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Generalisation of GHRV

Theorem (Gallai, Hasse, Roy, Vitaver '60s)

Let G be a directed graph. If x(G) > k then P, C G.
Can this be generalised to graphs H other than directed
paths? Is there ¢ = c(H) such that if x(G) > c then H C G?

m If H contains a bi-direceted edges (<), then no.

m If the underlying graph of H contains a cycle, no.
(There are graphs with arbitrarily large girth and
chromatic number).

What about oriented trees?
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Burr's conjecture

Conjecture (Burr '80)
Let T be an oriented tree of order k. If x(G) > 2k—2 then T C G.

m Tight: a regular tournament of order 2k — 3 does not
contain an out-directed star of order k.

m Holds for k2 in place of 2k — 2 (Burr '80).

m Best bound: k?/2 — k/2 + 1 (Addario-Berry, Havet, Sales,
Reed, Thomassé '13).

m A linear bound unknown even for oriented paths.

m Holds for paths with two blocks ( )
(EI Sahili, Kouider '07; Addario-Berry, Havet, Thomassé '07).
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Oriented Ramsey numbers

The k-colour oriented Ramsey number of H, denoted by
7 (H, k), is the least n for which every k-colouring of every
tournament of order n contains a monochromatic H.

—
m We saw 7 (Ppy1,2) = n® + 1.

—
m Similarly, 7 (Pn.1, k) = nk +1 for k > 2.

m What is 7 (T, k), where T is an oriented tree?
Non-trivial even for k = 1.
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m Haggkvist, Thomason ('91): cn for trees.
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Sumner’s conjecture

Conjecture (Sumner '71)

Let G be a tournament of order 2n — 2. Then G contains
every oriented tree of order n.

m This generalises Burr's conjecture.
m Tight for out-stars.

m Thomason ('86): n for oriented paths, for large n.

m Haggkvist, Thomason ('91): cn for trees.

m Havet, Thomassé ('00): (7n—5)/2.

m El Sahili ('04): 3n — 3.

m Kihn, Microft, Osthus ('10): conjecture holds for large n.
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There is a constant ¢ such that 7 (T, k) < cx|T|* for every
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Oriented Ramsey numbers of trees

Yuster ('17): 7(T,k) < (|T| — 1)k for k > ¢|T|log|T]|.
Burr’s conjecture would imply: 7 (T, k) < c| T|¥.

Theorem (Buci¢, L., Sudakov '17+)

There is a constant ¢ such that 7 (T, k) < cx|T|* for every
oriented tree T.

This is tight up a constant factor for directed paths.
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Let P be an oriented path of length n, with [(P) = I.
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I(P) is the length of the longest directed subpaths of P.
Eg if P=eo—e —e—e——s ——-s, [(P)=23.

Theorem (Buci¢, L., Sudakov '17+)

Let P be an oriented path of length n, with I(P) = . Then
7 (P, k) < cenl< 1.

This is tight up to a constant factor.
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Tightness of the upper bound on _r>(P,,+1, 9)

Let P be a path of length n with /(P) = |.
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Let P be a path of length n with /(P) = I. Then 7 (P, k) > nl*~1,
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Proof of path vs. path

Let T be a 2-coloured tournament on N = 8n/ + n vertices.
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Proof of path vs. path

Let T be a 2-coloured tournament on N = 8n/ + n vertices.
Let {X, Y} be an arbitrary partition into sets of size N /2.
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We find X’ and Y’, such that every vertex in X’ has at least
N /8 red out-neighbours in Y’, and vice versa.

Shoham Letzter Directed Ramsey theory



Proof of path vs. path

Let T be a 2-coloured tournament on N = 8n/ + n vertices.
Let {X, Y} be an arbitrary partition into sets of size N /2.

\Y%
FNT
—
=
N

S

We find X’ and Y’, such that every vertex in X’ has at least
N /8 red out-neighbours in Y’, and vice versa.

Shoham Letzter Directed Ramsey theory



Proof of path vs. path

Let T be a 2-coloured tournament on N = 8n/ + n vertices.
Let {X, Y} be an arbitrary partition into sets of size N /2.

We find X’ and Y’, such that every vertex in X’ has at least
N /8 red out-neighbours in Y’, and vice versa.

Shoham Letzter Directed Ramsey theory



Proof of path vs. path

Let T be a 2-coloured tournament on N = 8n/ + n vertices.
Let {X, Y} be an arbitrary partition into sets of size N /2.

\Y%
FNT
—
=
N

S

We find X’ and Y’, such that every vertex in X’ has at least
N /8 red out-neighbours in Y’, and vice versa.

Shoham Letzter Directed Ramsey theory



Proof of path vs. path

Let T be a 2-coloured tournament on N = 8n/ + n vertices.
Let {X, Y} be an arbitrary partition into sets of size N /2.

We find X’ and Y’, such that every vertex in X’ has at least
N /8 red out-neighbours in Y’, and vice versa.
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Proof of path vs. path - continued

Recall, N = 8n/ + n.
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Let T be a tree of order n with r leafs, and let P be a path of
order m.
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Tree vs. path - step 1

Lemma

Let T be a tree of order n with r leafs, and let P be a path of
order m. Then 7 (T, P) < 10" 3nm.

Proof. Induction on r:
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Case 1. there are at
least N?/20 red edges.
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Let T be a tree of order n with r leafs, and let P be a path of
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Let T be a tree of order n with r leafs, and let P be a path of
order m. Then 7 (T, P) < 10" 3nm.

Proof. Induction on r: for r = 2, follows from path vs. path;

so now r > 3.
X y
Case 1. there are at

least N?/20 red edges.
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Tree vs. path - step 1 continued

Case 2. there are fewer than N?/20 red edges.

Shoham Letzter Directed Ramsey theory



Tree vs. path - step 1 continued

Case 2. there are fewer than N2/20 red edges. Hence, there
is a vertex with blue in- and out-degrees at least N//9.
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Tree vs. path - step 1 continued

Case 2. there are fewer than N2/20 red edges. Hence, there
is a vertex with blue in- and out-degrees at least N//9.
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Tree vs. path - step 1 continued

Case 2. there are fewer than N2/20 red edges. Hence, there
is a vertex with blue in- and out-degrees at least N//9.
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Let u be a vertex of degree at least 3 (ignoring directions).
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Case 2. there are fewer than N2/20 red edges. Hence, there
is a vertex with blue in- and out-degrees at least N//9.
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Tree vs. path - step 1 continued

Case 2. there are fewer than N2/20 red edges. Hence, there
is a vertex with blue in- and out-degrees at least N//9.
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Tree vs. path - step 1 continued

Case 2. there are fewer than N2/20 red edges. Hence, there
is a vertex with blue in- and out-degrees at least N//9.
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Tree vs. path - step 1 continued

Case 2. there are fewer than N2/20 red edges. Hence, there
is a vertex with blue in- and out-degrees at least N//9.
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Tree vs. path - step 2

N = 10°m.
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Tree vs. path - step 2

N = 10°m.

As before, we assume that there are at most g’—g red edges.

Hence, there are ¥ vertices, with blue in- and out-degrees at

10
least %.
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Tree vs. path - step 2

N = 10%m.

As before, we assume that there are at most g’—g red edges.
Hence, there are % vertices, with blue in- and out-degrees at
least %.

Denote by T, the subtree rooted at w.
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T’ the subtree consisting of vertices u with |T,| > 2.
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Directed Ramsey numbers of directed paths

The k-colour directed Ramsey number of H, denoted by
T (H, k),
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Directed Ramsey numbers of directed paths

The k-colour directed Ramsey number of H, denoted by
P’ (H, k), is the least n for which every k-colouring of the

edges of K,, has a monochromatic H.
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Directed Ramsey numbers of directed paths

The k-colour directed Ramsey number of H, denoted by
P’ (H, k), is the least n for which every k-colouring of the

edges of K,, has a monochromatic H.

Theorem (Raynaud, '73)

——
P (Pps1,2) =2n—1.
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Directed Ramsey numbers of directed paths

The k-colour directed Ramsey number of H, denoted by
P’ (H, k), is the least n for which every k-colouring of the
edges of K,, has a monochromatic H.

Theorem (Raynaud, '73)
P (Pps1,2) =2n—1.

n—1
f_/R

S
X/

o]
XA
R TSN

~
—~——\\

=%

4534
Yo

2

Shoham Letzter

Directed Ramsey theory



Directed Ramsey numbers of directed paths

The k-colour directed Ramsey number of H, denoted by
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Directed Ramsey numbers of directed paths

The k-colour directed Ramsey number of H, denoted by
P’ (H, k), is the least n for which every k-colouring of the
edges of K,, has a monochromatic H.
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Directed Ramsey numbers of paths

—
T (Ppy1, k) < 2nF7 1.
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Directed Ramsey numbers of paths

T (Ppsy, k) < 201
—_ 2 —
PEi =] k=3
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Directed Ramsey numbers of paths
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Directed Ramsey numbers of paths

P (Pyir, k) < 20+
—_ 2 —
P(Proik) > { " k=3
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Directed Ramsey numbers of paths
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Directed Ramsey numbers of paths
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Directed Ramsey numbers of paths

T (Ppy1, k) < 2nF7 1.
PARN I n2 k=
r ('Dn+17k) > { 2—k+3 k=1 | > 4.
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Directed Ramsey numbers of paths
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Directed Ramsey numbers of paths
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Directed Ramsey numbers of paths

T (Ppy1, k) < 2nF7 1.
PARN I n2 k=
r ('Dn+17k) > { 2—k+3 k=1 | > 4.
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Directed Ramsey numbers of trees
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Directed Ramsey numbers of trees

Theorem (Buci¢, L., Sudakov '17+)
Let T be an oriented tree. Then 7' (T, k) < c| T|<2.
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Directed Ramsey numbers of trees

Theorem (Buci¢, L., Sudakov '17+)

Let T be an oriented tree. Then <7>(T, k) < c| T

Note, even with Burr's conjecture, need to prove the case
k = 2 separately.
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Directed Ramsey numbers of trees

Theorem (Buci¢, L., Sudakov '17+)

Let T be an oriented tree. Then 7' (T, k) < c| T|<2.

Note, even with Burr's conjecture, need to prove the case
k = 2 separately.

Theorem (Buci¢, L., Sudakov '17+)

Let P be a path of length n with I(P) = I. Then
TP, k) <n-I1.
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Another consequence of Burr's conjecture
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Another consequence of Burr's conjecture

Burr's conjecture, if true, implies that for a tree T of order n
and a graph G of order N,

Shoham Letzter Directed Ramsey theory



Another consequence of Burr's conjecture

Burr's conjecture, if true, implies that for a tree T of order n
and a graph G of order N, either T C G

Shoham Letzter Directed Ramsey theory



Another consequence of Burr's conjecture

Burr's conjecture, if true, implies that for a tree T of order n
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Burr's conjecture, if true, implies that for a tree T of order n
and a graph G of order N, either T C G or o(G) > &

Lemma

T CGora(G)>

cn Iog N-*
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Another consequence of Burr's conjecture

Burr's conjecture, if true, implies that for a tree T of order n
and a graph G of order N, either T C G or o(G) > &

Lemma

T C Gora(G)>

cn Iog N-*

Theorem (Buci¢, L., Sudakov '17)

Let T be an out-directed tree with r leafs.
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Another consequence of Burr's conjecture

Burr's conjecture, if true, implies that for a tree T of order n
and a graph G of order N, either T C G or o(G) > &

Lemma

T C Gora(G)>

cn Iog N-*

Theorem (Buci¢, L., Sudakov '17)

Let T be an out-directed tree with r leafs. Then either T C G
or a(G) > ;Nn
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Open problems
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Open problems

For atree T, I(T) is the length of the longest subpath of T.
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For atree T, I(T) is the length of the longest subpath of T.

Is there a constant c, such that 7(T, k) < cgn- k12

What is 7" (Ppy1, k)?
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Open problems

For atree T, I(T) is the length of the longest subpath of T.

Is there a constant c, such that 7(T, k) < cgn- k12

What is 7" (Ppy1, k)?
In particular, is it true that 7’ (P,.1,3) = (1 + o(1))n??
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For a tree T, I(T) is the length of the longest subpath of T.

Open problems

Question

Is there a constant c, such that 7(T, k) < cgn- k12

What is 7 Ppi1, k
In part/cular is it true that “r (P,,+1, 3)=(1+o(1))n??

Conjecture (A weakening of Burr's conjecture)
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For a tree T, I(T) is the length of the longest subpath of T.

Open problems

Question

Is there a constant c, such that 7(T, k) < cgn- k12

What is 7 Ppi1, k
In part/cular is it true that “r (P,,+1, 3)=(1+o(1))n??

Conjecture (A weakening of Burr's conjecture)

There is a constant ¢ such that for an oriented tree T of order
n and a graph of order N, either T C G or a(G) > C—’\L
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Thank you for listening!
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