Dense induced bipartite subgraphs in triangle-free graphs

Shoham Letzter

ETH - Institute for Theoretical Studies

joint work with Matthew Kwan, Benny Sudakov and Tuan Tran

Random Structures & Algorithms

July 2019

■ Edwards '73. Every graph with *m* edges contains a bipartite subgraph with ≥ ^{*m*}/₂ edges.

Edwards '73. Every graph with m edges contains a bipartite subgraph with $\gtrsim \frac{m}{2} + \sqrt{\frac{m}{8}}$ edges (tight for complete graphs).

- **Edwards '73.** Every graph with m edges contains a bipartite subgraph with $\gtrsim \frac{m}{2} + \sqrt{\frac{m}{8}}$ edges (tight for complete graphs).
- Alon '96. Every *triangle-free* graph with *m* edges contains a bipartite subgraph with $\geq \frac{m}{2} + c \cdot m^{4/5}$ edges (tight up to value of *c*).

- **Edwards '73.** Every graph with m edges contains a bipartite subgraph with $\gtrsim \frac{m}{2} + \sqrt{\frac{m}{8}}$ edges (tight for complete graphs).
- Alon '96. Every *triangle-free* graph with *m* edges contains a bipartite subgraph with $\geq \frac{m}{2} + c \cdot m^{4/5}$ edges (tight up to value of *c*).

 \Rightarrow 'Triangle-free graphs are (a little) closer to bipartite than general graphs'.

'Dense triangle-free graphs should be *much* closer to bipartite than general graphs':

'Dense triangle-free graphs should be *much* closer to bipartite than general graphs':

Conjecture (Erdős, '76)

Every triangle-free graph on n vertices can be made bipartite by removing at most $n^2/25$ edges.

'Dense triangle-free graphs should be *much* closer to bipartite than general graphs':

Conjecture (Erdős, '76)

Every triangle-free graph on n vertices can be made bipartite by removing at most $n^2/25$ edges.

The conjecture is tight:

'Dense triangle-free graphs should be *much* closer to bipartite than general graphs':

Conjecture (Erdős, '76)

Every triangle-free graph on n vertices can be made bipartite by removing at most $n^2/25$ edges.

The conjecture is tight:

Erdős, Faudree, Pach, Spencer '88. It suffices to remove $n^2/18$ edges.

Theorem (Erdős, Faudree, Pach, Spencer '88)

Every triangle-free graph on n vertices can be made bipartite by removing at most $n^2/18$ edges.

Theorem (Erdős, Faudree, Pach, Spencer '88)

Every triangle-free graph on n vertices can be made bipartite by removing at most $n^2/18$ edges.

Main tool. 'Triangle-free graphs with many edges contain *induced* bipartite subgraphs with many edges'.

Theorem (Erdős, Faudree, Pach, Spencer '88)

Every triangle-free graph on n vertices can be made bipartite by removing at most $n^2/18$ edges.

Main tool. 'Triangle-free graphs with many edges contain *induced* bipartite subgraphs with many edges'.

Theorem (Erdős, Faudree, Pach, Spencer '88)

Every triangle-free graph on n vertices can be made bipartite by removing at most $n^2/18$ edges.

Main tool. 'Triangle-free graphs with many edges contain *induced* bipartite subgraphs with many edges'.

Theorem (Erdős, Faudree, Pach, Spencer '88)

Every triangle-free graph on n vertices can be made bipartite by removing at most $n^2/18$ edges.

Main tool. 'Triangle-free graphs with many edges contain *induced* bipartite subgraphs with many edges'.

Theorem (Erdős, Faudree, Pach, Spencer '88)

Every triangle-free graph on n vertices can be made bipartite by removing at most $n^2/18$ edges.

Main tool. 'Triangle-free graphs with many edges contain *induced* bipartite subgraphs with many edges'.

Theorem (Erdős, Faudree, Pach, Spencer '88)

Every triangle-free graph on n vertices can be made bipartite by removing at most $n^2/18$ edges.

Main tool. 'Triangle-free graphs with many edges contain *induced* bipartite subgraphs with many edges'.

Theorem (Erdős, Faudree, Pach, Spencer '88)

Every triangle-free graph on n vertices can be made bipartite by removing at most $n^2/18$ edges.

Main tool. 'Triangle-free graphs with many edges contain *induced* bipartite subgraphs with many edges'.

Induced bipartite subgraphs with large min degree

Conjecture (Esperet, Kang, Thomassé '18)

Every triangle-free graph with large min degree contains an induced bipartite subgraph with large min degree.

Every K_t -free graph with large min degree contains an induced bipartite subgraph with large min degree.

Every K_t -free graph with large min degree contains an induced bipartite subgraph with large min degree.

They were motivated by 'separation choosability'.

Every K_t -free graph with large min degree contains an induced bipartite subgraph with large min degree.

They were motivated by 'separation choosability'.

Conjecture (Esperet, Kang, Thomassé '18)

Every triangle-free graph with min degree d contains an induced bipartite subgraph with min degree $\geq c \cdot \log d$.

Every K_t -free graph with large min degree contains an induced bipartite subgraph with large min degree.

They were motivated by 'separation choosability'.

Conjecture (Esperet, Kang, Thomassé '18)

Every triangle-free graph with min degree d contains an induced bipartite subgraph with min degree $\geq c \cdot \log d$.

This would be tight: consider suitable random graphs.

Every triangle-free graph with min degree d contains an induced bipartite subgraph with min degree $\geq c \cdot \log d$.

Every triangle-free graph with min degree d contains an induced bipartite subgraph with min degree $\geq c \cdot \log d$.

EKT. The conjecture holds if $d = \Omega(n^{2/3}\sqrt{\log n})$

Every triangle-free graph with min degree d contains an induced bipartite subgraph with min degree $\geq c \cdot \log d$.

EKT. The conjecture holds if $d = \Omega(n^{2/3}\sqrt{\log n})$ or if max degree \approx min degree.

Every triangle-free graph with min degree d contains an induced bipartite subgraph with min degree $\geq c \cdot \log d$.

- EKT. The conjecture holds if d = Ω(n^{2/3}√log n) or if max degree ≈ min degree.
- Radovanović, Vušković '13. Min degree 4 ⇒ induced even cycle.

Every triangle-free graph with min degree d contains an induced bipartite subgraph with min degree $\geq c \cdot \log d$.

■ EKT. The conjecture holds if d = Ω(n^{2/3}√log n) or if max degree ≈ min degree.

■ Radovanović, Vušković '13. Min degree 4 ⇒ induced even cycle.

Theorem (Kwan, L., Sudakov, Tran '19+)

Every K_t -free graph with min degree d contains an induced bipartite subgraph with min degree at least $c_t \cdot \frac{\log d}{\log \log d}$.

• G has n vertices, is triangle-free, has min degree $\geq d$.

- G has n vertices, is triangle-free, has min degree $\geq d$.
- **Wlog.** No proper induced subgraph has min degree $\geq d$.

- G has n vertices, is triangle-free, has min degree $\geq d$.
- Wlog. No proper induced subgraph has min degree ≥ d.
 ⇒ There is an ordering such that d⁺(u) ≤ d for every vertex u, where d⁺(u) is the forward degree of u.

- G has n vertices, is triangle-free, has min degree $\geq d$.
- Wlog. No proper induced subgraph has min degree ≥ d.
 ⇒ There is an ordering such that d⁺(u) ≤ d for every vertex u, where d⁺(u) is the forward degree of u.

• Let
$$\ell := \frac{\log d}{\log \log d}$$
.

- G has n vertices, is triangle-free, has min degree $\geq d$.
- Wlog. No proper induced subgraph has min degree ≥ d.
 ⇒ There is an ordering such that d⁺(u) ≤ d for every vertex u, where d⁺(u) is the forward degree of u.

• Let
$$\ell := \frac{\log d}{\log \log d}$$

Aim. Find disjoint independent sets A and B such that G[A, B] has average degree $\Omega(\ell)$.

For each vertex u:

Put u in X with probability p := 1/d, independently.

For each vertex u:

Put *u* in *X* with probability p := 1/d, independently.

• Put u in Y' if $u \notin X$ and $|N(u) \cap X| \ge \ell$.

For each vertex u:

- Put u in X with probability p := 1/d, independently.
- Put u in Y' if $u \notin X$ and $|N(u) \cap X| \ge \ell$. $\mathbb{P}(u \in Y')$
For each vertex u:

- Put *u* in *X* with probability p := 1/d, independently.
- Put u in Y' if $u \notin X$ and $|N(u) \cap X| \ge \ell$.

 $\mathbb{P}(u \in Y')$

For each vertex u:

- Put u in X with probability p := 1/d, independently.
- Put u in Y' if $u \notin X$ and $|N(u) \cap X| \ge \ell$.

 $\mathbb{P}(u \in Y') \geq (1-p)$

For each vertex u:

- Put u in X with probability p := 1/d, independently.
- Put u in Y' if $u \notin X$ and $|N(u) \cap X| \ge \ell$.

 $\mathbb{P}(u \in Y') \ge (1-p) \cdot \mathbb{P}(\mathsf{Bin}(d, p) \ge \ell)$

For each vertex u:

- Put u in X with probability p := 1/d, independently.
- Put u in Y' if $u \notin X$ and $|N(u) \cap X| \ge \ell$.

 $\mathbb{P}(u \in Y') \ge (1-p) \cdot \mathbb{P}(\mathsf{Bin}(d,p) \ge \ell) \ge p.$

For each vertex u:

- Put u in X with probability p := 1/d, independently.
- Put u in Y' if $u \notin X$ and $|N(u) \cap X| \ge \ell$.

 $\mathbb{P}(u \in Y') \ge (1-p) \cdot \mathbb{P}(\mathsf{Bin}(d,p) \ge \ell) \ge p.$

If $u \in Y'$, put u in Y with probability $\frac{p}{\mathbb{P}(u \in Y')}$ (≤ 1) .

For each vertex u:

- Put u in X with probability p := 1/d, independently.
- Put u in Y' if $u \notin X$ and $|N(u) \cap X| \ge \ell$.

 $\mathbb{P}(u \in Y') \ge (1-p) \cdot \mathbb{P}(\mathsf{Bin}(d,p) \ge \ell) \ge p.$

• If $u \in Y'$, put u in Y with probability $\frac{p}{\mathbb{P}(u \in Y')}$ (≤ 1) . $\mathbb{P}(u \in Y) = p$.

$$\blacksquare \mathbb{E}[|X|] = \mathbb{E}[|Y|] = np = \frac{n}{d}.$$

•
$$\mathbb{E}[|X|] = \mathbb{E}[|Y|] = np = \frac{n}{d}$$
.
• $\mathbb{E}[e(X)] = e(G) \cdot p^2$

•
$$\mathbb{E}[|X|] = \mathbb{E}[|Y|] = np = \frac{n}{d}.$$

• $\mathbb{E}[e(X)] = e(G) \cdot p^2 \le nd \cdot p^2 = \frac{n}{d}.$

$$\blacksquare \mathbb{E}[|X|] = \mathbb{E}[|Y|] = np = \frac{n}{d}.$$

•
$$\mathbb{E}[e(X)] = e(G) \cdot p^2 \leq nd \cdot p^2 = \frac{n}{d}$$
.

$$\blacksquare \mathbb{E}[|X|] = \mathbb{E}[|Y|] = np = \frac{n}{d}.$$

$$\blacksquare \mathbb{E}[e(X)] = e(G) \cdot p^2 \le nd \cdot p^2 = \frac{n}{d}.$$

$$\blacksquare \mathbb{E}[|X|] = \mathbb{E}[|Y|] = np = \frac{n}{d}.$$

$$\blacksquare \mathbb{E}[e(X)] = e(G) \cdot p^2 \le nd \cdot p^2 = \frac{n}{d}.$$

$$\blacksquare \mathbb{E}[|X|] = \mathbb{E}[|Y|] = np = \frac{n}{d}.$$

$$\blacksquare \mathbb{E}[e(X)] = e(G) \cdot p^2 \le nd \cdot p^2 = \frac{n}{d}.$$

 $\geq \ell$ vertices from X

$$\blacksquare \mathbb{E}[|X|] = \mathbb{E}[|Y|] = np = \frac{n}{d}.$$

•
$$\mathbb{E}[e(X)] = e(G) \cdot p^2 \leq nd \cdot p^2 = \frac{n}{d}$$
.

Claim. For an edge uv, $\mathbb{P}(u, v \in Y) \leq p^2$.

 $\geq \ell$ vertices from X

$$\Rightarrow \mathbb{E}[e(Y)] \le e(G) \cdot p^2 \le \frac{n}{d}.$$

Hope. X_0 is incident with few X - Y edges. $\Rightarrow G[X_i, Y_1]$ has average degree $\Omega(\ell)$ for some *i*.

Induced bipartite subgraphs in triangle-free graphs

Set
$$X_0 := \{x \in X : |N^+(x) \cap X| \ge 4\}.$$

Set
$$X_0 := \{x \in X : |N^+(x) \cap X| \ge 4\}.$$

• $X \setminus X_0$ is 3-degenerate.

Set
$$X_0 := \{x \in X : |N^+(x) \cap X| \ge 4\}.$$

• $X \setminus X_0$ is 3-degenerate.

 \Rightarrow It can be partitioned into independent sets X_1, \ldots, X_4 .

Set
$$X_0 := \{x \in X : |N^+(x) \cap X| \ge 4\}.$$

• $X \setminus X_0$ is 3-degenerate.

 \Rightarrow It can be partitioned into independent sets X_1, \ldots, X_4 .

Set
$$X_0 := \{x \in X : |N^+(x) \cap X| \ge 4\}.$$

• $X \setminus X_0$ is 3-degenerate.

 \Rightarrow It can be partitioned into independent sets X_1, \ldots, X_4 .

Set
$$X_0 := \{x \in X : |N^+(x) \cap X| \ge 4\}.$$

• $X \setminus X_0$ is 3-degenerate.

 \Rightarrow It can be partitioned into independent sets X_1, \ldots, X_4 .

Set
$$X_0 := \{x \in X : |N^+(x) \cap X| \ge 4\}.$$

• $X \setminus X_0$ is 3-degenerate.

 \Rightarrow It can be partitioned into independent sets X_1, \ldots, X_4 .

Set
$$X_0 := \{x \in X : |N^+(x) \cap X| \ge 4\}.$$

• $X \setminus X_0$ is 3-degenerate.

 \Rightarrow It can be partitioned into independent sets X_1, \ldots, X_4 .

$$\Rightarrow \mathbb{E}[e(X_0 - Y)] \le e(G) \cdot \frac{p^2 \ell}{23} \le \frac{\ell}{23} \cdot \mathbb{E}[|Y|].$$

Completing the proof

12 / 14

Completing the proof

Completing the proof

Completing the proof

Completing the proof

Theorem (Kwan, L., Sudakov, Tran '19+)

Every K_t -free graph with min degree d contain an induced bipartite subgraph with min degree $\geq c_t \cdot \frac{\log d}{\log \log d}$.

Theorem (Kwan, L., Sudakov, Tran '19+)

Every *H*-free graph with min degree *d* contain an induced bipartite subgraph with min degree $\geq c_H \cdot \frac{\log d}{\log \log d}$.

Theorem (Kwan, L., Sudakov, Tran '19+)

Every *H*-free graph with min degree *d* contain an induced bipartite subgraph with min degree $\geq c_H \cdot \frac{\log d}{\log \log d}$.

 $g_H(n,d) := \max\{g : \text{any } n \text{-vertex } H \text{-free graph with min deg} \ge d$ has an induced bipartite subgraph with min deg $g\}$.

Theorem (Kwan, L., Sudakov, Tran '19+)

Every *H*-free graph with min degree *d* contain an induced bipartite subgraph with min degree $\geq c_H \cdot \frac{\log d}{\log \log d}$.

 $g_H(n,d) := \max\{g : \text{any } n \text{-vertex } H \text{-free graph with min deg} \ge d$ has an induced bipartite subgraph with min deg $g\}$.

Question. What is $g_H(n, d)$?

Theorem (Kwan, L., Sudakov, Tran '19+)

Every *H*-free graph with min degree *d* contain an induced bipartite subgraph with min degree $\geq c_H \cdot \frac{\log d}{\log \log d}$.

 $g_H(n, d) := \max\{g : \text{any } n \text{-vertex } H \text{-free graph with min deg} \ge d$ has an induced bipartite subgraph with min deg $g\}$.

Question. What is $g_H(n, d)$?

$$\Omega(\frac{\log d}{\log\log d}) \leq g_{\triangle}(n,d)$$

We showed:

Theorem (Kwan, L., Sudakov, Tran '19+)

Every *H*-free graph with min degree *d* contain an induced bipartite subgraph with min degree $\geq c_H \cdot \frac{\log d}{\log \log d}$.

 $g_H(n, d) := \max\{g : \text{any } n \text{-vertex } H \text{-free graph with min deg} \ge d$ has an induced bipartite subgraph with min deg $g\}$.

Question. What is $g_H(n, d)$?

$$\Omega(rac{\log d}{\log\log d}) \leq g_{ riangle}(n,d) \leq O(\log d) \quad d \leq \sqrt{n}.$$

We showed:

Theorem (Kwan, L., Sudakov, Tran '19+)

Every *H*-free graph with min degree *d* contain an induced bipartite subgraph with min degree $\geq c_H \cdot \frac{\log d}{\log \log d}$.

 $g_H(n,d) := \max\{g : \text{any } n \text{-vertex } H \text{-free graph with min deg} \ge d$ has an induced bipartite subgraph with min deg $g\}$.

Question. What is $g_H(n, d)$?

• We showed:
$$\Omega(\frac{\log d}{\log \log d}) \le g_{\triangle}(n,d) \le O(\log d) \quad d \le \sqrt{n}.$$

 $\Omega(\frac{d^2}{n}) \le g_{\triangle}(n,d)$

(second lower bound also proved by Cames van Batenburg, de Joannis de Verclos, Kang and Pirot '18.)

Theorem (Kwan, L., Sudakov, Tran '19+)

Every *H*-free graph with min degree *d* contain an induced bipartite subgraph with min degree $\geq c_H \cdot \frac{\log d}{\log \log d}$.

 $g_H(n,d) := \max\{g : \text{any } n \text{-vertex } H \text{-free graph with min deg} \ge d$ has an induced bipartite subgraph with min deg $g\}$.

Question. What is $g_H(n, d)$?

• We showed:
$$\begin{array}{l} \Omega(\frac{\log d}{\log \log d}) \leq g_{\triangle}(n,d) \leq O(\log d) \quad d \leq \sqrt{n}.\\ \Omega(\frac{d^2}{n}) \leq g_{\triangle}(n,d) \leq O(\frac{d^2 \log d}{n}) \quad d \geq \sqrt{n}. \end{array}$$

(second lower bound also proved by Cames van Batenburg, de Joannis de Verclos, Kang and Pirot '18.)

Theorem (Kwan, L., Sudakov, Tran '19+)

Every *H*-free graph with min degree *d* contain an induced bipartite subgraph with min degree $\geq c_H \cdot \frac{\log d}{\log \log d}$.

 $g_H(n,d) := \max\{g : \text{any } n \text{-vertex } H \text{-free graph with min deg} \ge d$ has an induced bipartite subgraph with min deg $g\}$.

Question. What is $g_H(n, d)$?

• We showed:
$$\begin{array}{l} \Omega(\frac{\log d}{\log \log d}) \leq g_{\triangle}(n,d) \leq O(\log d) \quad d \leq \sqrt{n}.\\ \Omega(\frac{d^2}{n}) \leq g_{\triangle}(n,d) \leq O(\frac{d^2 \log d}{n}) \quad d \geq \sqrt{n}. \end{array}$$

(second lower bound also proved by Cames van Batenburg, de Joannis de Verclos, Kang and Pirot '18.)

• Alon '94. $g_{\triangle}(n,d) = \Theta(\frac{d^2}{n})$ if $d \ge n^{2/3}$.

Let $\chi_f(\cdot)$ denote the fractional chromatic number.

Let $\chi_f(\cdot)$ denote the *fractional chromatic number*.

Esperet, Kang, Thomassé '18. min degree d, $\chi_f \leq k$ \Rightarrow an induced bipartite subgraph with min degree $\geq \frac{d}{k}$.

Let $\chi_f(\cdot)$ denote the *fractional chromatic number*.

- **Esperet, Kang, Thomassé '18.** min degree d, $\chi_f \leq k$ \Rightarrow an induced bipartite subgraph with min degree $\geq \frac{d}{k}$.
- **Conjecture (Harris, '19).** Every triangle-free *d*-degenerate graph satisfies $\chi_f = O(\frac{d}{\log d})$.

Let $\chi_f(\cdot)$ denote the *fractional chromatic number*.

- **Esperet, Kang, Thomassé '18.** min degree d, $\chi_f \leq k$ \Rightarrow an induced bipartite subgraph with min degree $\geq \frac{d}{k}$.
- **Conjecture (Harris, '19).** Every triangle-free *d*-degenerate graph satisfies $\chi_f = O(\frac{d}{\log d})$.

If true, the conjecture of EKT holds.

Let $\chi_f(\cdot)$ denote the *fractional chromatic number*.

- **Esperet, Kang, Thomassé '18.** min degree d, $\chi_f \leq k$ \Rightarrow an induced bipartite subgraph with min degree $\geq \frac{d}{k}$.
- **Conjecture (Harris, '19).** Every triangle-free *d*-degenerate graph satisfies $\chi_f = O(\frac{d}{\log d})$.

If true, the conjecture of EKT holds.

Johansson '96. Every triangle-free graph with max degree *d* satisfies $\chi = O(\frac{d}{\log d})$.

Let $\chi_f(\cdot)$ denote the *fractional chromatic number*.

- **Esperet, Kang, Thomassé '18.** min degree d, $\chi_f \leq k$ \Rightarrow an induced bipartite subgraph with min degree $\geq \frac{d}{k}$.
- **Conjecture (Harris, '19).** Every triangle-free *d*-degenerate graph satisfies $\chi_f = O(\frac{d}{\log d})$.

If true, the conjecture of EKT holds.

- **Johansson '96.** Every triangle-free graph with max degree *d* satisfies $\chi = O(\frac{d}{\log d})$.
- **Alon, Krivelevich, Sudakov '99.** If χ_f is replaced by χ , Harris's conjecture becomes false.

Let $\chi_f(\cdot)$ denote the *fractional chromatic number*.

- **Esperet, Kang, Thomassé '18.** min degree d, $\chi_f \leq k$ \Rightarrow an induced bipartite subgraph with min degree $\geq \frac{d}{k}$.
- **Conjecture (Harris, '19).** Every triangle-free *d*-degenerate graph satisfies $\chi_f = O(\frac{d}{\log d})$.

If true, the conjecture of EKT holds.

- **Johansson '96.** Every triangle-free graph with max degree *d* satisfies $\chi = O(\frac{d}{\log d})$.
- **Alon, Krivelevich, Sudakov '99.** If χ_f is replaced by χ , Harris's conjecture becomes false.

Thank you for your attention!!!