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Ramsey theory for directed graphs

We consider tournaments: directed graphs where for every
two vertices x and y, exactly one of xy and yx is an edge.
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Basic question. which digraphs appear as monochromatic
subgraphs of every 2-coloured tournament of order n?
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Note: can only hope for acyclic monochromatic subgraphs.
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We focus on directed paths ( ).

%
Let P, be the directed path on / vertices.
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Monochromatic directed paths

Note: can only hope for acyclic monochromatic subgraphs.

/_)\
\/
We focus on directed paths ( ).

%
Let P, be the directed path on / vertices.

Definition

%
I(T) = max {/ : every 2-colouring of T has a monochromatic P/}.
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Theorem (Bermond; Chvatal; Gyarfas and Lehel '70s)
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Proof.
%
m Gallai-Hasse-Roy-Vitaver: if x(G) > /, then P, C G.
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Lower bound on /(T)

Theorem (Bermond; Chvatal; Gyarfas and Lehel '70s)

I(T) > \/n for every tournament T on n vertices.

Proof.
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Lower bound on /(T)

Theorem (Bermond; Chvatal; Gyarfas and Lehel '70s)

I(T) > \/n for every tournament T on n vertices.

Proof.
= Gallai-Hasse-Roy-Vitaver: if y(G) > /, then P, C G.

m Tg - graph of red edges, Tg - blue edges.
Then either x(Tg) > +/nor x(Tg) > +/n.

—
m By GHRYV theorem, there is a monochromatic Pﬁ. (]
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Claim. The theorem is tight for transitive tournaments,
where vertices can be ordered such that xy is an edge iff x<y.
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So, min{/(T) : T is a tournament on n vertices} = \/n.
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Minimum / maximum of /(T)

Claim. The theorem is tight for transitive tournaments,
where vertices can be ordered such that xy is an edge iff x<y.

BO008

So, min{/(T) : T is a tournament on n vertices} = \/n.

Question

What is max{/(T) : T is a tournament on n vertices}?
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Upper bound on /(T)

Proposition (Ben-Eliezer, Krivelevich, Sudakov '12)

(T) < 2o
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Monochromatic paths have length at most

Shoham Letzter Monochromatic directed paths in random tournaments




Upper bound on /(T)

Proposition (Ben-Eliezer, Krivelevich, Sudakov '12)

(T) < 2o

v/ logn
Fact. every tournament on m vertices contains a transitive
tournament on log m vertices.
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Monochromatic paths have length at most /5"
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Upper bound on /(T)

Proposition (Ben-Eliezer, Krivelevich, Sudakov '12)

(T) < 2o

v/ logn
Fact. every tournament on m vertices contains a transitive
tournament on log m vertices.
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Proposition (Ben-Eliezer, Krivelevich, Sudakov '12)
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Proposition (Ben-Eliezer, Krivelevich, Sudakov '12)
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Question. is the bound /(T) < —2— tight?
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Let T, be the random tournament on n vertices.

Theorem (Ben-Eliezer, Krivelevich, Sudakov '12)
Let T = T,. Then, with high probability, I(T) > <"
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Let T, be the random tournament on n vertices.

Theorem (Ben-Eliezer, Krivelevich, Sudakov '12)
Let T = T,. Then, with high probability, I(T) > <"

logn®

Theorem (Buci¢, L., Sudakov '17+)
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Question. is the bound /(T) < \/i’)’? tight?

Intuition. consider random tournaments.

Let T, be the random tournament on n vertices.

Theorem (Ben-Eliezer, Krivelevich, Sudakov '12)
Let T = T,. Then, with high probability, I(T) > <"

logn®

Theorem (Buci¢, L., Sudakov '17+)
Let T = T,. Then, with high probability, I(T) > —=

— logn
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Preliminaries

Fact (pseudo-randomness). w.h.p., if A and B are disjoint
sets of size at least clog n, then there are at least Z|A||B]

edges from A to B.
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We call a cycle C
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Preliminaries

Fact (pseudo-randomness). w.h.p., if A and B are disjoint
sets of size at least clog n, then there are at least Z|A||B]

edges from A to B.

short if |C| < Blogn.
We call a cycle C medium  if |C| € [Blog n, 50/ log n].
long if |C| > 50/ log n.
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Case 1: many disjoint blue cycles

Case 1.
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Case 1. (, ..., C are vertex-disjoint blue medium cycles,
covering at least n/4 vertices.
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Case 1. (, ..., C are vertex-disjoint blue medium cycles,
covering at least n/4 vertices.

Define an auxiliary digraph H:
m vertices [k],

m /j is a blue edge if at least %Iog n vertices of C; send a
blue edge to C;;
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Case 1: many disjoint blue cycles

Case 1. (, ..., C are vertex-disjoint blue medium cycles,
covering at least n/4 vertices.

Define an auxiliary digraph H:
m vertices [k],

m /j is a blue edge if at least %Iog n vertices of C; send a
blue edge to C;; otherwise, ij is red.
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Case 1: many disjoint blue cycles

Case 1. (, ..., C are vertex-disjoint blue medium cycles,
covering at least n/4 vertices.

Define an auxiliary digraph H:
m vertices [k],

m /j is a blue edge if at least %Iog n vertices of C; send a
blue edge to C;; otherwise, ij is red.

Note: H is a 2-colouring of the complete directed graph on k
vertices.
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Case 1 continued - a long blue path in H

—
Suppose that H has a blue Py ;.
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We find a blue path of length n/200 in T:
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We find a blue path of length n/200 in T:
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Case 1 continued - a long blue path in H

—
Suppose that H has a blue Py ;.
We find a blue path of length n/200 in T:
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Case 1 continued - a long blue path in H

—
Suppose that H has a blue Py ;.
We find a blue path of length n/200 in T:

0,0, 01010
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Case 1 continued - a long blue path in H

—
Suppose that H has a blue Py ;.
We find a blue path of length n/200 in T:
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Case 1 continued - a long blue path in H

—
Suppose that H has a blue Py ;.
We find a blue path of length n/200 in T:
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Case 1 continued - a long blue path in H

—
Suppose that H has a blue Py ;.
We find a blue path of length n/200 in T:

O.w., there is a matching of k/4 two-sided red edges (e<—ss).
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Case 1 continued - a long blue path in H

—
Suppose that H has a blue Py ;.
We find a blue path of length n/200 in T:

O.w., there is a matching of k/4 two-sided red edges (e<—ss).

Indeed, if there is no such matching,
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Case 1 continued - a long blue path in H

—
Suppose that H has a blue Py ;.
We find a blue path of length n/200 in T:

O.w., there is a matching of k/4 two-sided red edges (e<—ss).

Indeed, if there is no such matching, there is a blue
tournament on k/2 vertices,
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Case 1 continued - a long blue path in H

—
Suppose that H has a blue Py ;.
We find a blue path of length n/200 in T:

O.w., there is a matching of k/4 two-sided red edges (e<—ss).

Indeed, if there is no such matching, there is a blue
tournament on k/2 vertices, which has a Hamiltonian path.
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Case 1 continued - a large red matching in H

Suppose that there is a matching of k/4 two-sided red edges

(o).
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Suppose that there is a matching of k/4 two-sided red edges
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Case 1 continued - a large red matching in H

Suppose that there is a matching of k/4 two-sided red edges

(o).
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Case 1 continued - a large red matching in H

Suppose that there is a matching of k/4 two-sided red edges

(o).

So, there are vertex-disjoint blue medium cycles i, ..., ,1/4
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Case 1 continued - a large red matching in H

Suppose that there is a matching of k/4 two-sided red edges

So, there are vertex-disjoint blue medium cycles i, ..., ,1/4
and vertex-disjoint red medium cycles (7, ..., ,’<’/4,
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Case 1 continued - a large red matching in H

Suppose that there is a matching of k/4 two-sided red edges

So, there are vertex-disjoint blue medium cycles i, ..., ,1/4
and vertex-disjoint red medium cycles C7,..., (), such that

[V(C) N V(C")| > ~logn.
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Case 1 - completed

/ / P H . " "
1> -+ -+ Ckq vertex-disjoint blue medium cycles; CY',..., G/,

vertex-disjoint red medium cycles; |V(C/) N V(C/")| > ~log n.
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Case 1 - completed

1> ---» Ci/q vertex-disjoint blue medium cycles; C7', ..., /),
vertex-disjoint red medium cycles; |V(C/) N V(C/")| > ~log n.

Define an auxiliary graph H’ as before, on vertex set [k /4],
with respect to edges between the sets V(C/) N V(C/).
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Case 1 - completed

1> ---» Ci/q vertex-disjoint blue medium cycles; C7', ..., /),
vertex-disjoint red medium cycles; |V(C/) N V(C/")| > ~log n.

Define an auxiliary graph H’ as before, on vertex set [k /4],
with respect to edges between the sets V(C/) N V(C/).

Theorem (Raynaud '73)
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Case 1 - completed

1> ---» Ci/q vertex-disjoint blue medium cycles; C7', ..., /),
vertex-disjoint red medium cycles; |V(C/) N V(C/")| > ~log n.

Define an auxiliary graph H’ as before, on vertex set [k /4],
with respect to edges between the sets V(C/) N V(C/).

Theorem (Raynaud '73)

In every 2-colouring of the complete digraph on n vertices
there is a monochromatic P, ,.
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Case 1 - completed

1> ---» Ci/q vertex-disjoint blue medium cycles; C7', ..., /),
vertex-disjoint red medium cycles; |V(C/) N V(C/")| > ~log n.

Define an auxiliary graph H’ as before, on vertex set [k /4],
with respect to edges between the sets V(C/) N V(C/).

Theorem (Raynaud '73)

In every 2-colouring of the complete digraph on n vertices
there is a monochromatic P, ,.

. e
Hence, there is a monochromatic Py s.
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Case 1 - completed

1> ---» Ci/q vertex-disjoint blue medium cycles; C7', ..., /),
vertex-disjoint red medium cycles; |V(C/) N V(C/")| > ~log n.

Define an auxiliary graph H’ as before, on vertex set [k /4],
with respect to edges between the sets V(C/) N V(C/).

Theorem (Raynaud '73)

In every 2-colouring of the complete digraph on n vertices
there is a monochromatic P, ,.

Hence, there is a monochromatic Py /5. Continue as before.
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Case 2: no medium monochromatic cycles

Case 2.
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Case 2: no medium monochromatic cycles

Case 2. U is a set of n/2 vertices with no monochromatic
medium cycles.
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Case 2: no medium monochromatic cycles

Case 2. U is a set of n/2 vertices with no monochromatic
medium cycles.

m There are no long blue cycles.
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Case 2: no medium monochromatic cycles

Case 2. U is a set of n/2 vertices with no monochromatic
medium cycles.

m There are no long blue cycles.
Indeed, otherwise, let C be a shortest long blue cycle.
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It has no blue chords of length at least |C|/4.

Shoham Letzter Monochromatic directed paths in random tournaments



Case 2: no medium monochromatic cycles

Case 2. U is a set of n/2 vertices with no monochromatic
medium cycles.

m There are no long blue cycles.
Indeed, otherwise, let C be a shortest long blue cycle.
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m There are no long blue cycles.
Indeed, otherwise, let C be a shortest long blue cycle.

It has no blue chords of length at least |C|/4.
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Case 2: no medium monochromatic cycles

Case 2. U is a set of n/2 vertices with no monochromatic
medium cycles.

m There are no long blue cycles.
Indeed, otherwise, let C be a shortest long blue cycle.

It has no blue chords of length at least |C|/4.
We find a medium red cycle, a contradiction.
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Case 2: no medium monochromatic cycles

Case 2. U is a set of n/2 vertices with no monochromatic
medium cycles.

m There are no long blue cycles.

m There is an order of U with O(nlog n) blue back edges.
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m There is a partition {A;, ..., A/} of U, such that
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Case 2: no medium monochromatic cycles

Case 2. U is a set of n/2 vertices with no monochromatic
medium cycles.

m There are no long blue cycles.
m There is an order of U with O(nlog n) blue back edges.
m There is a partition {A;, ..., A/} of U, such that

m |A;| =dlogn,

m Almost all edges from A; to A; are
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Case 2: no medium monochromatic cycles

Case 2. U is a set of n/2 vertices with no monochromatic
medium cycles.

m There are no long blue cycles.
m There is an order of U with O(nlog n) blue back edges.
m There is a partition {A;, ..., A/} of U, such that

m |A;| =dlogn,

m Almost all edges from A; to A; are { blue if 7 < j
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Case 2: no medium monochromatic cycles

Case 2. U is a set of n/2 vertices with no monochromatic
medium cycles.

m There are no long blue cycles.
m There is an order of U with O(nlog n) blue back edges.
m There is a partition {A;, ..., A/} of U, such that

m |A;| =dlogn,

blue if i < j

m Almost all edges from A; to A; are { red ifj<i
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Case 2 continued
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Case 2 continued

4 logn

000000C
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Case 2 continued

4 logn

000000C
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Case 2 continued

4 logn

DOEOOOE
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Case 2 continued

4 logn

DTN
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Case 2 continued

4 logn

DN

We found a monochromatic path of length 2 ( L ) O]

7/ logn
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Size Ramsey numbers

We write G — H if in every 2-colouring of G there is a
monochromatic H.
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Size Ramsey numbers

We write G — H if in every 2-colouring of G there is a
monochromatic H.

Definition (Erdés, Faudree, Rousseau, Schelp '72)
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Size Ramsey numbers

We write G — H if in every 2-colouring of G there is a
monochromatic H.

Definition (Erdés, Faudree, Rousseau, Schelp '72)

The size Ramsey number of H, denoted by r.(H),
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Size Ramsey numbers

We write G — H if in every 2-colouring of G there is a
monochromatic H.

Definition (Erdés, Faudree, Rousseau, Schelp '72)

The size Ramsey number of H, denoted by r.(H), is
re(H) = min{e(G) : G — H}.
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Size Ramsey numbers

We write G — H if in every 2-colouring of G there is a
monochromatic H.

Definition (Erdés, Faudree, Rousseau, Schelp '72)

The size Ramsey number of H, denoted by r.(H), is
re(H) = min{e(G) : G — H}.

Somewhat surprisingly, Beck ('83) showed: r.(P,) = O(n).
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Oriented size Ramsey numbers

An oriented graph

Shoham Letzter Monochromatic directed paths in random tournaments



Oriented size Ramsey numbers

An oriented graph is a directed graph, where for every two
vertices x and y, at most one of xy and yx is an edge.
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Oriented size Ramsey numbers

An oriented graph is a directed graph, where for every two
vertices x and y, at most one of xy and yx is an edge.

Definition

The oriented size Ramsey number of H
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Oriented size Ramsey numbers

An oriented graph is a directed graph, where for every two
vertices x and y, at most one of xy and yx is an edge.

Definition

The oriented size Ramsey number of H is

72(H) = min{e(G) : G — H, G is oriented}.
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Oriented size Ramsey numbers

An oriented graph is a directed graph, where for every two
vertices x and y, at most one of xy and yx is an edge.

The oriented size Ramsey number of H is

72(H) = min{e(G) : G — H, G is oriented}.

What is 72(P,)?
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Oriented size Ramsey number of a directed path
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Oriented size Ramsey number of a directed path

Theorem (Ben-Eliezer, Krivelevich, Sudakov '12)
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Oriented size Ramsey number of a directed path

Theorem (Ben-Eliezer, Krivelevich, Sudakov '12)

2
= cn“logn

Pn) > ———.
re(Pn) 2 (log log n)3
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Oriented size Ramsey number of a directed path

Theorem (Ben-Eliezer, Krivelevich, Sudakov '12)

2
= cn“logn

Pn) > ———.
re(Pn) 2 (log log n)3

This lower bound is close to being tight.
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re(Pn) 2 (log log n)3

This lower bound is close to being tight.

Corollary (of our main result)
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Oriented size Ramsey number of a directed path

Theorem (Ben-Eliezer, Krivelevich, Sudakov '12)

2
= cn“logn

Pn) > ———.
re(Pn) 2 (log log n)3

This lower bound is close to being tight.

Corollary (of our main result)

%
E?(P,,) < cn®log n.
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Oriented size Ramsey number of a directed path

Theorem (Ben-Eliezer, Krivelevich, Sudakov '12)

2
= cn“logn

Pn) > ———.
re(Pn) 2 (log log n)3

This lower bound is close to being tight.

Corollary (of our main result)
%
7o (P,) < cn®log n.

We establish a better, sharp lower bound.
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Oriented size Ramsey number of a directed path

Theorem (Ben-Eliezer, Krivelevich, Sudakov '12

2
= cn“logn

Pn) > ———.
re(Pn) 2 (log log n)3

This lower bound is close to being tight.

Corollary (of our main result)

E_?(P ) < cn? log n.
We establish a better, sharp lower bound.

Theorem (L., Sudakov '17+)

_>
72(P,) > cn?log n.
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Open problem

Shoham Letzt: random tournaments

Monochromatic directed path:




Open problem

Let /,(T) be the maximum L>such that every r-colouring of T
contains a monochromatic P;.
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Open problem

Let /,(T) be the maximum L>such that every r-colouring of T
contains a monochromatic P;.

W) = O (ggiries)

(|0g n)fl/r(rfl)
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Open problem

Let /,(T) be the maximum L>such that every r-colouring of T
contains a monochromatic P;.

L(T)=0 (&%) for every tournament T of order n.
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Open problem

Let /,(T) be the maximum L>such that every r-colouring of T
contains a monochromatic P;.

L(T)=0 (&%) for every tournament T of order n.

Question

Shoham Letzter Monochromatic directed paths in random tournaments



Open problem

Let /,(T) be the maximum L>such that every r-colouring of T
contains a monochromatic P;.

L(T)=0 (&%) for every tournament T of order n.

Question

What is I,(T) for T a random tournament?
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Thank you for listening!
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