Directed Ramsey theory

Shoham Letzter
joint work with Matija Bucić and Benny Sudakov
ETH - ITS
Colloquia in Combinatorics - LSE
May 2017

A classical result

A classical result

Denote by $\overrightarrow{P_{k}}$ the directed path of order $k\left(P_{4}=\bullet \bullet \bullet \bullet\right)$.

A classical result

Denote by $\overrightarrow{P_{k}}$ the directed path of order $k\left(P_{4}=\bullet \bullet \bullet \bullet\right)$.
Theorem (Gallai; Hasse; Roy; Vitaver '60s)
Let G be a directed graph.

A classical result

Denote by $\overrightarrow{P_{k}}$ the directed path of order $k\left(P_{4}=\bullet \bullet \bullet \bullet\right)$.
Theorem (Gallai; Hasse; Roy; Vitaver '60s)
Let G be a directed graph. If $\chi(G) \geq k$

A classical result

Denote by $\overrightarrow{P_{k}}$ the directed path of order $k\left(P_{4}=\bullet \bullet \bullet \bullet\right)$.
Theorem (Gallai; Hasse; Roy; Vitaver '60s)
Let G be a directed graph. If $\chi(G) \geq k$ then $\overrightarrow{P_{k}} \subseteq G$.

A classical result

Denote by $\overrightarrow{P_{k}}$ the directed path of order $k\left(P_{4}=\bullet \bullet \bullet \bullet\right)$.

Theorem (Gallai; Hasse; Roy; Vitaver '60s)

Let G be a directed graph. If $\chi(G) \geq k$ then $\overrightarrow{P_{k}} \subseteq G$.

Proof.

■ Suppose that $\overrightarrow{P_{k}} \nsubseteq G$.

A classical result

Denote by $\overrightarrow{P_{k}}$ the directed path of order $k\left(P_{4}=\bullet \bullet \bullet \bullet\right)$.

Theorem (Gallai; Hasse; Roy; Vitaver '60s)

Let G be a directed graph. If $\chi(G) \geq k$ then $\overrightarrow{P_{k}} \subseteq G$.

Proof.

- Suppose that $\overrightarrow{P_{k}} \nsubseteq G$.

■ Let G^{\prime} be a maximal acyclic subgraph of G.

A classical result

Denote by $\overrightarrow{P_{k}}$ the directed path of order $k\left(P_{4}=\bullet \bullet \bullet \bullet\right)$.

Theorem (Gallai; Hasse; Roy; Vitaver '60s)

Let G be a directed graph. If $\chi(G) \geq k$ then $\overrightarrow{P_{k}} \subseteq G$.

Proof.

- Suppose that $\overrightarrow{P_{k}} \nsubseteq G$.

■ Let G^{\prime} be a maximal acyclic subgraph of G.
■ For a vertex u, let $c(u)$ be the order of the longest directed path in G^{\prime} ending at u

A classical result

Denote by $\overrightarrow{P_{k}}$ the directed path of order $k\left(P_{4}=\bullet \bullet \bullet \bullet\right)$.

Theorem (Gallai; Hasse; Roy; Vitaver '60s)

Let G be a directed graph. If $\chi(G) \geq k$ then $\overrightarrow{P_{k}} \subseteq G$.

Proof.

- Suppose that $\overrightarrow{P_{k}} \nsubseteq G$.

■ Let G^{\prime} be a maximal acyclic subgraph of G.
■ For a vertex u, let $c(u)$ be the order of the longest directed path in G^{\prime} ending at u (so $c(u) \in[k-1]$).

A classical result

Denote by $\overrightarrow{P_{k}}$ the directed path of order $k\left(P_{4}=\bullet \bullet \bullet \bullet\right)$.

Theorem (Gallai; Hasse; Roy; Vitaver '60s)

Let G be a directed graph. If $\chi(G) \geq k$ then $\overrightarrow{P_{k}} \subseteq G$.

Proof.

- Suppose that $\overrightarrow{P_{k}} \nsubseteq G$.

■ Let G^{\prime} be a maximal acyclic subgraph of G.
■ For a vertex u, let $c(u)$ be the order of the longest directed path in G^{\prime} ending at u (so $c(u) \in[k-1]$).

- c is a proper colouring of G^{\prime}.

A classical result

Denote by $\overrightarrow{P_{k}}$ the directed path of order $k\left(P_{4}=\bullet \bullet \bullet \bullet\right)$.

Theorem (Gallai; Hasse; Roy; Vitaver '60s)

Let G be a directed graph. If $\chi(G) \geq k$ then $\overrightarrow{P_{k}} \subseteq G$.

Proof.

- Suppose that $\overrightarrow{P_{k}} \nsubseteq G$.

■ Let G^{\prime} be a maximal acyclic subgraph of G.
■ For a vertex u, let $c(u)$ be the order of the longest directed path in G^{\prime} ending at u (so $c(u) \in[k-1]$).

- c is a proper colouring of G^{\prime}.

A classical result

Denote by $\overrightarrow{P_{k}}$ the directed path of order $k\left(P_{4}=\bullet \bullet \bullet \bullet\right)$.

Theorem (Gallai; Hasse; Roy; Vitaver '60s)

Let G be a directed graph. If $\chi(G) \geq k$ then $\overrightarrow{P_{k}} \subseteq G$.

Proof.

■ Suppose that $\overrightarrow{P_{k}} \nsubseteq G$.
■ Let G^{\prime} be a maximal acyclic subgraph of G.
■ For a vertex u, let $c(u)$ be the order of the longest directed path in G^{\prime} ending at u (so $c(u) \in[k-1]$).

- c is a proper colouring of G^{\prime}.

A classical result

Denote by $\overrightarrow{P_{k}}$ the directed path of order $k\left(P_{4}=\bullet \bullet \bullet \bullet\right)$.

Theorem (Gallai; Hasse; Roy; Vitaver '60s)

Let G be a directed graph. If $\chi(G) \geq k$ then $\overrightarrow{P_{k}} \subseteq G$.

Proof.

■ Suppose that $\overrightarrow{P_{k}} \nsubseteq G$.
■ Let G^{\prime} be a maximal acyclic subgraph of G.
■ For a vertex u, let $c(u)$ be the order of the longest directed path in G^{\prime} ending at u (so $c(u) \in[k-1]$).

- c is a proper colouring of G^{\prime}.

A classical result

Denote by $\overrightarrow{P_{k}}$ the directed path of order $k\left(P_{4}=\bullet \bullet \bullet \bullet\right)$.

Theorem (Gallai; Hasse; Roy; Vitaver '60s)

Let G be a directed graph. If $\chi(G) \geq k$ then $\overrightarrow{P_{k}} \subseteq G$.

Proof.

■ Suppose that $\overrightarrow{P_{k}} \nsubseteq G$.
■ Let G^{\prime} be a maximal acyclic subgraph of G.
■ For a vertex u, let $c(u)$ be the order of the longest directed path in G^{\prime} ending at u (so $c(u) \in[k-1]$).

- c is a proper colouring of G^{\prime}.

A classical result

Denote by $\overrightarrow{P_{k}}$ the directed path of order $k\left(P_{4}=\bullet \bullet \bullet \bullet\right)$.

Theorem (Gallai; Hasse; Roy; Vitaver '60s)

Let G be a directed graph. If $\chi(G) \geq k$ then $\overrightarrow{P_{k}} \subseteq G$.

Proof.

■ Suppose that $\overrightarrow{P_{k}} \nsubseteq G$.
■ Let G^{\prime} be a maximal acyclic subgraph of G.
■ For a vertex u, let $c(u)$ be the order of the longest directed path in G^{\prime} ending at u (so $c(u) \in[k-1]$).

- c is a proper colouring of G^{\prime}.

A classical result

Denote by $\overrightarrow{P_{k}}$ the directed path of order $k\left(P_{4}=\bullet \bullet \bullet \bullet\right)$.

Theorem (Gallai; Hasse; Roy; Vitaver '60s)

Let G be a directed graph. If $\chi(G) \geq k$ then $\overrightarrow{P_{k}} \subseteq G$.

Proof.

- Suppose that $\overrightarrow{P_{k}} \nsubseteq G$.

■ Let G^{\prime} be a maximal acyclic subgraph of G.
■ For a vertex u, let $c(u)$ be the order of the longest directed path in G^{\prime} ending at u (so $c(u) \in[k-1]$).

- c is a proper colouring of G.

A classical result

Denote by $\overrightarrow{P_{k}}$ the directed path of order $k\left(P_{4}=\bullet \bullet \bullet \bullet\right)$.

Theorem (Gallai; Hasse; Roy; Vitaver '60s)

Let G be a directed graph. If $\chi(G) \geq k$ then $\overrightarrow{P_{k}} \subseteq G$.

Proof.

- Suppose that $\overrightarrow{P_{k}} \nsubseteq G$.

■ Let G^{\prime} be a maximal acyclic subgraph of G.
■ For a vertex u, let $c(u)$ be the order of the longest directed path in G^{\prime} ending at u (so $c(u) \in[k-1]$).

- c is a proper colouring of G.

A classical result

Denote by $\overrightarrow{P_{k}}$ the directed path of order $k\left(P_{4}=\bullet \bullet \bullet \bullet\right)$.

Theorem (Gallai; Hasse; Roy; Vitaver '60s)

Let G be a directed graph. If $\chi(G) \geq k$ then $\overrightarrow{P_{k}} \subseteq G$.

Proof.

■ Suppose that $\overrightarrow{P_{k}} \nsubseteq G$.
■ Let G^{\prime} be a maximal acyclic subgraph of G.
■ For a vertex u, let $c(u)$ be the order of the longest directed path in G^{\prime} ending at u (so $c(u) \in[k-1]$).

- c is a proper colouring of G.

A classical result

Denote by $\overrightarrow{P_{k}}$ the directed path of order $k\left(P_{4}=\bullet \bullet \bullet \bullet\right)$.

Theorem (Gallai; Hasse; Roy; Vitaver '60s)

Let G be a directed graph. If $\chi(G) \geq k$ then $\overrightarrow{P_{k}} \subseteq G$.

Proof.

■ Suppose that $\overrightarrow{P_{k}} \nsubseteq G$.
■ Let G^{\prime} be a maximal acyclic subgraph of G.
■ For a vertex u, let $c(u)$ be the order of the longest directed path in G^{\prime} ending at u (so $c(u) \in[k-1]$).

- c is a proper colouring of G.

A classical result

Denote by $\overrightarrow{P_{k}}$ the directed path of order $k\left(P_{4}=\bullet \bullet \bullet \bullet\right)$.

Theorem (Gallai; Hasse; Roy; Vitaver '60s)

Let G be a directed graph. If $\chi(G) \geq k$ then $\overrightarrow{P_{k}} \subseteq G$.

Proof.

■ Suppose that $\overrightarrow{P_{k}} \nsubseteq G$.
■ Let G^{\prime} be a maximal acyclic subgraph of G.
■ For a vertex u, let $c(u)$ be the order of the longest directed path in G^{\prime} ending at u (so $c(u) \in[k-1]$).

- c is a proper colouring of G.

A classical result

Denote by $\overrightarrow{P_{k}}$ the directed path of order $k\left(P_{4}=\bullet \bullet \bullet \bullet\right)$.

Theorem (Gallai; Hasse; Roy; Vitaver '60s)

Let G be a directed graph. If $\chi(G) \geq k$ then $\overrightarrow{P_{k}} \subseteq G$.

Proof.

■ Suppose that $\overrightarrow{P_{k}} \nsubseteq G$.
■ Let G^{\prime} be a maximal acyclic subgraph of G.
■ For a vertex u, let $c(u)$ be the order of the longest directed path in G^{\prime} ending at u (so $c(u) \in[k-1]$).

- c is a proper colouring of G.

A classical result

Denote by $\overrightarrow{P_{k}}$ the directed path of order $k\left(P_{4}=\bullet \bullet \bullet \bullet\right)$.

Theorem (Gallai; Hasse; Roy; Vitaver '60s)

Let G be a directed graph. If $\chi(G) \geq k$ then $\overrightarrow{P_{k}} \subseteq G$.

Proof.

■ Suppose that $\overrightarrow{P_{k}} \nsubseteq G$.
■ Let G^{\prime} be a maximal acyclic subgraph of G.
■ For a vertex u, let $c(u)$ be the order of the longest directed path in G^{\prime} ending at u (so $c(u) \in[k-1]$).

- c is a proper colouring of G.

Generalisation of GHRV

Theorem (Gallai, Hasse, Roy, Vitaver '60s)

Let G be a directed graph. If $\chi(G) \geq k$ then $\overrightarrow{P_{k}} \subseteq G$.

Generalisation of GHRV

Theorem (Gallai, Hasse, Roy, Vitaver '60s)

Let G be a directed graph. If $\chi(G) \geq k$ then $\overrightarrow{P_{k}} \subseteq G$.
Can this be generalised to graphs H other than directed paths?

Generalisation of GHRV

Theorem (Gallai, Hasse, Roy, Vitaver '60s)

Let G be a directed graph. If $\chi(G) \geq k$ then $\overrightarrow{P_{k}} \subseteq G$.
Can this be generalised to graphs H other than directed paths? Is there $c=c(H)$ such that if $\chi(G) \geq c$ then $H \subseteq G$?

Generalisation of GHRV

Theorem (Gallai, Hasse, Roy, Vitaver '60s)

Let G be a directed graph. If $\chi(G) \geq k$ then $\overrightarrow{P_{k}} \subseteq G$.
Can this be generalised to graphs H other than directed paths? Is there $c=c(H)$ such that if $\chi(G) \geq c$ then $H \subseteq G$?

■ If H contains a bi-direceted edges (\hookleftarrow),

Generalisation of GHRV

Theorem (Gallai, Hasse, Roy, Vitaver '60s)

Let G be a directed graph. If $\chi(G) \geq k$ then $\overrightarrow{P_{k}} \subseteq G$.
Can this be generalised to graphs H other than directed paths? Is there $c=c(H)$ such that if $\chi(G) \geq c$ then $H \subseteq G$?

■ If H contains a bi-direceted edges $(\bullet \longleftrightarrow)$, then no.

Generalisation of GHRV

Theorem (Gallai, Hasse, Roy, Vitaver '60s)

Let G be a directed graph. If $\chi(G) \geq k$ then $\overrightarrow{P_{k}} \subseteq G$.
Can this be generalised to graphs H other than directed paths? Is there $c=c(H)$ such that if $\chi(G) \geq c$ then $H \subseteq G$?

■ If H contains a bi-direceted edges $(\bullet \longleftrightarrow)$, then no.
■ If the underlying graph of H contains a cycle,

Generalisation of GHRV

Theorem (Gallai, Hasse, Roy, Vitaver '60s)

Let G be a directed graph. If $\chi(G) \geq k$ then $\overrightarrow{P_{k}} \subseteq G$.
Can this be generalised to graphs H other than directed paths? Is there $c=c(H)$ such that if $\chi(G) \geq c$ then $H \subseteq G$?

■ If H contains a bi-direceted edges $(\bullet \longleftrightarrow)$, then no.
■ If the underlying graph of H contains a cycle, no.

Generalisation of GHRV

Theorem (Gallai, Hasse, Roy, Vitaver '60s)

Let G be a directed graph. If $\chi(G) \geq k$ then $\overrightarrow{P_{k}} \subseteq G$.
Can this be generalised to graphs H other than directed paths? Is there $c=c(H)$ such that if $\chi(G) \geq c$ then $H \subseteq G$?

■ If H contains a bi-direceted edges $(\bullet \longleftrightarrow)$, then no.
■ If the underlying graph of H contains a cycle, no. (There are graphs with arbitrarily large girth and chromatic number).

Generalisation of GHRV

Theorem (Gallai, Hasse, Roy, Vitaver '60s)

Let G be a directed graph. If $\chi(G) \geq k$ then $\overrightarrow{P_{k}} \subseteq G$.
Can this be generalised to graphs H other than directed paths? Is there $c=c(H)$ such that if $\chi(G) \geq c$ then $H \subseteq G$?

■ If H contains a bi-direceted edges $(\bullet \longleftrightarrow)$, then no.
■ If the underlying graph of H contains a cycle, no. (There are graphs with arbitrarily large girth and chromatic number).

What about oriented trees?

Burr's conjecture

Conjecture (Burr '80)

Burr's conjecture

Conjecture (Burr '80)

Let T be an oriented tree of order k.

Burr's conjecture

Conjecture (Burr '80)

Let T be an oriented tree of order k. If $\chi(G) \geq 2 k-2$ then $T \subseteq G$.

Burr's conjecture

Conjecture (Burr '80)

Let T be an oriented tree of order k. If $\chi(G) \geq 2 k-2$ then $T \subseteq G$.

■ Tight:

Burr's conjecture

Conjecture (Burr '80)

Let T be an oriented tree of order k. If $\chi(G) \geq 2 k-2$ then $T \subseteq G$.

■ Tight: a regular tournament of order $2 k-3$ does not contain an out-directed star of order k.

Burr's conjecture

Conjecture (Burr '80)

Let T be an oriented tree of order k. If $\chi(G) \geq 2 k-2$ then $T \subseteq G$.

■ Tight: a regular tournament of order $2 k-3$ does not contain an out-directed star of order k.

- Holds for k^{2} in place of $2 k-2$ (Burr ' 80).

Burr's conjecture

Conjecture (Burr '80)

Let T be an oriented tree of order k. If $\chi(G) \geq 2 k-2$ then $T \subseteq G$.

■ Tight: a regular tournament of order $2 k-3$ does not contain an out-directed star of order k.
$■$ Holds for k^{2} in place of $2 k-2$ (Burr '80).
■ Best bound: $k^{2} / 2-k / 2+1$ (Addario-Berry, Havet, Sales, Reed, Thomassé '13).

Burr's conjecture

Conjecture (Burr '80)

Let T be an oriented tree of order k. If $\chi(G) \geq 2 k-2$ then $T \subseteq G$.
■ Tight: a regular tournament of order $2 k-3$ does not contain an out-directed star of order k.
■ Holds for k^{2} in place of $2 k-2$ (Burr '80).
■ Best bound: $k^{2} / 2-k / 2+1$ (Addario-Berry, Havet, Sales, Reed, Thomassé '13).
■ A linear bound unknown even for oriented paths.

Burr's conjecture

Conjecture (Burr '80)

Let T be an oriented tree of order k. If $\chi(G) \geq 2 k-2$ then $T \subseteq G$.
■ Tight: a regular tournament of order $2 k-3$ does not contain an out-directed star of order k.
\square Holds for k^{2} in place of $2 k-2$ (Burr '80).
■ Best bound: $k^{2} / 2-k / 2+1$ (Addario-Berry, Havet, Sales, Reed, Thomassé '13).

- A linear bound unknown even for oriented paths.

■ Holds for paths with two blocks ($\longrightarrow \longrightarrow$ セ \longleftrightarrow) (El Sahili, Kouider '07; Addario-Berry, Havet, Thomassé '07).

Ramsey application of GHRV

Ramsey application of GHRV

Theorem (Bermond; Chvátal; Gyárfás and Lehel '70s)

Ramsey application of GHRV

Theorem (Bermond; Chvátal; Gyárfás and Lehel '70s)
Let T be a 2-coloured tournament on $n^{2}+1$.

Ramsey application of GHRV

Theorem (Bermond; Chvátal; Gyárfás and Lehel '70s)
Let T be a 2 -coloured tournament on $n^{2}+1$. Then it contains a monochromatic $\overrightarrow{P_{n+1}}$.

Ramsey application of GHRV

Theorem (Bermond; Chvátal; Gyárfás and Lehel '70s)

Let T be a 2 -coloured tournament on $n^{2}+1$. Then it contains a monochromatic $\overrightarrow{P_{n+1}}$.

Proof.

- T_{R} - graph of red edges, T_{B} - blue edges.

Ramsey application of GHRV

Theorem (Bermond; Chvátal; Gyárfás and Lehel '70s)

Let T be a 2 -coloured tournament on $n^{2}+1$. Then it contains a monochromatic $\overrightarrow{P_{n+1}}$.

Proof.

- T_{R} - graph of red edges, T_{B} - blue edges. Then either $\chi\left(T_{R}\right)>n$ or $\chi\left(T_{B}\right)>n$.

Ramsey application of GHRV

Theorem (Bermond; Chvátal; Gyárfás and Lehel '70s)

Let T be a 2 -coloured tournament on $n^{2}+1$. Then it contains a monochromatic $\overrightarrow{P_{n+1}}$.

Proof.

- T_{R} - graph of red edges, T_{B} - blue edges.

Then either $\chi\left(T_{R}\right)>n$ or $\chi\left(T_{B}\right)>n$.
■ By GHRV theorem, there is a monochromatic $\overrightarrow{P_{n+1}}$.

Ramsey application of GHRV

Theorem (Bermond; Chvátal; Gyárfás and Lehel '70s)

Let T be a 2 -coloured tournament on $n^{2}+1$. Then it contains a monochromatic $\overrightarrow{P_{n+1}}$.

Proof.

- T_{R} - graph of red edges, T_{B} - blue edges.

Then either $\chi\left(T_{R}\right)>n$ or $\chi\left(T_{B}\right)>n$.

- By GHRV theorem, there is a monochromatic $\overrightarrow{P_{n+1}}$.

This is tight:

Ramsey application of GHRV

Theorem (Bermond; Chvátal; Gyárfás and Lehel '70s)

Let T be a 2 -coloured tournament on $n^{2}+1$. Then it contains a monochromatic P_{n+1}.

Proof.

- T_{R} - graph of red edges, T_{B} - blue edges.

Then either $\chi\left(T_{R}\right)>n$ or $\chi\left(T_{B}\right)>n$.

- By GHRV theorem, there is a monochromatic $\overrightarrow{P_{n+1}}$.

This is tight:

Ramsey application of GHRV

Theorem (Bermond; Chvátal; Gyárfás and Lehel '70s)

Let T be a 2 -coloured tournament on $n^{2}+1$. Then it contains a monochromatic P_{n+1}.

Proof.

- T_{R} - graph of red edges, T_{B} - blue edges.

Then either $\chi\left(T_{R}\right)>n$ or $\chi\left(T_{B}\right)>n$.

- By GHRV theorem, there is a monochromatic $\overrightarrow{P_{n+1}}$.

This is tight:

Ramsey application of GHRV

Theorem (Bermond; Chvátal; Gyárfás and Lehel '70s)

Let T be a 2 -coloured tournament on $n^{2}+1$. Then it contains a monochromatic P_{n+1}.

Proof.

- T_{R} - graph of red edges, T_{B} - blue edges.

Then either $\chi\left(T_{R}\right)>n$ or $\chi\left(T_{B}\right)>n$.

- By GHRV theorem, there is a monochromatic $\overrightarrow{P_{n+1}}$.

This is tight:

Oriented Ramsey numbers

The k-colour oriented Ramsey number of H, denoted by $\vec{r}(H, k)$,

Oriented Ramsey numbers

The k-colour oriented Ramsey number of H, denoted by $\vec{r}(H, k)$, is the least n for which every k-colouring

Oriented Ramsey numbers

The k-colour oriented Ramsey number of H, denoted by $\vec{r}(H, k)$, is the least n for which every k-colouring of every tournament of order n

Oriented Ramsey numbers

The k-colour oriented Ramsey number of H, denoted by $\vec{r}(H, k)$, is the least n for which every k-colouring of every tournament of order n contains a monochromatic H.

Oriented Ramsey numbers

The k-colour oriented Ramsey number of H, denoted by $\vec{r}(H, k)$, is the least n for which every k-colouring of every tournament of order n contains a monochromatic H.

- We saw $\vec{r}\left(\overrightarrow{P_{n+1}}, 2\right)=n^{2}+1$.

Oriented Ramsey numbers

The k-colour oriented Ramsey number of H, denoted by $\vec{r}(H, k)$, is the least n for which every k-colouring of every tournament of order n contains a monochromatic H.

- We saw $\vec{r}\left(\overrightarrow{P_{n+1}}, 2\right)=n^{2}+1$.
- Similarly, $\vec{r}\left(\overrightarrow{P_{n+1}}, k\right)=n^{k}+1$ for $k \geq 2$.

Oriented Ramsey numbers

The k-colour oriented Ramsey number of H, denoted by $\vec{r}(H, k)$, is the least n for which every k-colouring of every tournament of order n contains a monochromatic H.

- We saw $\vec{r}\left(\overrightarrow{P_{n+1}}, 2\right)=n^{2}+1$.
- Similarly, $\vec{r}\left(\overrightarrow{P_{n+1}}, k\right)=n^{k}+1$ for $k \geq 2$.

■ What is $\vec{r}(T, k)$, where T is an oriented tree?

Oriented Ramsey numbers

The k-colour oriented Ramsey number of H, denoted by $\vec{r}(H, k)$, is the least n for which every k-colouring of every tournament of order n contains a monochromatic H.

- We saw $\vec{r}\left(\overrightarrow{P_{n+1}}, 2\right)=n^{2}+1$.
- Similarly, $\vec{r}\left(\overrightarrow{P_{n+1}}, k\right)=n^{k}+1$ for $k \geq 2$.
- What is $\vec{r}(T, k)$, where T is an oriented tree? Non-trivial even for $k=1$.

Sumner's conjecture

Conjecture (Sumner '71)

Sumner's conjecture

Conjecture (Sumner '71)

Let G be a tournament of order $2 n-2$. Then G contains every oriented tree of order n.

Sumner's conjecture

Conjecture (Sumner '71)

Let G be a tournament of order $2 n-2$. Then G contains every oriented tree of order n.

- This generalises Burr's conjecture.

Sumner's conjecture

Conjecture (Sumner '71)

Let G be a tournament of order $2 n-2$. Then G contains every oriented tree of order n.

- This generalises Burr's conjecture.

■ Tight for out-stars.

Sumner's conjecture

Conjecture (Sumner '71)

Let G be a tournament of order $2 n-2$. Then G contains every oriented tree of order n.

- This generalises Burr's conjecture.
- Tight for out-stars.
- Thomason ('86): n for oriented paths, for large n.

Sumner's conjecture

Conjecture (Sumner '71)

Let G be a tournament of order $2 n-2$. Then G contains every oriented tree of order n.

- This generalises Burr's conjecture.

■ Tight for out-stars.

- Thomason ('86): n for oriented paths, for large n.

■ Häggkvist, Thomason ('91): cn for trees.

Sumner's conjecture

Conjecture (Sumner '71)

Let G be a tournament of order $2 n-2$. Then G contains every oriented tree of order n.

- This generalises Burr's conjecture.

■ Tight for out-stars.

- Thomason ('86): n for oriented paths, for large n.

■ Häggkvist, Thomason ('91): cn for trees.
■ Havet, Thomassé ('00): $(7 n-5) / 2$.

Sumner's conjecture

Conjecture (Sumner '71)

Let G be a tournament of order $2 n-2$. Then G contains every oriented tree of order n.

- This generalises Burr's conjecture.

■ Tight for out-stars.

- Thomason ('86): n for oriented paths, for large n.

■ Häggkvist, Thomason ('91): cn for trees.
■ Havet, Thomassé ('00): $(7 n-5) / 2$.
■ El Sahili ('04): $3 n-3$.

Sumner's conjecture

Conjecture (Sumner '71)

Let G be a tournament of order $2 n-2$. Then G contains every oriented tree of order n.

- This generalises Burr's conjecture.

■ Tight for out-stars.

- Thomason ('86): n for oriented paths, for large n.

■ Häggkvist, Thomason ('91): cn for trees.
■ Havet, Thomassé ('00): $(7 n-5) / 2$.
■ El Sahili ('04): $3 n-3$.
■ Kühn, Microft, Osthus ('10): conjecture holds for large n.

Oriented Ramsey numbers of trees

Oriented Ramsey numbers of trees

Yuster ('17): $\vec{r}(T, k) \leq(|T|-1)^{k}$ for $k \geq c|T| \log |T|$.

Oriented Ramsey numbers of trees

Yuster ('17): $\vec{r}(T, k) \leq(|T|-1)^{k}$ for $k \geq c|T| \log |T|$.
Burr's conjecture would imply:

Oriented Ramsey numbers of trees

Yuster ('17): $\vec{r}(T, k) \leq(|T|-1)^{k}$ for $k \geq c|T| \log |T|$.
Burr's conjecture would imply: $\vec{r}(T, k) \leq c_{k}|T|^{k}$.

Oriented Ramsey numbers of trees

Yuster ('17): $\vec{r}(T, k) \leq(|T|-1)^{k}$ for $k \geq c|T| \log |T|$.
Burr's conjecture would imply: $\vec{r}(T, k) \leq c_{k}|T|^{k}$.
Theorem (Bucić, L., Sudakov '17+)
There is a constant c_{k} such that $\vec{r}(T, k) \leq c_{k}|T|^{k}$ for every oriented tree T.

Oriented Ramsey numbers of trees

Yuster ('17): $\vec{r}(T, k) \leq(|T|-1)^{k}$ for $k \geq c|T| \log |T|$.
Burr's conjecture would imply: $\vec{r}(T, k) \leq c_{k}|T|^{k}$.
Theorem (Bucić, L., Sudakov '17+)
There is a constant c_{k} such that $\vec{r}(T, k) \leq c_{k}|T|^{k}$ for every oriented tree T.

This is tight up a constant factor for directed paths.

Oriented Ramsey number of paths

Oriented Ramsey number of paths

$I(P)$ is the length of the longest directed subpaths of P.

Oriented Ramsey number of paths

$I(P)$ is the length of the longest directed subpaths of P.
E.g. if $P=\longleftrightarrow \longrightarrow \longleftrightarrow \longleftrightarrow, ~(P)=3$.

Oriented Ramsey number of paths

$I(P)$ is the length of the longest directed subpaths of P.
E.g. if $P=\longleftrightarrow \longrightarrow \longleftrightarrow \longleftrightarrow!(P)=3$.

Theorem (Bucić, L., Sudakov '17+)
Let P be an oriented path of length n, with $I(P)=I$.

Oriented Ramsey number of paths

$I(P)$ is the length of the longest directed subpaths of P.
E.g. if $P=\longleftrightarrow \longrightarrow \longleftrightarrow \longleftrightarrow!(P)=3$.

Theorem (Bucić, L., Sudakov '17+)
Let P be an oriented path of length n, with $I(P)=I$. Then $\vec{r}(P, k) \leq c_{k} n l^{k-1}$.

Oriented Ramsey number of paths

$I(P)$ is the length of the longest directed subpaths of P.
E.g. if $P=\longleftrightarrow \longrightarrow \longleftrightarrow \longleftrightarrow!(P)=3$.

Theorem (Bucić, L., Sudakov '17+)
Let P be an oriented path of length n, with $I(P)=I$. Then $\vec{r}(P, k) \leq c_{k} n l^{k-1}$.

This is tight up to a constant factor.

Tightness of the upper bound on $\vec{r}\left(\overrightarrow{P_{n+1}}, k\right)$

Let P be a path of length n with $I(P)=I$.

Tightness of the upper bound on $\vec{r}\left(\overrightarrow{P_{n+1}}, k\right)$

Let P be a path of length n with $I(P)=I$. Then $\vec{r}(P, k) \geq n I^{k-1}$.

Tightness of the upper bound on $\vec{r}\left(\overrightarrow{P_{n+1}}, k\right)$

Let P be a path of length n with $I(P)=I$. Then $\vec{r}(P, k) \geq n I^{k-1}$.

Tightness of the upper bound on $\vec{r}\left(\overrightarrow{P_{n+1}}, k\right)$

Let P be a path of length n with $I(P)=I$. Then $\vec{r}(P, k) \geq n I^{k-1}$.

Tightness of the upper bound on $\vec{r}\left(\overrightarrow{P_{n+1}}, k\right)$

Let P be a path of length n with $I(P)=I$. Then $\vec{r}(P, k) \geq n I^{k-1}$.

Tightness of the upper bound on $\vec{r}\left(\overrightarrow{P_{n+1}}, k\right)$

Let P be a path of length n with $I(P)=I$. Then $\vec{r}(P, k) \geq n I^{k-1}$.

Tightness of the upper bound on $\vec{r}\left(\overrightarrow{P_{n+1}}, k\right)$

Let P be a path of length n with $I(P)=I$. Then $\vec{r}(P, k) \geq n I^{k-1}$.

Proof of path vs. path

Let T be a 2-coloured tournament on $N=8 n I+n$ vertices.

Proof of path vs. path

Let T be a 2-coloured tournament on $N=8 n I+n$ vertices.
Let $\{X, Y\}$ be an arbitrary partition into sets of size $N / 2$.

Proof of path vs. path

Let T be a 2-coloured tournament on $N=8 n I+n$ vertices.
Let $\{X, Y\}$ be an arbitrary partition into sets of size $N / 2$.

$$
\geq \frac{1}{4}\left(\frac{N}{2}\right)^{2}
$$

Proof of path vs. path

Let T be a 2-coloured tournament on $N=8 n I+n$ vertices.
Let $\{X, Y\}$ be an arbitrary partition into sets of size $N / 2$.

$$
\geq \frac{1}{4}\left(\frac{N}{2}\right)^{2}
$$

Proof of path vs. path

Let T be a 2-coloured tournament on $N=8 n I+n$ vertices.
Let $\{X, Y\}$ be an arbitrary partition into sets of size $N / 2$.

$$
\geq \frac{1}{4}\left(\frac{N}{2}\right)^{2}
$$

Proof of path vs. path

Let T be a 2-coloured tournament on $N=8 n I+n$ vertices.
Let $\{X, Y\}$ be an arbitrary partition into sets of size $N / 2$.

$$
\geq \frac{1}{4}\left(\frac{N}{2}\right)^{2}
$$

Proof of path vs. path

Let T be a 2-coloured tournament on $N=8 n I+n$ vertices.
Let $\{X, Y\}$ be an arbitrary partition into sets of size $N / 2$.

$$
\geq \frac{1}{4}\left(\frac{N}{2}\right)^{2}
$$

Proof of path vs. path

Let T be a 2-coloured tournament on $N=8 n I+n$ vertices.
Let $\{X, Y\}$ be an arbitrary partition into sets of size $N / 2$.

$$
\geq \frac{1}{4}\left(\frac{N}{2}\right)^{2}
$$

We find X^{\prime} and Y^{\prime}, such that every vertex in X^{\prime} has at least $N / 8$ red out-neighbours in Y^{\prime}, and vice versa.

Proof of path vs. path

Let T be a 2-coloured tournament on $N=8 n I+n$ vertices.
Let $\{X, Y\}$ be an arbitrary partition into sets of size $N / 2$.

$$
\geq \frac{1}{4}\left(\frac{N}{2}\right)^{2}
$$

We find X^{\prime} and Y^{\prime}, such that every vertex in X^{\prime} has at least $N / 8$ red out-neighbours in Y^{\prime}, and vice versa.

Proof of path vs. path

Let T be a 2-coloured tournament on $N=8 n I+n$ vertices.
Let $\{X, Y\}$ be an arbitrary partition into sets of size $N / 2$.

$$
\geq \frac{1}{4}\left(\frac{N}{2}\right)^{2}
$$

We find X^{\prime} and Y^{\prime}, such that every vertex in X^{\prime} has at least $N / 8$ red out-neighbours in Y^{\prime}, and vice versa.

Proof of path vs. path

Let T be a 2-coloured tournament on $N=8 n I+n$ vertices.
Let $\{X, Y\}$ be an arbitrary partition into sets of size $N / 2$.

$$
\geq \frac{1}{4}\left(\frac{N}{2}\right)^{2}
$$

We find X^{\prime} and Y^{\prime}, such that every vertex in X^{\prime} has at least $N / 8$ red out-neighbours in Y^{\prime}, and vice versa.

Proof of path vs. path

Let T be a 2-coloured tournament on $N=8 n I+n$ vertices.
Let $\{X, Y\}$ be an arbitrary partition into sets of size $N / 2$.

$$
\geq \frac{1}{4}\left(\frac{N}{2}\right)^{2}
$$

We find X^{\prime} and Y^{\prime}, such that every vertex in X^{\prime} has at least $N / 8$ red out-neighbours in Y^{\prime}, and vice versa.

Proof of path vs. path - continued

Recall, $N=8 n l+n$.

Proof of path vs. path - continued

Proof of path vs. path - continued

Recall, $N=8 n l+n . P=\stackrel{n_{1}}{n_{1}} \overbrace{-}^{n_{2}} \cdot \overbrace{\sim}^{n_{3}} \cdot \overbrace{}^{n_{4}}$.

Proof of path vs. path - continued

Recall, $N=8 n l+n . P=\stackrel{n_{1}}{n_{1}} \overbrace{-}^{n_{2}} \cdot \overbrace{\sim}^{n_{3}} \cdot \overbrace{}^{n_{4}}$.

Proof of path vs. path - continued

Recall, $N=8 n l+n . P=: \stackrel{n_{1}}{\rightleftharpoons} \cdot \overbrace{\bullet}^{n_{2}} \cdot \overbrace{}^{n_{3}} \cdot \overbrace{\longleftrightarrow}^{n_{4}}$.

Proof of path vs. path - continued

Recall, $N=8 n l+n . P=\stackrel{n_{1}}{n_{1}} \overbrace{-}^{n_{2}} \cdot \overbrace{\sim}^{n_{3}} \cdot \overbrace{}^{n_{4}}$.

Proof of path vs. path - continued

Proof of path vs. path - continued

Recall, $N=8 n l+n . P=\xlongequal{n_{1}} \overbrace{c}^{n_{2}} \cdot \overbrace{}^{n_{3}} . \overbrace{}^{n_{4}}$.

Proof of path vs. path - continued

Proof of path vs. path - continued

Recall, $N=8 n l+n . P=\xrightarrow{n_{1}} \overbrace{-}^{n_{2}} \cdot \overbrace{}^{n_{3}} \cdot \overbrace{}^{n_{4}}$.

Proof of path vs. path - continued

Recall, $N=8 n l+n . P=\xrightarrow{n_{1}} \overbrace{-}^{n_{2}} \cdot \overbrace{}^{n_{3}} \cdot \overbrace{}^{n_{4}}$.

Proof of path vs. path - continued

Proof of path vs. path - continued

Proof of path vs. path - continued

Tree vs. path - step 1

Tree vs. path - step 1

Lemma

Let T be a tree of order n with r leafs, and let P be a path of order m.

Tree vs. path - step 1

Lemma

Let T be a tree of order n with r leafs, and let P be a path of order m. Then $\vec{r}(T, P) \leq 10^{r+3} \mathrm{~nm}$.

Tree vs. path - step 1

Lemma

Let T be a tree of order n with r leafs, and let P be a path of order m. Then $\vec{r}(T, P) \leq 10^{r+3} \mathrm{~nm}$.

Proof. Induction on r :

Tree vs. path - step 1

Lemma

Let T be a tree of order n with r leafs, and let P be a path of order m. Then $\vec{r}(T, P) \leq 10^{r+3} n m$.

Proof. Induction on r : for $r=2$, follows from path vs. path; so now $r \geq 3$.

Tree vs. path - step 1

Lemma

Let T be a tree of order n with r leafs, and let P be a path of order m. Then $\vec{r}(T, P) \leq 10^{r+3} \mathrm{~nm}$.

Proof. Induction on r : for $r=2$, follows from path vs. path; so now $r \geq 3$.

Case 1. there are at least $N^{2} / 20$ red edges.

Tree vs. path - step 1

Lemma

Let T be a tree of order n with r leafs, and let P be a path of order m. Then $\vec{r}(T, P) \leq 10^{r+3} n m$.

Proof. Induction on r : for $r=2$, follows from path vs. path; so now $r \geq 3$.

Case 1. there are at least $N^{2} / 20$ red edges.

Tree vs. path - step 1

Lemma

Let T be a tree of order n with r leafs, and let P be a path of order m. Then $\vec{r}(T, P) \leq 10^{r+3} n m$.

Proof. Induction on r : for $r=2$, follows from path vs. path; so now $r \geq 3$.

Case 1. there are at least $N^{2} / 20$ red edges.

Tree vs. path - step 1

Lemma

Let T be a tree of order n with r leafs, and let P be a path of order m. Then $\vec{r}(T, P) \leq 10^{r+3} n m$.

Proof. Induction on r : for $r=2$, follows from path vs. path; so now $r \geq 3$.

Case 1. there are at least $N^{2} / 20$ red edges.

Tree vs. path - step 1

Lemma

Let T be a tree of order n with r leafs, and let P be a path of order m. Then $\vec{r}(T, P) \leq 10^{r+3} n m$.

Proof. Induction on r : for $r=2$, follows from path vs. path; so now $r \geq 3$.

Case 1. there are at least $N^{2} / 20$ red edges.

Tree vs. path - step 1

Lemma

Let T be a tree of order n with r leafs, and let P be a path of order m. Then $\vec{r}(T, P) \leq 10^{r+3} n m$.

Proof. Induction on r : for $r=2$, follows from path vs. path; so now $r \geq 3$.

Case 1. there are at least $N^{2} / 20$ red edges.

Tree vs. path - step 1

Lemma

Let T be a tree of order n with r leafs, and let P be a path of order m. Then $\vec{r}(T, P) \leq 10^{r+3} n m$.

Proof. Induction on r : for $r=2$, follows from path vs. path; so now $r \geq 3$.

Case 1. there are at least $N^{2} / 20$ red edges.

Tree vs. path - step 1

Lemma

Let T be a tree of order n with r leafs, and let P be a path of order m. Then $\vec{r}(T, P) \leq 10^{r+3} n m$.

Proof. Induction on r : for $r=2$, follows from path vs. path; so now $r \geq 3$.

Case 1. there are at least $N^{2} / 20$ red edges.

Tree vs. path - step 1

Lemma

Let T be a tree of order n with r leafs, and let P be a path of order m. Then $\vec{r}(T, P) \leq 10^{r+3} n m$.

Proof. Induction on r : for $r=2$, follows from path vs. path; so now $r \geq 3$.

Case 1. there are at least $N^{2} / 20$ red edges.

Tree vs. path - step 1

Lemma

Let T be a tree of order n with r leafs, and let P be a path of order m. Then $\vec{r}(T, P) \leq 10^{r+3} n m$.

Proof. Induction on r : for $r=2$, follows from path vs. path; so now $r \geq 3$.

Case 1. there are at least $N^{2} / 20$ red edges.

Tree vs. path - step 1

Lemma

Let T be a tree of order n with r leafs, and let P be a path of order m. Then $\vec{r}(T, P) \leq 10^{r+3} n m$.

Proof. Induction on r : for $r=2$, follows from path vs. path; so now $r \geq 3$.

Case 1. there are at least $N^{2} / 20$ red edges.

Tree vs. path - step 1 continued

Case 2. there are fewer than $N^{2} / 20$ red edges.

Tree vs. path - step 1 continued

Case 2. there are fewer than $N^{2} / 20$ red edges. Hence, there is a vertex with blue in- and out-degrees at least $N / 9$.

Tree vs. path - step 1 continued

Case 2. there are fewer than $N^{2} / 20$ red edges. Hence, there is a vertex with blue in- and out-degrees at least $N / 9$.

Tree vs. path - step 1 continued

Case 2. there are fewer than $N^{2} / 20$ red edges. Hence, there is a vertex with blue in- and out-degrees at least $N / 9$.

Let u be a vertex of degree at least 3 (ignoring directions).

Tree vs. path - step 1 continued

Case 2. there are fewer than $N^{2} / 20$ red edges. Hence, there is a vertex with blue in- and out-degrees at least $N / 9$.

Let u be a vertex of degree at least 3 (ignoring directions).

Tree vs. path - step 1 continued

Case 2. there are fewer than $N^{2} / 20$ red edges. Hence, there is a vertex with blue in- and out-degrees at least $N / 9$.

Let u be a vertex of degree at least 3 (ignoring directions).

Tree vs. path - step 1 continued

Case 2. there are fewer than $N^{2} / 20$ red edges. Hence, there is a vertex with blue in- and out-degrees at least $N / 9$.

Let u be a vertex of degree at least 3 (ignoring directions).

Tree vs. path - step 1 continued

Case 2. there are fewer than $N^{2} / 20$ red edges. Hence, there is a vertex with blue in- and out-degrees at least $N / 9$.

Let u be a vertex of degree at least 3 (ignoring directions).

Tree vs. path - step 1 continued

Case 2. there are fewer than $N^{2} / 20$ red edges. Hence, there is a vertex with blue in- and out-degrees at least $N / 9$.

Let u be a vertex of degree at least 3 (ignoring directions).

Tree vs. path - step 1 continued

Case 2. there are fewer than $N^{2} / 20$ red edges. Hence, there is a vertex with blue in- and out-degrees at least $N / 9$.

Let u be a vertex of degree at least 3 (ignoring directions).

Tree vs. path - step 1 continued

Case 2. there are fewer than $N^{2} / 20$ red edges. Hence, there is a vertex with blue in- and out-degrees at least $N / 9$.

Let u be a vertex of degree at least 3 (ignoring directions).

Tree vs. path - step 2

$$
N=10^{10} n m
$$

Tree vs. path - step 2

$$
N=10^{10} \mathrm{~nm}
$$

As before, we assume that there are at most $\frac{N^{2}}{80}$ red edges.

Tree vs. path - step 2

$$
N=10^{10} \mathrm{~nm}
$$

As before, we assume that there are at most $\frac{N^{2}}{80}$ red edges. Hence, there are $\frac{N}{10}$ vertices, with blue in- and out-degrees at least $\frac{N}{6}$.

Tree vs. path - step 2

$N=10^{10} n m$.
As before, we assume that there are at most $\frac{N^{2}}{80}$ red edges. Hence, there are $\frac{N}{10}$ vertices, with blue in- and out-degrees at least $\frac{N}{6}$.
Denote by T_{u} the subtree rooted at u.

Tree vs. path - step 2

$$
N=10^{10} \mathrm{~nm}
$$

As before, we assume that there are at most $\frac{N^{2}}{80}$ red edges. Hence, there are $\frac{N}{10}$ vertices, with blue in- and out-degrees at least $\frac{N}{6}$.
Denote by T_{u} the subtree rooted at u.
T^{\prime} the subtree consisting of vertices u with $\left|T_{u}\right|>\frac{n}{7}$.

Tree vs. path - step 2

$$
N=10^{10} \mathrm{~nm} .
$$

As before, we assume that there are at most $\frac{N^{2}}{80}$ red edges. Hence, there are $\frac{N}{10}$ vertices, with blue in- and out-degrees at least $\frac{N}{6}$.
Denote by T_{u} the subtree rooted at u.
T^{\prime} the subtree consisting of vertices u with $\left|T_{u}\right|>\frac{n}{7}$.

Tree vs. path - step 2

$$
N=10^{10} \mathrm{~nm} .
$$

As before, we assume that there are at most $\frac{N^{2}}{80}$ red edges. Hence, there are $\frac{N}{10}$ vertices, with blue in- and out-degrees at least $\frac{N}{6}$.
Denote by T_{u} the subtree rooted at u.
T^{\prime} the subtree consisting of vertices u with $\left|T_{u}\right|>\frac{n}{7}$.

Tree vs. path - step 2

$$
N=10^{10} \mathrm{~nm} .
$$

As before, we assume that there are at most $\frac{N^{2}}{80}$ red edges. Hence, there are $\frac{N}{10}$ vertices, with blue in- and out-degrees at least $\frac{N}{6}$.
Denote by T_{u} the subtree rooted at u.
T^{\prime} the subtree consisting of vertices u with $\left|T_{u}\right|>\frac{n}{7}$.

Tree vs. path - step 2

$$
N=10^{10} \mathrm{~nm} .
$$

As before, we assume that there are at most $\frac{N^{2}}{80}$ red edges. Hence, there are $\frac{N}{10}$ vertices, with blue in- and out-degrees at least $\frac{N}{6}$.
Denote by T_{u} the subtree rooted at u.
T^{\prime} the subtree consisting of vertices u with $\left|T_{u}\right|>\frac{n}{7}$.

Tree vs. path - step 2

$$
N=10^{10} \mathrm{~nm} .
$$

As before, we assume that there are at most $\frac{N^{2}}{80}$ red edges. Hence, there are $\frac{N}{10}$ vertices, with blue in- and out-degrees at least $\frac{N}{6}$.
Denote by T_{u} the subtree rooted at u.
T^{\prime} the subtree consisting of vertices u with $\left|T_{u}\right|>\frac{n}{7}$.

Tree vs. path - step 2

$$
N=10^{10} \mathrm{~nm} .
$$

As before, we assume that there are at most $\frac{N^{2}}{80}$ red edges. Hence, there are $\frac{N}{10}$ vertices, with blue in- and out-degrees at least $\frac{N}{6}$.
Denote by T_{u} the subtree rooted at u.
T^{\prime} the subtree consisting of vertices u with $\left|T_{u}\right|>\frac{n}{7}$.

Tree vs. path - step 2

$$
N=10^{10} \mathrm{~nm} .
$$

As before, we assume that there are at most $\frac{N^{2}}{80}$ red edges. Hence, there are $\frac{N}{10}$ vertices, with blue in- and out-degrees at least $\frac{N}{6}$.
Denote by T_{u} the subtree rooted at u.
T^{\prime} the subtree consisting of vertices u with $\left|T_{u}\right|>\frac{n}{7}$.

Tree vs. path - step 2

$$
N=10^{10} \mathrm{~nm} .
$$

As before, we assume that there are at most $\frac{N^{2}}{80}$ red edges. Hence, there are $\frac{N}{10}$ vertices, with blue in- and out-degrees at least $\frac{N}{6}$.
Denote by T_{u} the subtree rooted at u.
T^{\prime} the subtree consisting of vertices u with $\left|T_{u}\right|>\frac{n}{7}$.

Tree vs. path - step 2

$$
N=10^{10} \mathrm{~nm} .
$$

As before, we assume that there are at most $\frac{N^{2}}{80}$ red edges. Hence, there are $\frac{N}{10}$ vertices, with blue in- and out-degrees at least $\frac{N}{6}$.
Denote by T_{u} the subtree rooted at u.
T^{\prime} the subtree consisting of vertices u with $\left|T_{u}\right|>\frac{n}{7}$.

Tree vs. path - step 2

$$
N=10^{10} \mathrm{~nm} .
$$

As before, we assume that there are at most $\frac{N^{2}}{80}$ red edges. Hence, there are $\frac{N}{10}$ vertices, with blue in- and out-degrees at least $\frac{N}{6}$.
Denote by T_{u} the subtree rooted at u.
T^{\prime} the subtree consisting of vertices u with $\left|T_{u}\right|>\frac{n}{7}$.

Directed Ramsey numbers of directed paths

Directed Ramsey numbers of directed paths

The k-colour directed Ramsey number of H, denoted by $\overleftrightarrow{r}(H, k)$,

Directed Ramsey numbers of directed paths

The k-colour directed Ramsey number of H, denoted by $\overleftrightarrow{r}(H, k)$, is the least n for which every k-colouring of the edges of $\overrightarrow{K_{n}}$ has a monochromatic H.

Directed Ramsey numbers of directed paths

The k-colour directed Ramsey number of H, denoted by $\overleftrightarrow{r}(H, k)$, is the least n for which every k-colouring of the edges of $\overrightarrow{K_{n}}$ has a monochromatic H.

$$
\begin{aligned}
& \text { Theorem (Raynaud, '73) } \\
& \overleftrightarrow{r}\left(\overrightarrow{P_{n+1}}, 2\right)=2 n-1
\end{aligned}
$$

Directed Ramsey numbers of directed paths

The k-colour directed Ramsey number of H, denoted by $\overleftrightarrow{r}(H, k)$, is the least n for which every k-colouring of the edges of \vec{K}_{n} has a monochromatic H.
Theorem (Raynaud, '73)
$\stackrel{r}{ }\left(\overrightarrow{P_{n+1}}, 2\right)=2 n-1$.

Directed Ramsey numbers of directed paths

The k-colour directed Ramsey number of H, denoted by $\overleftrightarrow{r}(H, k)$, is the least n for which every k-colouring of the edges of \vec{K}_{n} has a monochromatic H.
Theorem (Raynaud, '73)
$\stackrel{r}{ }\left(\overrightarrow{P_{n+1}, 2}\right)=2 n-1$.

Directed Ramsey numbers of directed paths

The k-colour directed Ramsey number of H, denoted by $\overleftrightarrow{r}(H, k)$, is the least n for which every k-colouring of the edges of \vec{K}_{n} has a monochromatic H.

Theorem (Raynaud, '73)
$\overleftrightarrow{r}\left(\overrightarrow{P_{n+1}}, 2\right)=2 n-1$

Directed Ramsey numbers of directed paths

The k-colour directed Ramsey number of H, denoted by $\overleftrightarrow{r}(H, k)$, is the least n for which every k-colouring of the edges of \vec{K}_{n} has a monochromatic H.
Theorem (Raynaud, '73)
$\stackrel{r}{ }\left(\overrightarrow{P_{n+1}}, 2\right)=2 n-1$.

Directed Ramsey numbers of directed paths

The k-colour directed Ramsey number of H, denoted by $\overleftrightarrow{r}(H, k)$, is the least n for which every k-colouring of the edges of \vec{K}_{n} has a monochromatic H.
Theorem (Raynaud, '73)
$\stackrel{r}{ }\left(\overrightarrow{P_{n+1}}, 2\right)=2 n-1$.

Directed Ramsey numbers of directed paths

The k-colour directed Ramsey number of H, denoted by $\overleftrightarrow{r}(H, k)$, is the least n for which every k-colouring of the edges of \vec{K}_{n} has a monochromatic H.

Theorem (Raynaud, '73)
$\overleftrightarrow{r}\left(\overrightarrow{P_{n+1}}, 2\right)=2 n-1$

Using, GHRV, we conclude that $\overleftrightarrow{r}\left(\overrightarrow{P_{n+1}}, k\right) \leq 2 n^{k-1}$.

Directed Ramsey numbers of paths

$$
\overleftrightarrow{r}\left(\overrightarrow{P_{n+1}}, k\right) \leq 2 n^{k-1}
$$

Directed Ramsey numbers of paths

$$
\begin{aligned}
& \overleftrightarrow{r}\left(\overrightarrow{P_{n+1}}, k\right) \leq 2 n^{k-1} . \\
& \overleftrightarrow{r}\left(\overrightarrow{P_{n+1}}, k\right) \geq\left\{n^{n^{2}} \quad k=3\right.
\end{aligned}
$$

Directed Ramsey numbers of paths

$$
\begin{aligned}
& \overleftrightarrow{r}\left(\overrightarrow{P_{n+1}}, k\right) \leq 2 n^{k-1} . \\
& \overleftrightarrow{r}\left(\overrightarrow{P_{n+1}}, k\right) \geq\left\{n^{2} \quad k=3\right.
\end{aligned}
$$

Directed Ramsey numbers of paths

$$
\begin{aligned}
& \overleftrightarrow{r}\left(\overrightarrow{P_{n+1}}, k\right) \leq 2 n^{k-1} . \\
& \overleftrightarrow{r}\left(\overrightarrow{P_{n+1}}, k\right) \geq\left\{n^{2} \quad k=3\right.
\end{aligned}
$$

Directed Ramsey numbers of paths

$$
\begin{aligned}
& \overleftrightarrow{r}\left(\overrightarrow{P_{n+1}}, k\right) \leq 2 n^{k-1} . \\
& \overleftrightarrow{r}\left(\overrightarrow{P_{n+1}}, k\right) \geq\left\{n^{2} \quad k=3\right.
\end{aligned}
$$

Directed Ramsey numbers of paths

$$
\begin{aligned}
& \overleftrightarrow{r}\left(\overrightarrow{P_{n+1}}, k\right) \leq 2 n^{k-1} . \\
& \overleftrightarrow{r}\left(\overrightarrow{P_{n+1}}, k\right) \geq\left\{n^{2} \quad k=3\right.
\end{aligned}
$$

Directed Ramsey numbers of paths

$$
\begin{aligned}
& \overleftrightarrow{r}\left(\overrightarrow{P_{n+1}}, k\right) \leq 2 n^{k-1} . \\
& \overleftrightarrow{r}\left(\overrightarrow{P_{n+1}}, k\right) \geq \begin{cases}n^{2} & k=3 \\
2^{-k+3} n^{k-1} & k \geq 4 .\end{cases}
\end{aligned}
$$

Directed Ramsey numbers of paths

$$
\begin{aligned}
& \overleftrightarrow{r}\left(\overrightarrow{P_{n+1}}, k\right) \leq 2 n^{k-1} . \\
& \overleftrightarrow{r}\left(\overrightarrow{P_{n+1}}, k\right) \geq \begin{cases}n^{2} & k=3 \\
2^{-k+3} n^{k-1} & k \geq 4\end{cases}
\end{aligned}
$$

Directed Ramsey numbers of paths

$$
\begin{aligned}
& \overleftrightarrow{r}\left(\overrightarrow{P_{n+1}}, k\right) \leq 2 n^{k-1} . \\
& \overleftrightarrow{r}\left(\overrightarrow{P_{n+1}}, k\right) \geq \begin{cases}n^{2} & k=3 \\
2^{-k+3} n^{k-1} & k \geq 4\end{cases}
\end{aligned}
$$

Directed Ramsey numbers of paths

$$
\begin{aligned}
& \overleftrightarrow{r}\left(\overrightarrow{P_{n+1}}, k\right) \leq 2 n^{k-1} . \\
& \overleftrightarrow{r}\left(\overrightarrow{P_{n+1}}, k\right) \geq \begin{cases}n^{2} & k=3 \\
2^{-k+3} n^{k-1} & k \geq 4\end{cases}
\end{aligned}
$$

Directed Ramsey numbers of paths

$$
\begin{aligned}
& \overleftrightarrow{r}\left(\overrightarrow{P_{n+1}}, k\right) \leq 2 n^{k-1} . \\
& \overleftrightarrow{r}\left(\overrightarrow{P_{n+1}}, k\right) \geq \begin{cases}n^{2} & k=3 \\
2^{-k+3} n^{k-1} & k \geq 4\end{cases}
\end{aligned}
$$

Directed Ramsey numbers of paths

$$
\begin{aligned}
& \overleftrightarrow{r}\left(\overrightarrow{P_{n+1}}, k\right) \leq 2 n^{k-1} . \\
& \overleftrightarrow{r}\left(\overrightarrow{P_{n+1}}, k\right) \geq \begin{cases}n^{2} & k=3 \\
2^{-k+3} n^{k-1} & k \geq 4 .\end{cases}
\end{aligned}
$$

Directed Ramsey numbers of paths

$$
\begin{aligned}
& \overleftrightarrow{r}\left(\overrightarrow{P_{n+1}}, k\right) \leq 2 n^{k-1} . \\
& \overleftrightarrow{r}\left(\overrightarrow{P_{n+1}}, k\right) \geq \begin{cases}n^{2} & k=3 \\
2^{-k+3} n^{k-1} & k \geq 4 .\end{cases}
\end{aligned}
$$

Directed Ramsey numbers of paths

$$
\begin{aligned}
& \overleftrightarrow{r}\left(\overrightarrow{P_{n+1}}, k\right) \leq 2 n^{k-1} . \\
& \overleftrightarrow{r}\left(\overrightarrow{P_{n+1}}, k\right) \geq \begin{cases}n^{2} & k=3 \\
2^{-k+3} n^{k-1} & k \geq 4 .\end{cases}
\end{aligned}
$$

Directed Ramsey numbers of paths

$$
\begin{aligned}
& \overleftrightarrow{r}\left(\overrightarrow{P_{n+1}}, k\right) \leq 2 n^{k-1} . \\
& \overleftrightarrow{r}\left(\overrightarrow{P_{n+1}}, k\right) \geq \begin{cases}n^{2} & k=3 \\
2^{-k+3} n^{k-1} & k \geq 4 .\end{cases}
\end{aligned}
$$

Directed Ramsey numbers of paths

$$
\begin{aligned}
& \overleftrightarrow{r}\left(\overrightarrow{P_{n+1}}, k\right) \leq 2 n^{k-1} . \\
& \overleftrightarrow{r}\left(\overrightarrow{P_{n+1}}, k\right) \geq \begin{cases}n^{2} & k=3 \\
2^{-k+3} n^{k-1} & k \geq 4 .\end{cases}
\end{aligned}
$$

Directed Ramsey numbers of trees

Directed Ramsey numbers of trees

Theorem (Bucić, L., Sudakov '17+)
Let T be an oriented tree. Then $\overleftrightarrow{r}(T, k) \leq c_{k}|T|^{k-1}$.

Directed Ramsey numbers of trees

Theorem (Bucić, L., Sudakov '17+)
Let T be an oriented tree. Then $\overleftrightarrow{r}(T, k) \leq c_{k}|T|^{k-1}$.
Note, even with Burr's conjecture, need to prove the case $k=2$ separately.

Directed Ramsey numbers of trees

Theorem (Bucić, L., Sudakov '17+)

Let T be an oriented tree. Then $\overleftrightarrow{r}(T, k) \leq c_{k}|T|^{k-1}$.
Note, even with Burr's conjecture, need to prove the case $k=2$ separately.

Theorem (Bucić, L., Sudakov '17+)

Let P be a path of length n with $I(P)=I$. Then $\overleftrightarrow{r}(P, k) \leq n \cdot I^{k-1}$.

Another consequence of Burr's conjecture

Another consequence of Burr's conjecture

Burr's conjecture, if true, implies that for a tree T of order n and a graph G of order N,

Another consequence of Burr's conjecture

Burr's conjecture, if true, implies that for a tree T of order n and a graph G of order N, either $T \subseteq G$

Another consequence of Burr's conjecture

Burr's conjecture, if true, implies that for a tree T of order n and a graph G of order N, either $T \subseteq G$ or $\alpha(G) \geq \frac{N}{c n}$.

Another consequence of Burr's conjecture

Burr's conjecture, if true, implies that for a tree T of order n and a graph G of order N, either $T \subseteq G$ or $\alpha(G) \geq \frac{N}{c n}$.

Lemma

$T \subseteq G$ or $\alpha(G) \geq \frac{N}{c n \log N}$.

Another consequence of Burr's conjecture

Burr's conjecture, if true, implies that for a tree T of order n and a graph G of order N, either $T \subseteq G$ or $\alpha(G) \geq \frac{N}{c n}$.
Lemma
$T \subseteq G$ or $\alpha(G) \geq \frac{N}{c n \log N}$.

Theorem (Bucić, L., Sudakov '17)

Another consequence of Burr's conjecture

Burr's conjecture, if true, implies that for a tree T of order n and a graph G of order N, either $T \subseteq G$ or $\alpha(G) \geq \frac{N}{c n}$.

Lemma

$T \subseteq G$ or $\alpha(G) \geq \frac{N}{c n \log N}$.

Theorem (Bucić, L., Sudakov '17)
Let T be an out-directed tree with r leafs.

Another consequence of Burr's conjecture

Burr's conjecture, if true, implies that for a tree T of order n and a graph G of order N, either $T \subseteq G$ or $\alpha(G) \geq \frac{N}{c n}$.
Lemma
$T \subseteq G$ or $\alpha(G) \geq \frac{N}{c n \log N}$.

Theorem (Bucić, L., Sudakov '17)
Let T be an out-directed tree with r leafs. Then either $T \subseteq G$ or $\alpha(G) \geq \frac{N}{c_{r} n}$.

Open problems

Open problems

For a tree $T, I(T)$ is the length of the longest subpath of T.

Open problems

For a tree $T, I(T)$ is the length of the longest subpath of T.

Question

Is there a constant c_{k} such that $\vec{r}(T, k) \leq c_{k} n \cdot I^{k-1}$?

Open problems

For a tree $T, I(T)$ is the length of the longest subpath of T.

Question

Is there a constant c_{k} such that $\vec{r}(T, k) \leq c_{k} n \cdot I^{k-1}$?

Question

What is $\overleftrightarrow{r}\left(\overrightarrow{P_{n+1}}, k\right)$?

Open problems

For a tree $T, I(T)$ is the length of the longest subpath of T.

Question

Is there a constant c_{k} such that $\vec{r}(T, k) \leq c_{k} n \cdot I^{k-1}$?

Question

What is $\overleftrightarrow{r}\left(\overrightarrow{P_{n+1}}, k\right)$?
In particular, is it true that $\overleftrightarrow{r}\left(\overrightarrow{P_{n+1}}, 3\right)=(1+o(1)) n^{2}$?

Open problems

For a tree $T, I(T)$ is the length of the longest subpath of T.

Question

Is there a constant c_{k} such that $\vec{r}(T, k) \leq c_{k} n \cdot I^{k-1}$?

Question

What is $\overleftrightarrow{r}\left(\overrightarrow{P_{n+1}}, k\right)$?
In particular, is it true that $\overleftrightarrow{r}\left(\overrightarrow{P_{n+1}}, 3\right)=(1+o(1)) n^{2}$?

Conjecture (A weakening of Burr's conjecture)

Open problems

For a tree $T, I(T)$ is the length of the longest subpath of T.

Question

Is there a constant c_{k} such that $\vec{r}(T, k) \leq c_{k} n \cdot I^{k-1}$?

Question

What is $\overleftrightarrow{r}\left(\overrightarrow{P_{n+1}}, k\right)$?
In particular, is it true that $\overleftrightarrow{r}\left(\overrightarrow{P_{n+1}}, 3\right)=(1+o(1)) n^{2}$?
Conjecture (A weakening of Burr's conjecture)
There is a constant c such that for an oriented tree T of order n and a graph of order N, either $T \subseteq G$ or $\alpha(G) \geq \frac{N}{c n}$.

The end

Thank you for listening!

