# Monochromatic directed paths in random tournaments 

Shoham Letzter joint work with Matija Bucić and Benny Sudakov ETH-ITS<br>Random Structures and Algorithms<br>August 2017

## Ramsey theory for directed graphs

## Ramsey theory for directed graphs

We consider tournaments:

## Ramsey theory for directed graphs

We consider tournaments: directed graphs where for every two vertices $x$ and $y$, exactly one of $x y$ and $y x$ is an edge.

## Ramsey theory for directed graphs

We consider tournaments: directed graphs where for every two vertices $x$ and $y$, exactly one of $x y$ and $y x$ is an edge.


## Ramsey theory for directed graphs

We consider tournaments: directed graphs where for every two vertices $x$ and $y$, exactly one of $x y$ and $y x$ is an edge.


## Ramsey theory for directed graphs

We consider tournaments: directed graphs where for every two vertices $x$ and $y$, exactly one of $x y$ and $y x$ is an edge.


Basic question.

## Ramsey theory for directed graphs

We consider tournaments: directed graphs where for every two vertices $x$ and $y$, exactly one of $x y$ and $y x$ is an edge.


Basic question. which digraphs appear as monochromatic subgraphs of every 2-coloured tournament of order $n$ ?

## Monochromatic directed paths

## Monochromatic directed paths

Note: can only hope for acyclic monochromatic subgraphs.

## Monochromatic directed paths

Note: can only hope for acyclic monochromatic subgraphs.

## Monochromatic directed paths

Note: can only hope for acyclic monochromatic subgraphs.

## Monochromatic directed paths

Note: can only hope for acyclic monochromatic subgraphs.


## Monochromatic directed paths

Note: can only hope for acyclic monochromatic subgraphs.


We focus on directed paths

## Monochromatic directed paths

Note: can only hope for acyclic monochromatic subgraphs.


We focus on directed paths $(\longleftrightarrow \longrightarrow \longrightarrow$ ).

## Monochromatic directed paths

Note: can only hope for acyclic monochromatic subgraphs.


We focus on directed paths $(\longleftrightarrow \longrightarrow \longrightarrow$ ).
Let $\overrightarrow{P_{/}}$be the directed path on I vertices.

## Monochromatic directed paths

Note: can only hope for acyclic monochromatic subgraphs.


We focus on directed paths $(\longrightarrow \longrightarrow \longrightarrow)$.
Let $\vec{P}$, be the directed path on $/$ vertices.

## Definition

$I(T)=\max \left\{I\right.$ : every 2-colouring of $T$ has a monochromatic $\left.\overrightarrow{P_{I}}\right\}$.

## Lower bound on I( $T$ )

## Lower bound on I( $T$ )

## Theorem (Bermond; Chvátal; Gyárfás and Lehel '70s)

## Lower bound on I( $T$ )

## Theorem (Bermond; Chvátal; Gyárfás and Lehel '70s)

$I(T) \geq \sqrt{n}$ for every tournament $T$ on $n$ vertices.

## Lower bound on $I(T)$

## Theorem (Bermond; Chvátal; Gyárfás and Lehel '70s)

$I(T) \geq \sqrt{n}$ for every tournament $T$ on $n$ vertices.

## Proof.

■ Gallai-Hasse-Roy-Vitaver:

## Lower bound on $I(T)$

## Theorem (Bermond; Chvátal; Gyárfás and Lehel '70s)

$I(T) \geq \sqrt{n}$ for every tournament $T$ on $n$ vertices.

## Proof.

■ Gallai-Hasse-Roy-Vitaver: if $\chi(G) \geq I$,

## Lower bound on $I(T)$

## Theorem (Bermond; Chvátal; Gyárfás and Lehel '70s)

$I(T) \geq \sqrt{n}$ for every tournament $T$ on $n$ vertices.

## Proof.

- Gallai-Hasse-Roy-Vitaver: if $\chi(G) \geq I$, then $\vec{P}_{l} \subseteq G$.


## Lower bound on $I(T)$

## Theorem (Bermond; Chvátal; Gyárfás and Lehel '70s)

$I(T) \geq \sqrt{n}$ for every tournament $T$ on $n$ vertices.

## Proof.

- Gallai-Hasse-Roy-Vitaver: if $\chi(G) \geq I$, then $\vec{P}_{I} \subseteq G$.
- $T_{R}$ - graph of red edges, $T_{B}$ - blue edges.


## Lower bound on $I(T)$

## Theorem (Bermond; Chvátal; Gyárfás and Lehel '70s)

$I(T) \geq \sqrt{n}$ for every tournament $T$ on $n$ vertices.

## Proof.

■ Gallai-Hasse-Roy-Vitaver: if $\chi(G) \geq I$, then $\vec{P}_{I} \subseteq G$.

- $T_{R}$ - graph of red edges, $T_{B}$ - blue edges.

Then either $\chi\left(T_{R}\right) \geq \sqrt{n}$ or $\chi\left(T_{B}\right) \geq \sqrt{n}$.

## Lower bound on I( $T$ )

## Theorem (Bermond; Chvátal; Gyárfás and Lehel '70s)

$I(T) \geq \sqrt{n}$ for every tournament $T$ on $n$ vertices.

## Proof.

■ Gallai-Hasse-Roy-Vitaver: if $\chi(G) \geq I$, then $\vec{P}_{I} \subseteq G$.

- $T_{R}$ - graph of red edges, $T_{B}$ - blue edges.

Then either $\chi\left(T_{R}\right) \geq \sqrt{n}$ or $\chi\left(T_{B}\right) \geq \sqrt{n}$.

- By GHRV theorem, there is a monochromatic $\overrightarrow{P_{\sqrt{n}}}$.


## Minimum / maximum of $I(T)$

Claim. The theorem is tight for transitive tournaments,

## Minimum / maximum of $I(T)$

Claim. The theorem is tight for transitive tournaments, where vertices can be ordered such that $x y$ is an edge iff $x<y$.

## Minimum / maximum of $I(T)$

Claim. The theorem is tight for transitive tournaments, where vertices can be ordered such that $x y$ is an edge iff $x<y$.


## Minimum / maximum of $I(T)$

Claim. The theorem is tight for transitive tournaments, where vertices can be ordered such that $x y$ is an edge iff $x<y$.


## Minimum / maximum of $I(T)$

Claim. The theorem is tight for transitive tournaments, where vertices can be ordered such that $x y$ is an edge iff $x<y$.


## Minimum / maximum of $I(T)$

Claim. The theorem is tight for transitive tournaments, where vertices can be ordered such that $x y$ is an edge iff $x<y$.


So, $\min \{I(T): T$ is a tournament on $n$ vertices $\}=\sqrt{n}$.

## Minimum / maximum of $I(T)$

Claim. The theorem is tight for transitive tournaments, where vertices can be ordered such that $x y$ is an edge iff $x<y$.


So, $\min \{l(T): T$ is a tournament on $n$ vertices $\}=\sqrt{n}$.

## Question

## Minimum / maximum of $I(T)$

Claim. The theorem is tight for transitive tournaments, where vertices can be ordered such that $x y$ is an edge iff $x<y$.


So, $\min \{I(T): T$ is a tournament on $n$ vertices $\}=\sqrt{n}$.

## Question

What is $\max \{I(T): T$ is a tournament on $n$ vertices $\}$ ?

## Upper bound on I( $T$ )

## Upper bound on I( $T$ )

Proposition (Ben-Eliezer, Krivelevich, Sudakov '12)
$l(T) \leq \frac{2 n}{\sqrt{\log n}}$.

## Upper bound on I( $T$ )

## Proposition (Ben-Eliezer, Krivelevich, Sudakov '12)

$l(T) \leq \frac{2 n}{\sqrt{\log n}}$.
Fact. every tournament on $m$ vertices contains a transitive tournament on $\log m$ vertices.

## Upper bound on I( $T$ )

## Proposition (Ben-Eliezer, Krivelevich, Sudakov '12)

$$
l(T) \leq \frac{2 n}{\sqrt{\log n}} .
$$

Fact. every tournament on $m$ vertices contains a transitive tournament on $\log m$ vertices.


## Upper bound on I( $T$ )

## Proposition (Ben-Eliezer, Krivelevich, Sudakov '12)

$$
l(T) \leq \frac{2 n}{\sqrt{\log n}} .
$$

Fact. every tournament on $m$ vertices contains a transitive tournament on $\log m$ vertices.


## Upper bound on I( $T$ )

## Proposition (Ben-Eliezer, Krivelevich, Sudakov '12)

$$
\prime(T) \leq \frac{2 n}{\sqrt{\log n}} .
$$

Fact. every tournament on $m$ vertices contains a transitive tournament on $\log m$ vertices.


## Upper bound on I( $T$ )

## Proposition (Ben-Eliezer, Krivelevich, Sudakov '12)

$$
\prime(T) \leq \frac{2 n}{\sqrt{\log n}} .
$$

Fact. every tournament on $m$ vertices contains a transitive tournament on $\log m$ vertices.


## Upper bound on I( $T$ )

## Proposition (Ben-Eliezer, Krivelevich, Sudakov '12)

$$
\prime(T) \leq \frac{2 n}{\sqrt{\log n}} .
$$

Fact. every tournament on $m$ vertices contains a transitive tournament on $\log m$ vertices.


## Upper bound on I( $T$ )

## Proposition (Ben-Eliezer, Krivelevich, Sudakov '12)

$$
\prime(T) \leq \frac{2 n}{\sqrt{\log n}} .
$$

Fact. every tournament on $m$ vertices contains a transitive tournament on $\log m$ vertices.


## Upper bound on I( $T$ )

## Proposition (Ben-Eliezer, Krivelevich, Sudakov '12)

$$
l(T) \leq \frac{2 n}{\sqrt{\log n}} .
$$

Fact. every tournament on $m$ vertices contains a transitive tournament on $\log m$ vertices.


Monochromatic paths have length at most

## Upper bound on I( $T$ )

## Proposition (Ben-Eliezer, Krivelevich, Sudakov '12)

$$
l(T) \leq \frac{2 n}{\sqrt{\log n}} .
$$

Fact. every tournament on $m$ vertices contains a transitive tournament on $\log m$ vertices.


Monochromatic paths have length at most $\sqrt{\frac{\log n}{2}}$

## Upper bound on I( $T$ )

## Proposition (Ben-Eliezer, Krivelevich, Sudakov '12)

$$
l(T) \leq \frac{2 n}{\sqrt{\log n}} .
$$

Fact. every tournament on $m$ vertices contains a transitive tournament on $\log m$ vertices.


Monochromatic paths have length at most $\sqrt{\frac{\log n}{2} \cdot \frac{2 n}{\log n}}$

## Upper bound on I( $T$ )

## Proposition (Ben-Eliezer, Krivelevich, Sudakov '12)

$$
l(T) \leq \frac{2 n}{\sqrt{\log n}} .
$$

Fact. every tournament on $m$ vertices contains a transitive tournament on $\log m$ vertices.


Monochromatic paths have length at most $\sqrt{\frac{\log n}{2} \cdot \frac{2 n}{\log n}+\sqrt{n}}$

## Upper bound on I( $T$ )

## Proposition (Ben-Eliezer, Krivelevich, Sudakov '12)

$$
\prime(T) \leq \frac{2 n}{\sqrt{\log n}} .
$$

Fact. every tournament on $m$ vertices contains a transitive tournament on $\log m$ vertices.


Monochromatic paths have length at most $\sqrt{\frac{\log n}{2}} \cdot \frac{2 n}{\log n}+\sqrt{n} \leq \frac{2 n}{\sqrt{\log n}}$.

## Our result

## Question. is the bound $I(T) \leq \frac{2 n}{\sqrt{\log n}}$ tight?

## Our result

Question. is the bound $I(T) \leq \frac{2 n}{\sqrt{\log n}}$ tight?

## Intuition.

## Our result

Question. is the bound $I(T) \leq \frac{2 n}{\sqrt{\log n}}$ tight?
Intuition. consider random tournaments.

## Our result

Question. is the bound $I(T) \leq \frac{2 n}{\sqrt{\log n}}$ tight?
Intuition. consider random tournaments.
Let $T_{n}$ be the random tournament on $n$ vertices.

## Our result

Question. is the bound $I(T) \leq \frac{2 n}{\sqrt{\log n}}$ tight?
Intuition. consider random tournaments.
Let $T_{n}$ be the random tournament on $n$ vertices.

> Theorem (Ben-Eliezer, Krivelevich, Sudakov '12)
> Let $T=T_{n}$. Then, with high probability, $I(T) \geq \frac{c n}{\log n}$.

## Our result

Question. is the bound $I(T) \leq \frac{2 n}{\sqrt{\log n}}$ tight?
Intuition. consider random tournaments.
Let $T_{n}$ be the random tournament on $n$ vertices.

## Theorem (Ben-Eliezer, Krivelevich, Sudakov '12)

Let $T=T_{n}$. Then, with high probability, $I(T) \geq \frac{c n}{\log n}$.

## Theorem (Bucić, L., Sudakov '17+)

## Our result

Question. is the bound $I(T) \leq \frac{2 n}{\sqrt{\log n}}$ tight?
Intuition. consider random tournaments.
Let $T_{n}$ be the random tournament on $n$ vertices.

## Theorem (Ben-Eliezer, Krivelevich, Sudakov '12)

Let $T=T_{n}$. Then, with high probability, $I(T) \geq \frac{c n}{\log n}$.

> Theorem (Bucić, L., Sudakov '17+)
> Let $T=T_{n}$. Then, with high probability, $I(T) \geq \frac{c n}{\sqrt{\log n}}$.

## Preliminaries

## Preliminaries

Fact (pseudo-randomness). w.h.p., if $A$ and $B$ are disjoint sets of size at least $\alpha \log n$,

## Preliminaries

Fact (pseudo-randomness). w.h.p., if $A$ and $B$ are disjoint sets of size at least $\alpha \log n$, then there are at least $\frac{2}{5}|A||B|$ edges from $A$ to $B$.

## Preliminaries

Fact (pseudo-randomness). w.h.p., if $A$ and $B$ are disjoint sets of size at least $\alpha \log n$, then there are at least $\frac{2}{5}|A||B|$ edges from $A$ to $B$.

We call a cycle $C$

## Preliminaries

Fact (pseudo-randomness). w.h.p., if $A$ and $B$ are disjoint sets of size at least $\alpha \log n$, then there are at least $\frac{2}{5}|A||B|$ edges from $A$ to $B$.

We call a cycle $C\left\{\begin{array}{l}\text { short }\end{array}\right.$

## Preliminaries

Fact (pseudo-randomness). w.h.p., if $A$ and $B$ are disjoint sets of size at least $\alpha \log n$, then there are at least $\frac{2}{5}|A||B|$ edges from $A$ to $B$.

We call a cycle $C \begin{cases}\text { short } & \text { if }|C| \leq \beta \log n .\end{cases}$

## Preliminaries

Fact (pseudo-randomness). w.h.p., if $A$ and $B$ are disjoint sets of size at least $\alpha \log n$, then there are at least $\frac{2}{5}|A||B|$ edges from $A$ to $B$.

We call a cycle $C \begin{cases}\text { short } & \text { if }|C| \leq \beta \log n . \\ \text { medium } & \text { if }|C| \in[\beta \log n, 50 \beta \log n] .\end{cases}$

## Preliminaries

Fact (pseudo-randomness). w.h.p., if $A$ and $B$ are disjoint sets of size at least $\alpha \log n$, then there are at least $\frac{2}{5}|A||B|$ edges from $A$ to $B$.

We call a cycle $C \begin{cases}\text { short } & \text { if }|C| \leq \beta \log n . \\ \text { medium } & \text { if }|C| \in[\beta \log n, 50 \beta \log n] . \\ \text { long } & \text { if }|C| \geq 50 \beta \log n .\end{cases}$

## Case 1: many disjoint blue cycles

## Case 1.

## Case 1: many disjoint blue cycles

Case 1. $C_{1}, \ldots, C_{k}$ are vertex-disjoint blue medium cycles, covering at least $n / 4$ vertices.

## Case 1: many disjoint blue cycles

## Case 1. $C_{1}, \ldots, C_{k}$ are vertex-disjoint blue medium cycles, covering at least $n / 4$ vertices.

Define an auxiliary digraph $H$ :

## Case 1: many disjoint blue cycles

Case 1. $C_{1}, \ldots, C_{k}$ are vertex-disjoint blue medium cycles, covering at least $n / 4$ vertices.

Define an auxiliary digraph $H$ :

- vertices $[k]$,


## Case 1: many disjoint blue cycles

Case 1. $C_{1}, \ldots, C_{k}$ are vertex-disjoint blue medium cycles, covering at least $n / 4$ vertices.

Define an auxiliary digraph $H$ :

- vertices [ $k$ ],
- ij is a blue edge if at least $\frac{\beta}{4} \log n$ vertices of $C_{i}$ send a blue edge to $C_{j}$;


## Case 1: many disjoint blue cycles

Case 1. $C_{1}, \ldots, C_{k}$ are vertex-disjoint blue medium cycles, covering at least $n / 4$ vertices.

Define an auxiliary digraph $H$ :

- vertices [ $k$ ],
- ij is a blue edge if at least $\frac{\beta}{4} \log n$ vertices of $C_{i}$ send a blue edge to $C_{j}$; otherwise, $i j$ is red.


## Case 1: many disjoint blue cycles

Case 1. $C_{1}, \ldots, C_{k}$ are vertex-disjoint blue medium cycles, covering at least $n / 4$ vertices.

Define an auxiliary digraph $H$ :

- vertices [ $k$ ],
- $i j$ is a blue edge if at least $\frac{\beta}{4} \log n$ vertices of $C_{i}$ send a blue edge to $C_{j}$; otherwise, $i j$ is red.

Note: $H$ is a 2 -colouring of the complete directed graph on $k$ vertices.

## Case 1 continued - a long blue path in H

Suppose that $H$ has a blue $\overrightarrow{P_{k / 2}}$.

## Case 1 continued - a long blue path in $H$

Suppose that $H$ has a blue $\overrightarrow{P_{k / 2}}$.
We find a blue path of length $n / 200$ in $T$ :

## Case 1 continued - a long blue path in H

Suppose that $H$ has a blue $\overrightarrow{P_{k / 2}}$.
We find a blue path of length $n / 200$ in $T$ :


## Case 1 continued - a long blue path in $H$

Suppose that $H$ has a blue $\overrightarrow{P_{k / 2}}$.
We find a blue path of length $n / 200$ in $T$ :


## Case 1 continued - a long blue path in H

Suppose that $H$ has a blue $\overrightarrow{P_{k / 2}}$.
We find a blue path of length $n / 200$ in $T$ :


## Case 1 continued - a long blue path in $H$

Suppose that $H$ has a blue $\overrightarrow{P_{k / 2}}$.
We find a blue path of length $n / 200$ in $T$ :


## Case 1 continued - a long blue path in $H$

Suppose that $H$ has a blue $\overrightarrow{P_{k / 2}}$.
We find a blue path of length $n / 200$ in $T$ :


## Case 1 continued - a long blue path in $H$

Suppose that $H$ has a blue $\overrightarrow{P_{k / 2}}$.
We find a blue path of length $n / 200$ in $T$ :


## Case 1 continued - a long blue path in $H$

Suppose that $H$ has a blue $\overrightarrow{P_{k / 2}}$.
We find a blue path of length $n / 200$ in $T$ :


## Case 1 continued - a long blue path in $H$

Suppose that $H$ has a blue $\overrightarrow{P_{k / 2}}$.
We find a blue path of length $n / 200$ in $T$ :


## Case 1 continued - a long blue path in $H$

Suppose that $H$ has a blue $\overrightarrow{P_{k / 2}}$.
We find a blue path of length $n / 200$ in $T$ :


## Case 1 continued - a long blue path in $H$

Suppose that $H$ has a blue $\overrightarrow{P_{k / 2}}$.
We find a blue path of length $n / 200$ in $T$ :


## Case 1 continued - a long blue path in $H$

Suppose that $H$ has a blue $\overrightarrow{P_{k / 2}}$.
We find a blue path of length $n / 200$ in $T$ :

O.w., there is a matching of $k / 4$ two-sided red edges $(\hookleftarrow \longleftrightarrow)$.

## Case 1 continued - a long blue path in $H$

Suppose that $H$ has a blue $\overrightarrow{P_{k / 2}}$.
We find a blue path of length $n / 200$ in $T$ :

O.w., there is a matching of $k / 4$ two-sided red edges $(\longleftrightarrow \longleftrightarrow)$. Indeed, if there is no such matching,

## Case 1 continued - a long blue path in $H$

Suppose that $H$ has a blue $\overrightarrow{P_{k / 2}}$.
We find a blue path of length $n / 200$ in $T$ :

O.w., there is a matching of $k / 4$ two-sided red edges $(\longleftrightarrow \longleftrightarrow)$. Indeed, if there is no such matching, there is a blue tournament on $k / 2$ vertices,

## Case 1 continued - a long blue path in $H$

Suppose that $H$ has a blue $\overrightarrow{P_{k / 2}}$.
We find a blue path of length $n / 200$ in $T$ :

O.w., there is a matching of $k / 4$ two-sided red edges $(\longleftrightarrow \longleftrightarrow)$. Indeed, if there is no such matching, there is a blue tournament on $k / 2$ vertices, which has a Hamiltonian path.

## Case 1 continued - a large red matching in $H$

Suppose that there is a matching of $k / 4$ two-sided red edges $(\bullet \longleftrightarrow)$.

## Case 1 continued - a large red matching in $H$

Suppose that there is a matching of $k / 4$ two-sided red edges $(\bullet \longleftrightarrow)$.


## Case 1 continued - a large red matching in $H$

Suppose that there is a matching of $k / 4$ two-sided red edges $(\bullet \longleftrightarrow)$.


## Case 1 continued - a large red matching in $H$

Suppose that there is a matching of $k / 4$ two-sided red edges $(\bullet \longleftrightarrow)$.


## Case 1 continued - a large red matching in $H$

Suppose that there is a matching of $k / 4$ two-sided red edges $(\hookleftarrow \longleftrightarrow$ ).


So, there are vertex-disjoint blue medium cycles $C_{1}^{\prime}, \ldots, C_{k / 4}^{\prime}$

## Case 1 continued - a large red matching in $H$

Suppose that there is a matching of $k / 4$ two-sided red edges ( $-\longleftrightarrow$ ).


So, there are vertex-disjoint blue medium cycles $C_{1}^{\prime}, \ldots, C_{k / 4}^{\prime}$ and vertex-disjoint red medium cycles $C_{1}^{\prime \prime}, \ldots, C_{k / 4}^{\prime \prime}$,

## Case 1 continued - a large red matching in $H$

Suppose that there is a matching of $k / 4$ two-sided red edges ( $\hookleftarrow \longrightarrow$ ).


So, there are vertex-disjoint blue medium cycles $C_{1}^{\prime}, \ldots, C_{k / 4}^{\prime}$ and vertex-disjoint red medium cycles $C_{1}^{\prime \prime}, \ldots, C_{k / 4}^{\prime \prime}$, such that $\left|V\left(C_{i}^{\prime}\right) \cap V\left(C_{i}^{\prime \prime}\right)\right| \geq \gamma \log n$.

## Case 1 - completed

$C_{1}^{\prime}, \ldots, C_{k / 4}^{\prime}$ vertex-disjoint blue medium cycles; $C_{1}^{\prime \prime}, \ldots, C_{k / 4}^{\prime \prime}$ vertex-disjoint red medium cycles; $\left|V\left(C_{i}^{\prime}\right) \cap V\left(C_{i}^{\prime \prime}\right)\right| \geq \gamma \log n$.

## Case 1 - completed

$C_{1}^{\prime}, \ldots, C_{k / 4}^{\prime}$ vertex-disjoint blue medium cycles; $C_{1}^{\prime \prime}, \ldots, C_{k / 4}^{\prime \prime}$ vertex-disjoint red medium cycles; $\left|V\left(C_{i}^{\prime}\right) \cap V\left(C_{i}^{\prime \prime}\right)\right| \geq \gamma \log n$.

Define an auxiliary graph $H^{\prime}$ as before, on vertex set $[k / 4]$, with respect to edges between the sets $V\left(C_{i}^{\prime}\right) \cap V\left(C_{i}^{\prime \prime}\right)$.

## Case 1 - completed

$C_{1}^{\prime}, \ldots, C_{k / 4}^{\prime}$ vertex-disjoint blue medium cycles; $C_{1}^{\prime \prime}, \ldots, C_{k / 4}^{\prime \prime}$ vertex-disjoint red medium cycles; $\left|V\left(C_{i}^{\prime}\right) \cap V\left(C_{i}^{\prime \prime}\right)\right| \geq \gamma \log n$.

Define an auxiliary graph $H^{\prime}$ as before, on vertex set [k/4], with respect to edges between the sets $V\left(C_{i}^{\prime}\right) \cap V\left(C_{i}^{\prime \prime}\right)$.

## Theorem (Raynaud '73)

## Case 1 - completed

$C_{1}^{\prime}, \ldots, C_{k / 4}^{\prime}$ vertex-disjoint blue medium cycles; $C_{1}^{\prime \prime}, \ldots, C_{k / 4}^{\prime \prime}$ vertex-disjoint red medium cycles; $\left|V\left(C_{i}^{\prime}\right) \cap V\left(C_{i}^{\prime \prime}\right)\right| \geq \gamma \log n$.

Define an auxiliary graph $H^{\prime}$ as before, on vertex set [k/4], with respect to edges between the sets $V\left(C_{i}^{\prime}\right) \cap V\left(C_{i}^{\prime \prime}\right)$.

## Theorem (Raynaud '73)

In every 2-colouring of the complete digraph on $n$ vertices there is a monochromatic $\overrightarrow{P_{n / 2}}$.

## Case 1 - completed

$C_{1}^{\prime}, \ldots, C_{k / 4}^{\prime}$ vertex-disjoint blue medium cycles; $C_{1}^{\prime \prime}, \ldots, C_{k / 4}^{\prime \prime}$ vertex-disjoint red medium cycles; $\left|V\left(C_{i}^{\prime}\right) \cap V\left(C_{i}^{\prime \prime}\right)\right| \geq \gamma \log n$.

Define an auxiliary graph $H^{\prime}$ as before, on vertex set [k/4], with respect to edges between the sets $V\left(C_{i}^{\prime}\right) \cap V\left(C_{i}^{\prime \prime}\right)$.

## Theorem (Raynaud '73)

In every 2-colouring of the complete digraph on $n$ vertices there is a monochromatic $\overrightarrow{P_{n / 2}}$.

Hence, there is a monochromatic $\overrightarrow{P_{k / 8}}$.

## Case 1 - completed

$C_{1}^{\prime}, \ldots, C_{k / 4}^{\prime}$ vertex-disjoint blue medium cycles; $C_{1}^{\prime \prime}, \ldots, C_{k / 4}^{\prime \prime}$ vertex-disjoint red medium cycles; $\left|V\left(C_{i}^{\prime}\right) \cap V\left(C_{i}^{\prime \prime}\right)\right| \geq \gamma \log n$.

Define an auxiliary graph $H^{\prime}$ as before, on vertex set [k/4], with respect to edges between the sets $V\left(C_{i}^{\prime}\right) \cap V\left(C_{i}^{\prime \prime}\right)$.

## Theorem (Raynaud '73)

In every 2-colouring of the complete digraph on $n$ vertices there is a monochromatic $\overrightarrow{P_{n / 2}}$.

Hence, there is a monochromatic $\overrightarrow{P_{k / 8}}$. Continue as before.

## Case 2: no medium monochromatic cycles

Case 2.

## Case 2: no medium monochromatic cycles

Case 2. $U$ is a set of $n / 2$ vertices with no monochromatic medium cycles.

## Case 2: no medium monochromatic cycles

Case 2. $U$ is a set of $n / 2$ vertices with no monochromatic medium cycles.

- There are no long blue cycles.


## Case 2: no medium monochromatic cycles

Case 2. $U$ is a set of $n / 2$ vertices with no monochromatic medium cycles.

- There are no long blue cycles. Indeed, otherwise, let $C$ be a shortest long blue cycle.



## Case 2: no medium monochromatic cycles

Case 2. $U$ is a set of $n / 2$ vertices with no monochromatic medium cycles.

- There are no long blue cycles. Indeed, otherwise, let $C$ be a shortest long blue cycle.


It has no blue chords of length at least $|C| / 4$.

## Case 2: no medium monochromatic cycles

Case 2. $U$ is a set of $n / 2$ vertices with no monochromatic medium cycles.

- There are no long blue cycles. Indeed, otherwise, let $C$ be a shortest long blue cycle.


It has no blue chords of length at least $|C| / 4$.

## Case 2: no medium monochromatic cycles

Case 2. $U$ is a set of $n / 2$ vertices with no monochromatic medium cycles.

- There are no long blue cycles. Indeed, otherwise, let $C$ be a shortest long blue cycle.


It has no blue chords of length at least $|C| / 4$.

## Case 2: no medium monochromatic cycles

Case 2. $U$ is a set of $n / 2$ vertices with no monochromatic medium cycles.

- There are no long blue cycles. Indeed, otherwise, let $C$ be a shortest long blue cycle.


It has no blue chords of length at least $|C| / 4$. We find a medium red cycle, a contradiction.

## Case 2: no medium monochromatic cycles

Case 2. $U$ is a set of $n / 2$ vertices with no monochromatic medium cycles.

- There are no long blue cycles.
- There is an order of $U$ with $O(n \log n)$ blue back edges.


## Case 2: no medium monochromatic cycles

Case 2. $U$ is a set of $n / 2$ vertices with no monochromatic medium cycles.

- There are no long blue cycles.
- There is an order of $U$ with $O(n \log n)$ blue back edges.
- There is a partition $\left\{A_{1}, \ldots, A_{1}\right\}$ of $U$, such that


## Case 2: no medium monochromatic cycles

Case 2. $U$ is a set of $n / 2$ vertices with no monochromatic medium cycles.

- There are no long blue cycles.
- There is an order of $U$ with $O(n \log n)$ blue back edges.
- There is a partition $\left\{A_{1}, \ldots, A_{1}\right\}$ of $U$, such that
- $\left|A_{i}\right|=\delta \log n$,


## Case 2: no medium monochromatic cycles

Case 2. $U$ is a set of $n / 2$ vertices with no monochromatic medium cycles.

- There are no long blue cycles.
- There is an order of $U$ with $O(n \log n)$ blue back edges.
- There is a partition $\left\{A_{1}, \ldots, A_{1}\right\}$ of $U$, such that
- $\left|A_{i}\right|=\delta \log n$,
- Almost all edges from $A_{i}$ to $A_{j}$ are


## Case 2: no medium monochromatic cycles

Case 2. $U$ is a set of $n / 2$ vertices with no monochromatic medium cycles.

- There are no long blue cycles.
- There is an order of $U$ with $O(n \log n)$ blue back edges.
- There is a partition $\left\{A_{1}, \ldots, A_{1}\right\}$ of $U$, such that
- $\left|A_{i}\right|=\delta \log n$,
- Almost all edges from $A_{i}$ to $A_{j}$ are $\left\{\begin{array}{l}\text { blue if } i<j\end{array}\right.$


## Case 2: no medium monochromatic cycles

Case 2. $U$ is a set of $n / 2$ vertices with no monochromatic medium cycles.

- There are no long blue cycles.
- There is an order of $U$ with $O(n \log n)$ blue back edges.
- There is a partition $\left\{A_{1}, \ldots, A_{1}\right\}$ of $U$, such that
- $\left|A_{i}\right|=\delta \log n$,
- Almost all edges from $A_{i}$ to $A_{j}$ are $\left\{\begin{array}{ll}\text { blue } & \text { if } i<j \\ \text { red } & \text { if } j<i\end{array}\right.$.


## Case 2 continued

Case 2 continued


Case 2 continued


## Case 2 continued



## Case 2 continued



## Case 2 continued



We found a monochromatic path of length $\Omega\left(\frac{n}{\sqrt{\log n}}\right)$.

## Size Ramsey numbers

We write $G \rightarrow H$ if in every 2-colouring of $G$ there is a monochromatic $H$.

## Size Ramsey numbers

We write $G \rightarrow H$ if in every 2-colouring of $G$ there is a monochromatic $H$.

Definition (Erdős, Faudree, Rousseau, Schelp '72)

## Size Ramsey numbers

We write $G \rightarrow H$ if in every 2-colouring of $G$ there is a monochromatic $H$.

Definition (Erdős, Faudree, Rousseau, Schelp '72)
The size Ramsey number of $H$, denoted by $r_{e}(H)$,

## Size Ramsey numbers

We write $G \rightarrow H$ if in every 2-colouring of $G$ there is a monochromatic $H$.

## Definition (Erdős, Faudree, Rousseau, Schelp '72)

The size Ramsey number of $H$, denoted by $r_{e}(H)$, is

$$
r_{e}(H)=\min \{e(G): G \rightarrow H\} .
$$

## Size Ramsey numbers

We write $G \rightarrow H$ if in every 2-colouring of $G$ there is a monochromatic $H$.

## Definition (Erdős, Faudree, Rousseau, Schelp '72)

The size Ramsey number of $H$, denoted by $r_{e}(H)$, is

$$
r_{e}(H)=\min \{e(G): G \rightarrow H\} .
$$

Somewhat surprisingly, Beck ('83) showed: $r_{e}\left(P_{n}\right)=O(n)$.

## Oriented size Ramsey numbers

## An oriented graph

## Oriented size Ramsey numbers

An oriented graph is a directed graph, where for every two vertices $x$ and $y$, at most one of $x y$ and $y x$ is an edge.

## Oriented size Ramsey numbers

An oriented graph is a directed graph, where for every two vertices $x$ and $y$, at most one of $x y$ and $y x$ is an edge.

## Definition

The oriented size Ramsey number of $H$

## Oriented size Ramsey numbers

An oriented graph is a directed graph, where for every two vertices $x$ and $y$, at most one of $x y$ and $y x$ is an edge.

## Definition

The oriented size Ramsey number of $H$ is

$$
\overrightarrow{r_{e}}(H)=\min \{e(G): G \rightarrow H, G \text { is oriented }\}
$$

## Oriented size Ramsey numbers

An oriented graph is a directed graph, where for every two vertices $x$ and $y$, at most one of $x y$ and $y x$ is an edge.

## Definition

The oriented size Ramsey number of $H$ is

$$
\overrightarrow{r_{e}}(H)=\min \{e(G): G \rightarrow H, G \text { is oriented }\}
$$

## Question

What is $\overrightarrow{r_{e}}\left(\overrightarrow{P_{n}}\right)$ ?

## Oriented size Ramsey number of a directed path

## Oriented size Ramsey number of a directed path

Theorem (Ben-Eliezer, Krivelevich, Sudakov '12)

## Oriented size Ramsey number of a directed path

Theorem (Ben-Eliezer, Krivelevich, Sudakov '12)

$$
\overrightarrow{r_{e}}\left(\overrightarrow{P_{n}}\right) \geq \frac{c n^{2} \log n}{(\log \log n)^{3}}
$$

## Oriented size Ramsey number of a directed path

Theorem (Ben-Eliezer, Krivelevich, Sudakov '12)

$$
\overrightarrow{r_{e}}\left(\overrightarrow{P_{n}}\right) \geq \frac{c n^{2} \log n}{(\log \log n)^{3}}
$$

This lower bound is close to being tight.

## Oriented size Ramsey number of a directed path

Theorem (Ben-Eliezer, Krivelevich, Sudakov '12)

$$
\overrightarrow{r_{e}}\left(\overrightarrow{P_{n}}\right) \geq \frac{c n^{2} \log n}{(\log \log n)^{3}}
$$

This lower bound is close to being tight.

## Corollary (of our main result)

## Oriented size Ramsey number of a directed path

## Theorem (Ben-Eliezer, Krivelevich, Sudakov '12)

$$
\overrightarrow{r_{e}}\left(\overrightarrow{P_{n}}\right) \geq \frac{c n^{2} \log n}{(\log \log n)^{3}}
$$

This lower bound is close to being tight.
Corollary (of our main result)

$$
\overrightarrow{r_{e}}\left(\overrightarrow{P_{n}}\right) \leq c n^{2} \log n
$$

## Oriented size Ramsey number of a directed path

## Theorem (Ben-Eliezer, Krivelevich, Sudakov '12)

$$
\overrightarrow{r_{e}}\left(\overrightarrow{P_{n}}\right) \geq \frac{c n^{2} \log n}{(\log \log n)^{3}}
$$

This lower bound is close to being tight.
Corollary (of our main result)

$$
\overrightarrow{r_{e}}\left(\overrightarrow{P_{n}}\right) \leq c n^{2} \log n
$$

We establish a better, sharp lower bound.

## Oriented size Ramsey number of a directed path

Theorem (Ben-Eliezer, Krivelevich, Sudakov '12)

$$
\overrightarrow{r_{e}}\left(\overrightarrow{P_{n}}\right) \geq \frac{c n^{2} \log n}{(\log \log n)^{3}}
$$

This lower bound is close to being tight.
Corollary (of our main result)

$$
\overrightarrow{r_{e}}\left(\overrightarrow{P_{n}}\right) \leq c n^{2} \log n
$$

We establish a better, sharp lower bound.
Theorem (L., Sudakov '17+)

$$
\overrightarrow{r_{e}}\left(\overrightarrow{P_{n}}\right) \geq c n^{2} \log n
$$

## Open problem

## Open problem

Let $I_{r}(T)$ be the maximum $I$ such that every $r$-colouring of $T$ contains a monochromatic $\vec{P}_{l}$.

## Open problem

Let $I_{r}(T)$ be the maximum / such that every $r$-colouring of $T$ contains a monochromatic $\vec{P}_{l}$.

## Proposition

## Open problem

Let $I_{r}(T)$ be the maximum / such that every $r$-colouring of $T$ contains a monochromatic $\vec{P}_{l}$.

> Proposition
> $I_{r}(T)=O\left(\frac{n^{1 /(r-1)}}{(\log n)^{-1 / r(r-1)}}\right)$

## Open problem

Let $I_{r}(T)$ be the maximum $I$ such that every $r$-colouring of $T$ contains a monochromatic $\vec{P}_{1}$.

## Proposition <br> $I_{r}(T)=O\left(\frac{n^{1 /(r-1)}}{(\log n)^{-1 / r(r-1)}}\right)$ for every tournament $T$ of order $n$.

## Open problem

Let $I_{r}(T)$ be the maximum / such that every $r$-colouring of $T$ contains a monochromatic $\vec{P}_{l}$.

## Proposition

$I_{r}(T)=O\left(\frac{n^{1 /(r-1)}}{(\log n)^{-1 / r(r-1)}}\right)$ for every tournament $T$ of order $n$.

## Question

## Open problem

Let $I_{r}(T)$ be the maximum I such that every $r$-colouring of $T$ contains a monochromatic $\vec{P}_{l}$.

## Proposition

$I_{r}(T)=O\left(\frac{n^{1 /(r-1)}}{(\log n)^{-1 / r(r-1)}}\right)$ for every tournament $T$ of order $n$.

## Question

What is $I_{r}(T)$ for $T$ a random tournament?

## The end

Thank you for listening!

