Monochromatic directed paths in random tournaments

Shoham Letzter

joint work with Matija Bucić and Benny Sudakov

ETH-ITS

Random Structures and Algorithms August 2017

向下 イヨト イヨト

Shoham Letzter Monochromatic directed paths in random tournaments

回 とくほとくほと

We consider tournaments:

We consider **tournaments**: directed graphs where for every two vertices *x* and *y*, exactly one of *xy* and *yx* is an edge.

We consider **tournaments**: directed graphs where for every two vertices *x* and *y*, exactly one of *xy* and *yx* is an edge.

We consider **tournaments**: directed graphs where for every two vertices *x* and *y*, exactly one of *xy* and *yx* is an edge.

We consider **tournaments**: directed graphs where for every two vertices *x* and *y*, exactly one of *xy* and *yx* is an edge.

Basic question.

We consider **tournaments**: directed graphs where for every two vertices *x* and *y*, exactly one of *xy* and *yx* is an edge.

Basic question. which digraphs appear as monochromatic subgraphs of every 2-coloured tournament of order n?

Shoham Letzter Monochromatic directed paths in random tournaments

回とくほとくほど

Note: can only hope for acyclic monochromatic subgraphs.

(A) (E) (A) (E) (A)

Note: can only hope for **acyclic** monochromatic subgraphs.

.

→ < ∃ →</p>

Note: can only hope for **acyclic** monochromatic subgraphs.

Note: can only hope for **acyclic** monochromatic subgraphs.

Note: can only hope for **acyclic** monochromatic subgraphs.

We focus on directed paths

Note: can only hope for **acyclic** monochromatic subgraphs.

We focus on **directed paths** $(\bullet \rightarrow \bullet \rightarrow \bullet \rightarrow \bullet)$.

Note: can only hope for **acyclic** monochromatic subgraphs.

We focus on **directed paths** ($\bullet \rightarrow \bullet \rightarrow \bullet \rightarrow \bullet$). Let $\overrightarrow{P_l}$ be the directed path on *l* vertices.

Note: can only hope for **acyclic** monochromatic subgraphs.

$$I(T) = \max \left\{ I : every 2 - colouring of T has a monochromatic $\overrightarrow{P_I} \right\}$$$

Lower bound on I(T)

・ロト ・回ト ・ヨト ・ヨト

æ

Lower bound on I(T)

Theorem (Bermond; Chvátal; Gyárfás and Lehel '70s)

イロト イヨト イヨト イヨト

 $I(T) \ge \sqrt{n}$ for every tournament T on n vertices.

(4回) (4回) (4回)

 $I(T) \ge \sqrt{n}$ for every tournament T on n vertices.

Proof.

Gallai-Hasse-Roy-Vitaver:

(本間) (本語) (本語)

 $I(T) \ge \sqrt{n}$ for every tournament T on n vertices.

Proof.

Gallai-Hasse-Roy-Vitaver: if $\chi(G) \ge I$,

< ロ > < 同 > < 三 > < 三 >

 $I(T) \ge \sqrt{n}$ for every tournament T on n vertices.

Proof.

Gallai-Hasse-Roy-Vitaver: if $\chi(G) \ge I$, then $\overrightarrow{P_I} \subseteq G$.

(4月) トイヨト イヨト

 $I(T) \ge \sqrt{n}$ for every tournament T on n vertices.

Proof.

- **Gallai-Hasse-Roy-Vitaver**: if $\chi(G) \ge I$, then $\overrightarrow{P_I} \subseteq G$.
- **T**_R graph of red edges, T_B blue edges.

A (1) × (2) × (3) ×

 $I(T) \ge \sqrt{n}$ for every tournament T on n vertices.

Proof.

- **Gallai-Hasse-Roy-Vitaver**: if $\chi(G) \ge I$, then $\overrightarrow{P}_I \subseteq G$.
- T_R graph of red edges, T_B blue edges. Then either $\chi(T_R) \ge \sqrt{n}$ or $\chi(T_B) \ge \sqrt{n}$.

イロト イポト イヨト イヨト

 $I(T) \ge \sqrt{n}$ for every tournament T on n vertices.

Proof.

- **Gallai-Hasse-Roy-Vitaver**: if $\chi(G) \ge I$, then $\overrightarrow{P}_I \subseteq G$.
- T_R graph of red edges, T_B blue edges. Then either $\chi(T_R) \ge \sqrt{n}$ or $\chi(T_B) \ge \sqrt{n}$.
- By GHRV theorem, there is a monochromatic $\overrightarrow{P_{\sqrt{n}}}$.

イロト イポト イヨト イヨト

Claim. The theorem is tight for transitive tournaments,

・ロト ・四ト ・ヨト ・ヨト

臣

Claim. The theorem is tight for **transitive tournaments**, where vertices can be ordered such that xy is an edge iff x < y.

・ 同 ト ・ ヨ ト ・ ヨ ト

Claim. The theorem is tight for **transitive tournaments**, where vertices can be ordered such that xy is an edge iff x < y.

・ 同 ト ・ ヨ ト ・ ヨ ト

Claim. The theorem is tight for **transitive tournaments**, where vertices can be ordered such that xy is an edge iff x < y.

Claim. The theorem is tight for **transitive tournaments**, where vertices can be ordered such that xy is an edge iff x < y.

Claim. The theorem is tight for **transitive tournaments**, where vertices can be ordered such that xy is an edge iff x < y.

So, min{I(T) : T is a tournament on n vertices} = \sqrt{n} .

Claim. The theorem is tight for **transitive tournaments**, where vertices can be ordered such that xy is an edge iff x < y.

So, min{I(T) : T is a tournament on n vertices} = \sqrt{n} .

Claim. The theorem is tight for **transitive tournaments**, where vertices can be ordered such that xy is an edge iff x < y.

So, min{I(T) : T is a tournament on n vertices} = \sqrt{n} .

Question

What is $\max\{I(T) : T \text{ is a tournament on } n \text{ vertices}\}$?

< ロ > < 同 > < 三 > < 三 >

Upper bound on I(T)

・ロト ・回ト ・ヨト ・ヨト

æ

Upper bound on I(T)

Proposition (Ben-Eliezer, Krivelevich, Sudakov '12)

$$I(T) \leq \frac{2n}{\sqrt{\log n}}.$$

イロン 不同 とくほど 不同 とう

臣

Proposition (Ben-Eliezer, Krivelevich, Sudakov '12)

 $I(T) \leq \frac{2n}{\sqrt{\log n}}.$

Fact. every tournament on *m* vertices contains a transitive tournament on log *m* vertices.

イロン イヨン イヨン ・ ヨン

Proposition (Ben-Eliezer, Krivelevich, Sudakov '12)

 $I(T) \leq \frac{2n}{\sqrt{\log n}}.$

Fact. every tournament on *m* vertices contains a transitive tournament on log *m* vertices.

・ 回 ト ・ ヨ ト ・ ヨ ト …

Proposition (Ben-Eliezer, Krivelevich, Sudakov '12) $I(T) \leq \frac{2n}{\sqrt{\log n}}.$

Fact. every tournament on *m* vertices contains a transitive tournament on log *m* vertices.

・ 回 ト ・ ヨ ト ・ ヨ ト …

Proposition (Ben-Eliezer, Krivelevich, Sudakov '12)

 $I(T) \leq \frac{2n}{\sqrt{\log n}}.$

Fact. every tournament on *m* vertices contains a transitive tournament on log *m* vertices.

Proposition (Ben-Eliezer, Krivelevich, Sudakov '12)

 $I(T) \leq \frac{2n}{\sqrt{\log n}}.$

Fact. every tournament on *m* vertices contains a transitive tournament on log *m* vertices.

Proposition (Ben-Eliezer, Krivelevich, Sudakov '12)

 $I(T) \leq \frac{2n}{\sqrt{\log n}}.$

Fact. every tournament on *m* vertices contains a transitive tournament on log *m* vertices.

(4月) トイヨト イヨト

Proposition (Ben-Eliezer, Krivelevich, Sudakov '12)

 $I(T) \leq \frac{2n}{\sqrt{\log n}}.$

Fact. every tournament on *m* vertices contains a transitive tournament on log *m* vertices.

(4月) トイヨト イヨト

Proposition (Ben-Eliezer, Krivelevich, Sudakov '12)

 $I(T) \leq \frac{2n}{\sqrt{\log n}}.$

Fact. every tournament on *m* vertices contains a transitive tournament on log *m* vertices.

Monochromatic paths have length at most

A (10) × (10) × (10) ×

Proposition (Ben-Eliezer, Krivelevich, Sudakov '12)

 $I(T) \leq \frac{2n}{\sqrt{\log n}}.$

Fact. every tournament on *m* vertices contains a transitive tournament on log *m* vertices.

Monochromatic paths have length at most $\sqrt{\frac{\log n}{2}}$

Proposition (Ben-Eliezer, Krivelevich, Sudakov '12) $I(T) \leq \frac{2n}{\sqrt{\log n}}.$

Fact. every tournament on *m* vertices contains a transitive tournament on log *m* vertices.

Monochromatic paths have length at most $\sqrt{\frac{\log n}{2}} \cdot \frac{2n}{\log n}$

Proposition (Ben-Eliezer, Krivelevich, Sudakov '12)

 $I(T) \leq \frac{2n}{\sqrt{\log n}}.$

Fact. every tournament on *m* vertices contains a transitive tournament on log *m* vertices.

Monochromatic paths have length at most $\sqrt{\frac{\log n}{2}} \cdot \frac{2n}{\log n} + \sqrt{n}$

Proposition (Ben-Eliezer, Krivelevich, Sudakov '12)

 $I(T) \leq \frac{2n}{\sqrt{\log n}}.$

Fact. every tournament on *m* vertices contains a transitive tournament on log *m* vertices.

Monochromatic paths have length at most $\sqrt{\frac{\log n}{2}} \cdot \frac{2n}{\log n} + \sqrt{n} \le \frac{2n}{\sqrt{\log n}}$.

Question. is the bound
$$I(T) \leq \frac{2n}{\sqrt{\log n}}$$
 tight?

・ロト・日本・日本・日本・日本・日本

Question. is the bound $I(T) \leq \frac{2n}{\sqrt{\log n}}$ tight? **Intuition.**

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Question. is the bound $I(T) \leq \frac{2n}{\sqrt{\log n}}$ tight? **Intuition.** consider random tournaments.

イロト イヨト イヨト イヨト 二日

イロン イヨン イヨン ・

Theorem (Ben-Eliezer, Krivelevich, Sudakov '12)

Let $T = T_n$. Then, with high probability, $I(T) \ge \frac{cn}{\log n}$.

Theorem (Ben-Eliezer, Krivelevich, Sudakov '12)

Let $T = T_n$. Then, with high probability, $I(T) \ge \frac{cn}{\log n}$.

Theorem (Bucić, L., Sudakov '17+)

Theorem (Ben-Eliezer, Krivelevich, Sudakov '12)

Let $T = T_n$. Then, with high probability, $I(T) \ge \frac{cn}{\log n}$.

Theorem (Bucić, L., Sudakov '17+)

Let $T = T_n$. Then, with high probability, $I(T) \ge \frac{cn}{\sqrt{\log n}}$.

イロト 不得 トイヨト イヨト 二日

Preliminaries

Shoham Letzter Monochromatic directed paths in random tournaments

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ -

2

Fact (pseudo-randomness). w.h.p., if A and B are disjoint sets of size at least $\alpha \log n$,

回 とくほとくほと

We call a cycle C

A B K A B K

We call a cycle
$$C$$
 $\begin{cases} short \\ \\ \end{cases}$

We call a cycle
$$C$$

$$\begin{cases} \text{short} & \text{if } |C| \leq \beta \log n. \end{cases}$$

We call a cycle
$$C$$

$$\begin{cases}
short & \text{if } |C| \leq \beta \log n. \\
medium & \text{if } |C| \in [\beta \log n, 50\beta \log n].
\end{cases}$$

We call a cycle
$$C$$

$$\begin{cases}
short & \text{if } |C| \leq \beta \log n. \\
medium & \text{if } |C| \in [\beta \log n, 50\beta \log n]. \\
long & \text{if } |C| \geq 50\beta \log n.
\end{cases}$$

Case 1: many disjoint blue cycles

Case 1.

Shoham Letzter Monochromatic directed paths in random tournaments

イロト イヨト イヨト イヨト

臣

Define an auxiliary digraph H:

Define an auxiliary digraph H:

vertices [k],

Define an auxiliary digraph H:

- vertices [k],
- *ij* is a **blue** edge if at least $\frac{\beta}{4} \log n$ vertices of C_i send a blue edge to C_j ;

Define an auxiliary digraph H:

- vertices [k],
- *ij* is a **blue** edge if at least $\frac{\beta}{4} \log n$ vertices of C_i send a blue edge to C_j ; otherwise, *ij* is **red**.

Define an auxiliary digraph H:

- vertices [k],
- *ij* is a **blue** edge if at least $\frac{\beta}{4} \log n$ vertices of C_i send a blue edge to C_j ; otherwise, *ij* is **red**.

Note: H is a 2-colouring of the complete directed graph on k vertices.

Case 1 continued - a long blue path in H

Suppose that *H* has a blue $\overrightarrow{P_{k/2}}$.

Suppose that *H* has a blue $\overrightarrow{P_{k/2}}$. We find a blue path of length n/200 in *T*:

向下 イヨト イヨト

O.w., there is a matching of k/4 two-sided red edges (•••••).

O.w., there is a matching of k/4 two-sided red edges ($\bullet \bullet \bullet \bullet$). Indeed, if there is no such matching,

O.w., there is a matching of k/4 two-sided red edges (••••). Indeed, if there is no such matching, there is a blue tournament on k/2 vertices, which has a Hamiltonian path.

Suppose that there is a matching of k/4 two-sided red edges (•••••).

向下 イヨト イヨト

Suppose that there is a matching of k/4 two-sided red edges $(\bullet \bullet \bullet \bullet)$.

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Suppose that there is a matching of k/4 two-sided red edges $(\bullet \bullet \bullet \bullet)$.

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Suppose that there is a matching of k/4 two-sided red edges (•••••).

Suppose that there is a matching of k/4 two-sided red edges (•••••).

So, there are vertex-disjoint blue medium cycles $C'_1, \ldots, C'_{k/4}$

Suppose that there is a matching of k/4 two-sided red edges (•••••).

So, there are vertex-disjoint blue medium cycles $C'_1, \ldots, C'_{k/4}$ and vertex-disjoint red medium cycles $C''_1, \ldots, C''_{k/4}$,

Suppose that there is a matching of k/4 two-sided red edges (•••••).

So, there are vertex-disjoint blue medium cycles $C'_1, \ldots, C'_{k/4}$ and vertex-disjoint red medium cycles $C''_1, \ldots, C''_{k/4}$, such that $|V(C'_i) \cap V(C''_i)| \ge \gamma \log n$.

• • = • • = •

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Define an auxiliary graph H' as before, on vertex set [k/4], with respect to edges between the sets $V(C'_i) \cap V(C''_i)$.

(1) マン・ション・

Define an auxiliary graph H' as before, on vertex set [k/4], with respect to edges between the sets $V(C'_i) \cap V(C''_i)$.

Theorem (Raynaud '73)

イロト イヨト イヨト イヨト

Define an auxiliary graph H' as before, on vertex set [k/4], with respect to edges between the sets $V(C'_i) \cap V(C''_i)$.

Theorem (Raynaud '73)

In every 2-colouring of the complete digraph on n vertices there is a monochromatic $\overrightarrow{P_{n/2}}$.

ヘロト 不得 ト イヨト イヨト

Define an auxiliary graph H' as before, on vertex set [k/4], with respect to edges between the sets $V(C'_i) \cap V(C''_i)$.

Theorem (Raynaud '73)

In every 2-colouring of the complete digraph on n vertices there is a monochromatic $\overrightarrow{P_{n/2}}$.

Hence, there is a monochromatic $\overrightarrow{P_{k/8}}$.

A (1) × (2) × (3) ×

Define an auxiliary graph H' as before, on vertex set [k/4], with respect to edges between the sets $V(C'_i) \cap V(C''_i)$.

Theorem (Raynaud '73)

In every 2-colouring of the complete digraph on n vertices there is a monochromatic $\overrightarrow{P_{n/2}}$.

Hence, there is a monochromatic $\overrightarrow{P_{k/8}}$. Continue as before.

イロト イポト イヨト イヨト

Case 2.

イロン 不同 とくほど 不同 とう

臣

Case 2. *U* is a set of n/2 vertices with no monochromatic medium cycles.

▲□ ▶ ▲ □ ▶ ▲ □ ▶ ...

Case 2. *U* is a set of n/2 vertices with no monochromatic medium cycles.

There are no long blue cycles.

向下 イヨト イヨト

Case 2. *U* is a set of n/2 vertices with no monochromatic medium cycles.

There are no long blue cycles. Indeed, otherwise, let C be a shortest long blue cycle.

Case 2. *U* is a set of n/2 vertices with no monochromatic medium cycles.

There are no long blue cycles. Indeed, otherwise, let C be a shortest long blue cycle.

It has no blue chords of length at least |C|/4.

Case 2. *U* is a set of n/2 vertices with no monochromatic medium cycles.

There are no long blue cycles.
 Indeed, otherwise, let C be a shortest long blue cycle.

It has no blue chords of length at least |C|/4.

Case 2. *U* is a set of n/2 vertices with no monochromatic medium cycles.

There are no long blue cycles.
 Indeed, otherwise, let C be a shortest long blue cycle.

It has no blue chords of length at least |C|/4.

Case 2. U is a set of n/2 vertices with no monochromatic medium cycles.

There are no long blue cycles.
 Indeed, otherwise, let C be a shortest long blue cycle.

It has no blue chords of length at least |C|/4. We find a medium red cycle, a contradiction.

Case 2. *U* is a set of n/2 vertices with no monochromatic medium cycles.

- There are no long blue cycles.
- There is an order of U with $O(n \log n)$ blue back edges.

・ 同 ト ・ ヨ ト ・ ヨ ト

Case 2. *U* is a set of n/2 vertices with no monochromatic medium cycles.

- There are no long blue cycles.
- There is an order of U with $O(n \log n)$ blue back edges.
- There is a partition $\{A_1, \ldots, A_l\}$ of U, such that

Case 2. *U* is a set of n/2 vertices with no monochromatic medium cycles.

- There are no long blue cycles.
- There is an order of U with $O(n \log n)$ blue back edges.
- There is a partition $\{A_1, \ldots, A_l\}$ of U, such that

 $|A_i| = \delta \log n,$

Case 2. *U* is a set of n/2 vertices with no monochromatic medium cycles.

- There are no long blue cycles.
- There is an order of U with $O(n \log n)$ blue back edges.
- There is a partition $\{A_1, \ldots, A_l\}$ of U, such that

 $|A_i| = \delta \log n,$

Almost all edges from A_i to A_j are

Case 2. U is a set of n/2 vertices with no monochromatic medium cycles.

- There are no long blue cycles.
- There is an order of U with $O(n \log n)$ blue back edges.
- There is a partition $\{A_1, \ldots, A_l\}$ of U, such that

$$|A_i| = \delta \log n,$$

• Almost all edges from A_i to A_j are $\begin{cases} blue & \text{if } i < j \end{cases}$

Case 2. *U* is a set of n/2 vertices with no monochromatic medium cycles.

- There are no long blue cycles.
- There is an order of U with $O(n \log n)$ blue back edges.
- There is a partition $\{A_1, \ldots, A_l\}$ of U, such that

$$|A_i| = \delta \log n,$$

• Almost all edges from A_i to A_j are $\begin{cases}
blue & \text{if } i < j \\
red & \text{if } j < i.
\end{cases}$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ →

臣

イロト イヨト イヨト イヨト

臣

イロト イヨト イヨト イヨト

э

イロト イヨト イヨト イヨト

э

Definition (Erdős, Faudree, Rousseau, Schelp '72)

イロン イヨン イヨン イヨン

Definition (Erdős, Faudree, Rousseau, Schelp '72)

The size Ramsey number of H, denoted by $r_e(H)$,

Definition (Erdős, Faudree, Rousseau, Schelp '72)

The size Ramsey number of H, denoted by $r_e(H)$, is $r_e(H) = \min\{e(G) : G \to H\}.$

Definition (Erdős, Faudree, Rousseau, Schelp '72)

The size Ramsey number of H, denoted by $r_e(H)$, is $r_e(H) = \min\{e(G) : G \to H\}.$

Somewhat surprisingly, Beck ('83) showed: $r_e(P_n) = O(n)$.

Oriented size Ramsey numbers

An oriented graph

回 とくほとくほと

Definition

The oriented size Ramsey number of H

(4月) トイヨト イヨト

Definition

The oriented size Ramsey number of H is $\overrightarrow{r_e}(H) = \min\{e(G) : G \to H, G \text{ is oriented}\}.$

Definition

The oriented size Ramsey number of H is $\overrightarrow{r_e}(H) = \min\{e(G) : G \to H, G \text{ is oriented}\}.$

Question What is $\overrightarrow{r_e}(\overrightarrow{P_n})$?

★ E ► ★ E ►

Theorem (Ben-Eliezer, Krivelevich, Sudakov '12)

Theorem (Ben-Eliezer, Krivelevich, Sudakov '12)

$$\overrightarrow{r_e}(\overrightarrow{P_n}) \geq \frac{cn^2\log n}{(\log\log n)^3}.$$

Theorem (Ben-Eliezer, Krivelevich, Sudakov '12)

$$\overrightarrow{r_e}(\overrightarrow{P_n}) \geq \frac{cn^2 \log n}{(\log \log n)^3}.$$

This lower bound is close to being tight.

Theorem (Ben-Eliezer, Krivelevich, Sudakov '12)

$$\overrightarrow{r_e}(\overrightarrow{P_n}) \geq \frac{cn^2 \log n}{(\log \log n)^3}.$$

This lower bound is close to being tight.

Corollary (of our main result)

ヘロト ヘヨト ヘヨト ヘヨト

Theorem (Ben-Eliezer, Krivelevich, Sudakov '12)

$$\overrightarrow{r_e}(\overrightarrow{P_n}) \geq \frac{cn^2 \log n}{(\log \log n)^3}.$$

This lower bound is close to being tight.

< ロ > < 同 > < 三 > < 三 >

Theorem (Ben-Eliezer, Krivelevich, Sudakov '12)

$$\overrightarrow{r_e}(\overrightarrow{P_n}) \geq \frac{cn^2 \log n}{(\log \log n)^3}.$$

This lower bound is close to being tight.

We establish a better, sharp lower bound.

Theorem (Ben-Eliezer, Krivelevich, Sudakov '12)

$$\overrightarrow{r_e}(\overrightarrow{P_n}) \geq \frac{cn^2 \log n}{(\log \log n)^3}.$$

This lower bound is close to being tight.

Corollary (of our main result)

 $\overrightarrow{r_e}(\overrightarrow{P_n}) \leq cn^2 \log n.$

We establish a better, sharp lower bound.

Theorem (L., Sudakov '17+) $\overrightarrow{r_e}(\overrightarrow{P_n}) \geq cn^2 \log n.$

・ロン ・四 と ・ 回 と ・ 回 と

Open problem

・ロト ・回ト ・ヨト ・ヨト

æ

・ 回 ト ・ ヨ ト ・ ヨ ト ・

Proposition

Proposition

$$I_r(T) = O\left(\frac{n^{1/(r-1)}}{(\log n)^{-1/r(r-1)}}\right)$$

Proposition

$$I_r(T) = O\left(\frac{n^{1/(r-1)}}{(\log n)^{-1/r(r-1)}}\right)$$
 for every tournament T of order n .

Proposition

$$I_r(T) = O\left(\frac{n^{1/(r-1)}}{(\log n)^{-1/r(r-1)}}\right)$$
 for every tournament T of order n .

Question

Proposition

$$I_r(T) = O\left(\frac{n^{1/(r-1)}}{(\log n)^{-1/r(r-1)}}\right)$$
 for every tournament T of order n .

Question

What is $I_r(T)$ for T a random tournament?

Thank you for listening!

イロト イヨト イヨト イヨト

臣