−→re (
−→
Pn) ≤ cn2 log n.

We establish a better, sharp lower bound.

Theorem (L., Sudakov ’17+)
−→re (
−→
Pn) ≥ cn2 log n.
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Open problem

Let lr (T ) be the maximum l such that every r -colouring of T
contains a monochromatic

−→
Pl .

Proposition

lr (T ) = O
(

n1/(r−1)

(log n)−1/r(r−1)

)
for every tournament T of order n.

Question

What is lr (T ) for T a random tournament?
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The end

Thank you for listening!
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