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A classical result

Denote by
−→
Pk the directed path of order k (P4 = ).

Theorem (Gallai; Hasse; Roy; Vitaver ’60s)

Let G be a directed graph.

If χ(G) ≥ k then
−→
Pk ⊆ G.

Proof.
Suppose that

−→
Pk * G .

Let G ′ be a maximal acyclic subgraph of G .
For a vertex u, let c(u) be the order of the longest
directed path in G ′ ending at u

(so c(u) ∈ [k − 1]).

c is a proper
colouring of
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Generalisation of GHRV

Theorem (Gallai, Hasse, Roy, Vitaver ’60s)

Let G be a directed graph. If χ(G) ≥ k then
−→
Pk ⊆ G.

Can this be generalised to graphs H other than directed
paths? Is there c = c(H) such that if χ(G) ≥ c then H ⊆ G?

If H contains a bi-direceted edges ( ),

then no.

If the underlying graph of H contains a cycle,

no.
(There are graphs with arbitrarily large girth and
chromatic number).

What about oriented trees?
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Burr’s conjecture

Conjecture (Burr ’80)

Let T be an oriented tree of order k. If χ(G) ≥ 2k−2 then T ⊆ G.

Tight:

a regular tournament of order 2k − 3 does not
contain an out-directed star of order k .

Holds for k2 in place of 2k − 2 (Burr ’80).
Best bound: k2/2− k/2 + 1 (Addario-Berry, Havet, Sales,
Reed, Thomassé ’13).
A linear bound unknown even for oriented paths.
Holds for paths with two blocks ( )
(El Sahili, Kouider ’07; Addario-Berry, Havet, Thomassé ’07).
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Ramsey application of GHRV

Theorem (Bermond; Chvátal; Gyárfás and Lehel ’70s)

Let T be a 2-coloured tournament on n2 + 1. Then it contains
a monochromatic

−−→
Pn+1.

Proof.
TR - graph of red edges, TB - blue edges.

Then either χ(TR) > n or χ(TB) > n.

By GHRV theorem, there is a monochromatic
−−→
Pn+1. �

This is tight:

n

n
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Let T be a 2-coloured tournament on n2 + 1.

Then it contains
a monochromatic

−−→
Pn+1.

Proof.
TR - graph of red edges, TB - blue edges.

Then either χ(TR) > n or χ(TB) > n.

By GHRV theorem, there is a monochromatic
−−→
Pn+1. �

This is tight:

n

n

Shoham Letzter Directed Ramsey theory



Ramsey application of GHRV
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Oriented Ramsey numbers

The k-colour oriented Ramsey number of H , denoted by
−→r (H , k),

is the least n for which every k-colouring of every
tournament of order n contains a monochromatic H .

We saw −→r (
−−→
Pn+1, 2) = n2 + 1.

Similarly, −→r (
−−→
Pn+1, k) = nk + 1 for k ≥ 2.

What is −→r (T , k), where T is an oriented tree?

Non-trivial even for k = 1.
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Sumner’s conjecture

Conjecture (Sumner ’71)

Let G be a tournament of order 2n − 2. Then G contains
every oriented tree of order n.

This generalises Burr’s conjecture.
Tight for out-stars.
Thomason (’86): n for oriented paths, for large n.
Häggkvist, Thomason (’91): cn for trees.
Havet, Thomassé (’00): (7n − 5)/2.
El Sahili (’04): 3n − 3.
Kühn, Microft, Osthus (’10): conjecture holds for large n.
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Häggkvist, Thomason (’91): cn for trees.
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Häggkvist, Thomason (’91): cn for trees.
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Oriented Ramsey numbers of trees

Yuster (’17): −→r (T , k) ≤ (|T | − 1)k for k ≥ c|T | log |T |.
Burr’s conjecture would imply: −→r (T , k) ≤ ck |T |k .

Theorem (Bucić, L., Sudakov ’17+)

There is a constant ck such that −→r (T , k) ≤ ck |T |k for every
oriented tree T .

This is tight up a constant factor for directed paths.
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Oriented Ramsey number of paths

l(P) is the length of the longest directed subpaths of P.
E.g. if P = , l(P) = 3.

Theorem (Bucić, L., Sudakov ’17+)

Let P be an oriented path of length n, with l(P) = l .

Then
−→r (P, k) ≤ cknlk−1.

This is tight up to a constant factor.
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Tightness of the upper bound on −→r (−−→Pn+1, k)

Let P be a path of length n with l(P) = l .

Then −→r (P, k) ≥ nlk−1.

n

l

l
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Proof of path vs. path
Let T be a 2-coloured tournament on N = 8nl + n vertices.

Let {X ,Y } be an arbitrary partition into sets of size N/2.

X Y

X ′ Y ′
< N

8
N
8 >

N
8 ≤ ≥ N

8

≥ 1
4

(
N
2

)2

We find X ′ and Y ′, such that every vertex in X ′ has at least
N/8 red out-neighbours in Y ′, and vice versa.
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Proof of path vs. path - continued

Recall, N = 8nl + n.

P =
n1 n2 n3 n4

.

≥ 1
n1

N
8 ≥

N
8l ≥ n

n ≤ 1
n2

(
N
8 − 1

)
≤

X ′ Y ′

n1 −
1n2 −

1 n3 −
1

n4 −
1
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Tree vs. path - step 1

Lemma

Let T be a tree of order n with r leafs, and let P be a path of
order m. Then −→r (T ,P) ≤ 10r+3nm.

Proof. Induction on r : for r = 2, follows from path vs. path;
so now r ≥ 3.
Case 1. there are at
least N2/20 red edges.

X Y

≥ 1
4

N2

20

≥ N
80

N
80≤

≥ 1
n

N
8 ≥ 3n
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Tree vs. path - step 1 continued
Case 2. there are fewer than N2/20 red edges.

Hence, there
is a vertex with blue in- and out-degrees at least N/9.

T1

T2

T3

T4

T5

10r+2nm ≤

N
9 ≤ ≥ N

9

Let u be a vertex of degree at least 3 (ignoring directions).

T1 T2 T3 T4 T5

u

< r leafs
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Tree vs. path - step 2
N = 1010nm.

As before, we assume that there are at most N2

80 red edges.
Hence, there are N

10 vertices, with blue in- and out-degrees at
least N

6 .
Denote by Tu the subtree rooted at u.
T ′ the subtree consisting of vertices u with |Tu| > n

7 .

T1

T2 T3

T ′

≤ 6 leafs

≤ n
7 vertices

1010 n
7 m ≤ N

6 − n ≤

1010 n
7 m ≤ N

6 ≤

T1

T2 T3

≥ N
10
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T ′

≤ 6 leafs

≤ n
7 vertices

1010 n
7 m ≤ N

6 − n ≤

1010 n
7 m ≤ N

6 ≤

T1

T2 T3

≥ N
10
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Directed Ramsey numbers of directed paths

The k-colour directed Ramsey number of H , denoted by
←→r (H , k), is the least n for which every k-colouring of the
edges of

−→
Kn has a monochromatic H .

Theorem (Raynaud, ’73)
←→r (
−−→
Pn+1, 2) = 2n − 1.

n−1 n−1

Using, GHRV, we conclude that ←→r (
−−→
Pn+1, k) ≤ 2nk−1.
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Directed Ramsey numbers of paths

←→r (
−−→
Pn+1, k) ≤ 2nk−1.

←→r (
−−→
Pn+1, k) ≥

{
n2 k = 3

2−k+3nk−1 k ≥ 4.

n

n

an
dand

nn
2

n/2
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Directed Ramsey numbers of trees

Theorem (Bucić, L., Sudakov ’17+)

Let T be an oriented tree. Then ←→r (T , k) ≤ ck |T |k−1.

Note, even with Burr’s conjecture, need to prove the case
k = 2 separately.

Theorem (Bucić, L., Sudakov ’17+)

Let P be a path of length n with l(P) = l . Then
←→r (P, k) ≤ n · lk−1.
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Theorem (Bucić, L., Sudakov ’17+)

Let T be an oriented tree. Then ←→r (T , k) ≤ ck |T |k−1.

Note, even with Burr’s conjecture, need to prove the case
k = 2 separately.
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Theorem (Bucić, L., Sudakov ’17+)

Let P be a path of length n with l(P) = l . Then
←→r (P, k) ≤ n · lk−1.

Shoham Letzter Directed Ramsey theory



Another consequence of Burr’s conjecture

Burr’s conjecture, if true, implies that for a tree T of order n
and a graph G of order N , either T ⊆ G or α(G) ≥ N

cn .

Lemma
T ⊆ G or α(G) ≥ N

cn log N .

Theorem (Bucić, L., Sudakov ’17)

Let T be an out-directed tree with r leafs. Then either T ⊆ G
or α(G) ≥ N

cr n .
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Theorem (Bucić, L., Sudakov ’17)

Let T be an out-directed tree with r leafs. Then either T ⊆ G
or α(G) ≥ N

cr n .

Shoham Letzter Directed Ramsey theory



Open problems

For a tree T , l(T ) is the length of the longest subpath of T .

Question
Is there a constant ck such that −→r (T , k) ≤ ckn · lk−1?

Question
What is ←→r (

−−→
Pn+1, k)?

In particular, is it true that ←→r (
−−→
Pn+1, 3) = (1 + o(1))n2?

Conjecture (A weakening of Burr’s conjecture)

There is a constant c such that for an oriented tree T of order
n and a graph of order N, either T ⊆ G or α(G) ≥ N

cn .

Shoham Letzter Directed Ramsey theory



Open problems

For a tree T , l(T ) is the length of the longest subpath of T .

Question
Is there a constant ck such that −→r (T , k) ≤ ckn · lk−1?

Question
What is ←→r (

−−→
Pn+1, k)?

In particular, is it true that ←→r (
−−→
Pn+1, 3) = (1 + o(1))n2?

Conjecture (A weakening of Burr’s conjecture)

There is a constant c such that for an oriented tree T of order
n and a graph of order N, either T ⊆ G or α(G) ≥ N

cn .

Shoham Letzter Directed Ramsey theory



Open problems

For a tree T , l(T ) is the length of the longest subpath of T .

Question
Is there a constant ck such that −→r (T , k) ≤ ckn · lk−1?

Question
What is ←→r (

−−→
Pn+1, k)?

In particular, is it true that ←→r (
−−→
Pn+1, 3) = (1 + o(1))n2?

Conjecture (A weakening of Burr’s conjecture)

There is a constant c such that for an oriented tree T of order
n and a graph of order N, either T ⊆ G or α(G) ≥ N

cn .

Shoham Letzter Directed Ramsey theory



Open problems

For a tree T , l(T ) is the length of the longest subpath of T .

Question
Is there a constant ck such that −→r (T , k) ≤ ckn · lk−1?

Question
What is ←→r (

−−→
Pn+1, k)?

In particular, is it true that ←→r (
−−→
Pn+1, 3) = (1 + o(1))n2?

Conjecture (A weakening of Burr’s conjecture)

There is a constant c such that for an oriented tree T of order
n and a graph of order N, either T ⊆ G or α(G) ≥ N

cn .

Shoham Letzter Directed Ramsey theory



Open problems

For a tree T , l(T ) is the length of the longest subpath of T .

Question
Is there a constant ck such that −→r (T , k) ≤ ckn · lk−1?

Question
What is ←→r (

−−→
Pn+1, k)?

In particular, is it true that ←→r (
−−→
Pn+1, 3) = (1 + o(1))n2?

Conjecture (A weakening of Burr’s conjecture)

There is a constant c such that for an oriented tree T of order
n and a graph of order N, either T ⊆ G or α(G) ≥ N

cn .

Shoham Letzter Directed Ramsey theory



Open problems

For a tree T , l(T ) is the length of the longest subpath of T .

Question
Is there a constant ck such that −→r (T , k) ≤ ckn · lk−1?

Question
What is ←→r (

−−→
Pn+1, k)?

In particular, is it true that ←→r (
−−→
Pn+1, 3) = (1 + o(1))n2?

Conjecture (A weakening of Burr’s conjecture)

There is a constant c such that for an oriented tree T of order
n and a graph of order N, either T ⊆ G or α(G) ≥ N

cn .

Shoham Letzter Directed Ramsey theory



Open problems

For a tree T , l(T ) is the length of the longest subpath of T .

Question
Is there a constant ck such that −→r (T , k) ≤ ckn · lk−1?

Question
What is ←→r (

−−→
Pn+1, k)?

In particular, is it true that ←→r (
−−→
Pn+1, 3) = (1 + o(1))n2?

Conjecture (A weakening of Burr’s conjecture)

There is a constant c such that for an oriented tree T of order
n and a graph of order N, either T ⊆ G or α(G) ≥ N

cn .

Shoham Letzter Directed Ramsey theory



The end

Thank you for listening!

Shoham Letzter Directed Ramsey theory


