Hypergraph Lagrangians

Shoham Letzter

FTH-ITS

joint work with Vytautas Gruslys and Natasha Morrison

British Combinatorical Conference

July 2019

Shoham Letzter

Given r-graph G and $w:V(G) \rightarrow [0,1]$,

Given r-graph G and $w:V(G) \rightarrow [0,1]$,

Given
$$r$$
-graph G and $w:V(G) o [0,1],$ $w(G) = \sum_{e \in E(G)} \prod_{x \in e} w(x)$

Given
$$r$$
-graph G and $w:V(G)
ightarrow [0,1],$ $w(G) = \sum_{e \in E(G)} \prod_{x \in e} w(x)$

$$w(\triangle) = \frac{1}{18} + \frac{1}{6} + \frac{1}{12} = \frac{11}{36}$$

Given
$$r$$
-graph G and $w:V(G)
ightarrow [0,1],$ $w(G) = \sum_{e \in E(G)} \prod_{x \in e} w(x)$

$$w(\triangle) = \frac{1}{18} + \frac{1}{6} + \frac{1}{12} = \frac{11}{36}$$

Definition (Motzkin, Straus '65)

The Lagrangian of G is

$$\lambda(G) := \max\{w(G) : \sum_{x \in V(G)} w(x) = 1\}.$$

Given
$$r$$
-graph G and $w:V(G)
ightarrow [0,1]$, $w(G) = \sum_{e \in E(G)} \prod_{x \in e} w(x)$

$$w(\triangle) = \frac{1}{9} + \frac{1}{9} + \frac{1}{9} = \frac{1}{3}$$

Definition (Motzkin, Straus '65)

The Lagrangian of G is

$$\lambda(G) := \max\{w(G) : \sum_{x \in V(G)} w(x) = 1\}.$$

E.g.,
$$\lambda(\triangle) = \max\{xy + yz + xz : x + y + z = 1\} = 1/3$$
.

Given r-graph
$$G$$
 and $w:V(G)
ightarrow [0,1],$
$$w(G) = \sum_{e \in E(G)} \prod_{x \in e} w(x)$$

$$w(\triangle) = \frac{1}{9} + \frac{1}{9} + \frac{1}{9} = \frac{1}{3}$$

Definition (Motzkin, Straus '65)

The Lagrangian of G is

$$\lambda(G) := \max\{w(G) : \sum_{x \in V(G)} w(x) = 1\}.$$

E.g.,
$$\lambda(\triangle) = \max\{xy + yz + xz : x + y + z = 1\} = 1/3$$
. More generally, $\lambda([t]^{(r)}) = \frac{1}{t^r} {t \choose r}$.

Theorem (Motzkin, Straus '65)

Let G be a graph. Then $\lambda(G) = \lambda(K_r)$, where $r = \omega(G)$.

Theorem (Motzkin, Straus '65)

Let G be a graph. Then $\lambda(G) = \lambda(K_r)$, where $r = \omega(G)$.

Proof.

• As $K_r \subseteq G$, $\lambda(G) \ge \lambda(K_r)$.

Theorem (Motzkin, Straus '65)

Let G be a graph. Then $\lambda(G) = \lambda(K_r)$, where $r = \omega(G)$.

- As $K_r \subseteq G$, $\lambda(G) \ge \lambda(K_r)$.
- Let $w(G) = \lambda(G)$ (and $\sum_x w(x) = 1$).

Theorem (Motzkin, Straus '65)

Let G be a graph. Then $\lambda(G) = \lambda(K_r)$, where $r = \omega(G)$.

Proof.

- As $K_r \subseteq G$, $\lambda(G) \ge \lambda(K_r)$.
- Let $w(G) = \lambda(G)$ (and $\sum_x w(x) = 1$).

13

Theorem (Motzkin, Straus '65)

Let G be a graph. Then $\lambda(G) = \lambda(K_r)$, where $r = \omega(G)$.

- As $K_r \subseteq G$, $\lambda(G) \ge \lambda(K_r)$.
- Let $w(G) = \lambda(G)$ (and $\sum_{x} w(x) = 1$).

Theorem (Motzkin, Straus '65)

Let G be a graph. Then $\lambda(G) = \lambda(K_r)$, where $r = \omega(G)$.

- As $K_r \subseteq G$, $\lambda(G) \ge \lambda(K_r)$.
- Let $w(G) = \lambda(G)$ (and $\sum_{x} w(x) = 1$).

Theorem (Motzkin, Straus '65)

Let G be a graph. Then $\lambda(G) = \lambda(K_r)$, where $r = \omega(G)$.

- As $K_r \subseteq G$, $\lambda(G) \ge \lambda(K_r)$.
- Let $w(G) = \lambda(G)$ (and $\sum_x w(x) = 1$).

Theorem (Motzkin, Straus '65)

Let G be a graph. Then $\lambda(G) = \lambda(K_r)$, where $r = \omega(G)$.

- As $K_r \subseteq G$, $\lambda(G) \ge \lambda(K_r)$.
- Let $w(G) = \lambda(G)$ (and $\sum_x w(x) = 1$).

Theorem (Motzkin, Straus '65)

Let G be a graph. Then $\lambda(G) = \lambda(K_r)$, where $r = \omega(G)$.

- As $K_r \subseteq G$, $\lambda(G) \ge \lambda(K_r)$.
- Let $w(G) = \lambda(G)$ (and $\sum_x w(x) = 1$).

Theorem (Motzkin, Straus '65)

Let G be a graph. Then $\lambda(G) = \lambda(K_r)$, where $r = \omega(G)$.

Proof.

- As $K_r \subseteq G$, $\lambda(G) \ge \lambda(K_r)$.
- Let $w(G) = \lambda(G)$ (and $\sum_{x} w(x) = 1$).

gain from weight shift:

$$w(y)\Big(w(N(x))-w(N(y))\Big)\geq 0$$

Shoham Letzter Hypergraph Lagrangians

13

Theorem (Motzkin, Straus '65)

Let G be a graph. Then $\lambda(G) = \lambda(K_r)$, where $r = \omega(G)$.

- As $K_r \subseteq G$, $\lambda(G) \ge \lambda(K_r)$.
- Let $w(G) = \lambda(G)$ (and $\sum_{x} w(x) = 1$).

Theorem (Motzkin, Straus '65)

Let G be a graph. Then $\lambda(G) = \lambda(K_r)$, where $r = \omega(G)$.

- As $K_r \subseteq G$, $\lambda(G) \ge \lambda(K_r)$.
- Let $w(G) = \lambda(G)$ (and $\sum_x w(x) = 1$).

Theorem (Motzkin, Straus '65)

Let G be a graph. Then $\lambda(G) = \lambda(K_r)$, where $r = \omega(G)$.

- As $K_r \subseteq G$, $\lambda(G) \ge \lambda(K_r)$.
- Let $w(G) = \lambda(G)$ (and $\sum_{x} w(x) = 1$).

Theorem (Motzkin, Straus '65)

Let G be a graph. Then $\lambda(G) = \lambda(K_r)$, where $r = \omega(G)$.

- As $K_r \subseteq G$, $\lambda(G) \ge \lambda(K_r)$.
- Let $w(G) = \lambda(G)$ (and $\sum_{x} w(x) = 1$).

Theorem (Motzkin, Straus '65)

Let G be a graph. Then $\lambda(G) = \lambda(K_r)$, where $r = \omega(G)$.

- As $K_r \subseteq G$, $\lambda(G) \ge \lambda(K_r)$.
- Let $w(G) = \lambda(G)$ (and $\sum_x w(x) = 1$).

Theorem (Motzkin, Straus '65)

Let G be a graph. Then $\lambda(G) = \lambda(K_r)$, where $r = \omega(G)$.

Proof.

- As $K_r \subseteq G$, $\lambda(G) \ge \lambda(K_r)$.
- Let $w(G) = \lambda(G)$ (and $\sum_x w(x) = 1$).

■ Hence $\lambda(G) \leq \lambda(K_r)$.

Alternative proof of Turán's theorem (Motzkin, Straus '65).

■ Suppose that |G| = n and G is K_{r+1} -free.

- Suppose that |G| = n and G is K_{r+1} -free.
- Define $w(x) = \frac{1}{n}$ for every x.

- Suppose that |G| = n and G is K_{r+1} -free.
- Define $w(x) = \frac{1}{n}$ for every x.

- Suppose that |G| = n and G is K_{r+1} -free.
- Define $w(x) = \frac{1}{n}$ for every x.

- Suppose that |G| = n and G is K_{r+1} -free.
- Define $w(x) = \frac{1}{n}$ for every x.

- Suppose that |G| = n and G is K_{r+1} -free.
- Define $w(x) = \frac{1}{n}$ for every x.
- $\frac{1}{n^2}e(G) = w(G) \le \lambda(G) \le \lambda(K_r) = \frac{1}{r^2}\binom{r}{2} = \frac{1}{2}(1 \frac{1}{r}).$

- Suppose that |G| = n and G is K_{r+1} -free.
- Define $w(x) = \frac{1}{n}$ for every x.
- $\frac{1}{n^2}e(G) = w(G) \le \lambda(G) \le \lambda(K_r) = \frac{1}{r^2}\binom{r}{2} = \frac{1}{2}(1 \frac{1}{r}).$
- $e(G) \leq \frac{1}{2}(1-\frac{1}{r})n^2$.

Alternative proof of Turán's theorem (Motzkin, Straus '65).

- Suppose that |G| = n and G is K_{r+1} -free.
- Define $w(x) = \frac{1}{n}$ for every x.
- $\frac{1}{n^2}e(G) = w(G) \le \lambda(G) \le \lambda(K_r) = \frac{1}{r^2}\binom{r}{2} = \frac{1}{2}(1 \frac{1}{r}).$
- $e(G) \leq \frac{1}{2}(1-\frac{1}{r})n^2$.

Other applications.

Alternative proof of Turán's theorem (Motzkin, Straus '65).

- Suppose that |G| = n and G is K_{r+1} -free.
- Define $w(x) = \frac{1}{n}$ for every x.
- $\frac{1}{n^2}e(G) = w(G) \le \lambda(G) \le \lambda(K_r) = \frac{1}{r^2}\binom{r}{2} = \frac{1}{2}(1 \frac{1}{r}).$
- $e(G) \leq \frac{1}{2}(1-\frac{1}{r})n^2.$

Other applications.

Frankl, Rödl '83: hypergraphs do not jump.

Applications of Lagrangians

Alternative proof of Turán's theorem (Motzkin, Straus '65).

- Suppose that |G| = n and G is K_{r+1} -free.
- Define $w(x) = \frac{1}{n}$ for every x.
- $\frac{1}{n^2}e(G) = w(G) \le \lambda(G) \le \lambda(K_r) = \frac{1}{r^2}\binom{r}{2} = \frac{1}{2}(1 \frac{1}{r}).$
- $e(G) \leq \frac{1}{2}(1-\frac{1}{r})n^2$.

Other applications.

- Frankl, Rödl '83: hypergraphs do not jump.
- Frankl, Füredi '89; Hefetz, Keevash '13; ...

Question

What is $\max\{\lambda(G): G \text{ an } r\text{-graph, } e(G)=m\}$?

Question

What is $\max\{\lambda(G): G \text{ an } r\text{-graph, } e(G)=m\}$?

Definition

 $\mathcal{C}(m,r)$ is the initial segment of $(\mathbb{N}^{(r)},<_{\operatorname{colex}})$ of length m, where $A<_{\operatorname{colex}}B$ iff $\max(A\triangle B)\in B$.

Question

What is $\max\{\lambda(G): G \text{ an } r\text{-graph, } e(G)=m\}$?

Definition

 $\mathcal{C}(m,r)$ is the initial segment of $(\mathbb{N}^{(r)},<_{\operatorname{colex}})$ of length m, where $A<_{\operatorname{colex}}B$ iff $\max(A\triangle B)\in B$.

E.g., C(8,3) has edges

Question

What is $\max\{\lambda(G): G \text{ an } r\text{-graph, } e(G)=m\}$?

Definition

 $\mathcal{C}(m,r)$ is the initial segment of $(\mathbb{N}^{(r)},<_{\operatorname{colex}})$ of length m, where $A<_{\operatorname{colex}}B$ iff $\max(A\triangle B)\in B$.

E.g., C(8,3) has edges 123, 124, 134, 234,

Question

What is $\max\{\lambda(G): G \text{ an } r\text{-graph, } e(G)=m\}$?

Definition

 $\mathcal{C}(m,r)$ is the initial segment of $(\mathbb{N}^{(r)},<_{\mathsf{colex}})$ of length m, where $A<_{\mathsf{colex}}B$ iff $\max(A\triangle B)\in B$.

E.g., C(8,3) has edges 123, 124, 134, 234, 5, 5, 5.

Question

What is $\max\{\lambda(G): G \text{ an } r\text{-graph, } e(G)=m\}$?

Definition

 $\mathcal{C}(m,r)$ is the initial segment of $(\mathbb{N}^{(r)},<_{\operatorname{colex}})$ of length m, where $A<_{\operatorname{colex}}B$ iff $\max(A\triangle B)\in B$.

E.g., C(8,3) has edges 123, 124, 134, 234, 125, 135, 235, 5.

Question

What is $\max\{\lambda(G): G \text{ an } r\text{-graph, } e(G)=m\}$?

Definition

 $\mathcal{C}(m,r)$ is the initial segment of $(\mathbb{N}^{(r)},<_{\operatorname{colex}})$ of length m, where $A<_{\operatorname{colex}}B$ iff $\max(A\triangle B)\in B$.

E.g., C(8,3) has edges 123, 124, 134, 234, 125, 135, 235, 45.

Question

What is $\max\{\lambda(G): G \text{ an } r\text{-graph, } e(G)=m\}$?

Definition

 $\mathcal{C}(m,r)$ is the initial segment of $(\mathbb{N}^{(r)},<_{\operatorname{colex}})$ of length m, where $A<_{\operatorname{colex}}B$ iff $\max(A\triangle B)\in B$.

E.g., C(8,3) has edges 123, 124, 134, 234, 125, 135, 235, 145.

Question

What is $\max\{\lambda(G): G \text{ an } r\text{-graph, } e(G)=m\}$?

Definition

 $\mathcal{C}(m,r)$ is the initial segment of $(\mathbb{N}^{(r)},<_{\operatorname{colex}})$ of length m, where $A<_{\operatorname{colex}}B$ iff $\max(A\triangle B)\in B$.

E.g., C(8,3) has edges 123, 124, 134, 234, 125, 135, 235, 145.

Conjecture (Frankl, Füredi '89)

C(m,r) maximises λ among r-graphs with m edges.

The FF conjecture holds when

The FF conjecture holds when

■ Motzkin, Straus ('65). r = 2.

The FF conjecture holds when

- Motzkin, Straus ('65). r = 2.
- **Talbot ('02).** r = 3 and $\binom{t}{3} \le m \le \binom{t+1}{3} O(t)$.

The FF conjecture holds when

- Motzkin, Straus ('65). r = 2.
- **Talbot ('02).** r = 3 and $\binom{t}{3} \le m \le \binom{t+1}{3} O(t)$.
- Tyomkyn ('17). $r \ge 3$ and $\binom{t}{r} \le m \le \binom{t+1}{r} O(t^{r-2})$.

The FF conjecture holds when

- Motzkin, Straus ('65). r = 2.
- **Talbot ('02).** r = 3 and $\binom{t}{3} \le m \le \binom{t+1}{3} O(t)$.
- **Tyomkyn ('17).** $r \ge 3$ and $\binom{t}{r} \le m \le \binom{t+1}{r} O(t^{r-2})$.

In particular, $[t]^{(r)}$ maximises the Lagrangian among r-graph with $\binom{t}{r}$ edges.

The FF conjecture holds when

- Motzkin, Straus ('65). r = 2.
- **Talbot ('02).** r = 3 and $\binom{t}{3} \le m \le \binom{t+1}{3} O(t)$.
- **Tyomkyn ('17).** $r \ge 3$ and $\binom{t}{r} \le m \le \binom{t+1}{r} O(t^{r-2})$.

In particular, $[t]^{(r)}$ maximises the Lagrangian among r-graph with $\binom{t}{r}$ edges.

Improvements by Tang, Peng, Zhang, Zhao ('15); Lei, Lu, Peng ('18).

Theorem (Gruslys, L., Morrison '19+)

The FF conjecture holds for r = 3.

Theorem (Gruslys, L., Morrison '19+)

The FF conjecture holds for r = 3.

Theorem (Gruslys, L., Morrison '19+)

The conjecture holds for $r \geq 4$ and $\binom{t}{r} \leq m \leq \binom{t}{r} + \binom{t-1}{r-1}$.

Theorem (Gruslys, L., Morrison '19+)

The FF conjecture holds for r = 3.

Theorem (Gruslys, L., Morrison '19+)

The conjecture holds for $r \geq 4$ and $\binom{t}{r} \leq m \leq \binom{t}{r} + \binom{t-1}{r-1}$.

This extends the range of m's for which the conjecture is known to hold.

Theorem (Gruslys, L., Morrison '19+)

The FF conjecture holds for r = 3.

Theorem (Gruslys, L., Morrison '19+)

The conjecture holds for $r \geq 4$ and $\binom{t}{r} \leq m \leq \binom{t}{r} + \binom{t-1}{r-1}$.

This extends the range of m's for which the conjecture is known to hold.

Theorem (Gruslys, L., Morrison '19+)

FF does not hold for all $r \ge 4$.

Theorem (Gruslys, L., Morrison '19+)

The FF conjecture holds for r = 3.

Theorem (Gruslys, L., Morrison '19+)

The conjecture holds for $r \ge 4$ and $\binom{t}{r} \le m \le \binom{t}{r} + \binom{t-1}{r-1}$.

This extends the range of m's for which the conjecture is known to hold.

Theorem (Gruslys, L., Morrison '19+)

FF does not hold for all $r \ge 4$.

For example, it does not hold for $m = {t \choose r} + {t-1 \choose r-1} + r$.

Let
$$m = {t \choose r} + {t-1 \choose r-1}$$
 then

$$C(m, r) =$$

Let
$$m = {t \choose r} + {t-1 \choose r-1}$$
 then

$$\mathcal{C}(m,r) = [t]^{(r)}$$

Let
$$m={t\choose r}+{t-1\choose r-1}$$
 then $\mathcal{C}(m,r)=[t]^{(r)}\cup \left(\{t+1\}+\ldots\right)$

Let
$$m = {t \choose r} + {t-1 \choose r-1}$$
 then

$$C(m,r) = [t]^{(r)} \cup (\{t+1\} + [t-1]^{(r-1)})$$

Let
$$m = {t \choose r} + {t-1 \choose r-1}$$
 then
$$\mathcal{C}(m,r) = [t]^{(r)} \cup \left(\{t+1\} + [t-1]^{(r-1)}\right)$$
$$= \{r\text{-tuples in } [t+1] \text{ that do not contain } \{t,t+1\}\}.$$

Let
$$m = {t \choose r} + {t-1 \choose r-1}$$
 then

$$\mathcal{C}(m,r) = [t]^{(r)} \cup (\{t+1\} + [t-1]^{(r-1)})$$

= $\{r$ -tuples in $[t+1]$ that do not contain $\{t,t+1\}\}$.

Let
$$m = {t \choose r} + {t-1 \choose r-1}$$
 then

$$\mathcal{C}(m,r) = [t]^{(r)} \cup (\{t+1\} + [t-1]^{(r-1)})$$

= $\{r$ -tuples in $[t+1]$ that do not contain $\{t,t+1\}\}$.

Let
$$m = {t \choose r} + {t-1 \choose r-1}$$
 then

$$\mathcal{C}(m,r) = [t]^{(r)} \cup (\{t+1\} + [t-1]^{(r-1)})$$

= $\{r$ -tuples in $[t+1]$ that do not contain $\{t,t+1\}\}$.

$$C(m,r)$$

$$w(t) + w(t+1) \bullet \bullet 0$$

$$t \quad t+1$$

Let
$$m = {t \choose r} + {t-1 \choose r-1}$$
 then

$$C(m,r) = [t]^{(r)} \cup (\{t+1\} + [t-1]^{(r-1)})$$

= $\{r$ -tuples in $[t+1]$ that do not contain $\{t,t+1\}\}$.

$$(C(m,r))$$

$$w(t) + w(t+1) \bullet 0$$

$$t \quad t+1$$

$$\nearrow w(t+1)(w(N(t))-w(N(t+1)))$$

Let
$$m = {t \choose r} + {t-1 \choose r-1}$$
 then

$$\mathcal{C}(m,r) = [t]^{(r)} \cup (\{t+1\} + [t-1]^{(r-1)})$$

= $\{r$ -tuples in $[t+1]$ that do not contain $\{t,t+1\}\}$.

$$[t]^{(r)}$$
 t
 t

Let
$$m = {t \choose r} + {t-1 \choose r-1}$$
 then

$$C(m,r) = [t]^{(r)} \cup (\{t+1\} + [t-1]^{(r-1)})$$

= $\{r$ -tuples in $[t+1]$ that do not contain $\{t,t+1\}\}$.

$$[t]^{(r)}$$
 t
 t

It follows that $\lambda(\mathcal{C}(m,r)) \leq \lambda([t]^{(r)})$ if $m \leq {t \choose r} + {t-1 \choose r-1}$

Let
$$m = {t \choose r} + {t-1 \choose r-1}$$
 then

$$C(m,r) = [t]^{(r)} \cup (\{t+1\} + [t-1]^{(r-1)})$$

= $\{r$ -tuples in $[t+1]$ that do not contain $\{t,t+1\}\}$.

$$[t]^{(r)}$$
 t
 t

It follows that $\lambda(\mathcal{C}(m,r)) \leq \lambda([t]^{(r)})$ if $m \leq {t \choose r} + {t-1 \choose r-1}$ (but for larger m we have $\lambda(\mathcal{C}(m,r)) > \lambda([t]^{(r)})$).

The counterexample

Let
$$r=4$$
, $m={t\choose 4}+{t-1\choose 3}+4$ and let $G:=\mathcal{C}(m,4).$

The counterexample

Let
$$r=4$$
, $m={t\choose 4}+{t-1\choose 3}+4$ and let $G:=\mathcal{C}(m,4)$. Then

$$G = \left\{ egin{array}{l} ext{quadruples in } [t+1] \ ext{not containing } \{t,t+1\} \end{array}
ight\} \cup \left\{ \left\{t,t+1
ight\} + \overbrace{\left\{t,t+1
ight\} \left\{t,t+1
ight$$

The counterexample

Let r=4, $m={t\choose 4}+{t-1\choose 3}+4$ and let $G:=\mathcal{C}(m,4)$. Then

$$G = \left\{ egin{array}{l} ext{quadruples in } [t+1] \\ ext{not containing } \{t,t+1\} \end{array}
ight\} \cup \left\{ \left\{t,t+1\right\} + \overbrace{\left\{t,t+1\right\}}^{\mathcal{C}(4,2)} \right\}$$

We compare $\lambda(G)$ with $\lambda(G')$, where G' is defined as

$$G' := \left\{egin{array}{l} ext{quadruples in } [t+1] \ ext{not containing } \{t,t+1\} \end{array}
ight\} \cup \left\{\{t,t+1\} + \overbrace{\begin{smallmatrix} ext{a lex graph} \ ext{1} \end{smallmatrix}
ight\}$$

Let w be such that $w(G) = \lambda(G)$.

Estimate $w(\cdot)$

Let w be such that $w(G) = \lambda(G)$.

■ Estimate $w(\cdot)$

Let w be such that $w(G) = \lambda(G)$.

■ Estimate $w(\cdot)$

Let w be such that $w(G) = \lambda(G)$.

■ Estimate $w(\cdot)$ $(\alpha \approx \frac{1}{t}, \Delta \approx \frac{1}{2t^3}, \beta \approx \frac{1}{2t})$

Let w be such that $w(G) = \lambda(G)$.

■ Estimate $w(\cdot)$ $(\alpha \approx \frac{1}{t}, \Delta \approx \frac{1}{2t^3}, \beta \approx \frac{1}{2t})$ (we use the fact that links of any two vertices have the same weight).

- Estimate $w(\cdot)$ $(\alpha \approx \frac{1}{t}, \Delta \approx \frac{1}{2t^3}, \beta \approx \frac{1}{2t})$ (we use the fact that links of any two vertices have the same weight).
- Switch edges to obtain G' and modify w (to w').

- Estimate $w(\cdot)$ $(\alpha \approx \frac{1}{t}, \Delta \approx \frac{1}{2t^3}, \beta \approx \frac{1}{2t})$ (we use the fact that links of any two vertices have the same weight).
- Switch edges to obtain G' and modify w (to w').

- Estimate $w(\cdot)$ $(\alpha \approx \frac{1}{t}, \Delta \approx \frac{1}{2t^3}, \beta \approx \frac{1}{2t})$ (we use the fact that links of any two vertices have the same weight).
- Switch edges to obtain G' and modify w (to w').

- Estimate $w(\cdot)$ $(\alpha \approx \frac{1}{t}, \Delta \approx \frac{1}{2t^3}, \beta \approx \frac{1}{2t})$ (we use the fact that links of any two vertices have the same weight).
- Switch edges to obtain G' and modify w (to w').

•
$$w'(G') - w(G) \approx \frac{\Delta^2}{4} \left(\sum d_{H'}(x)^2 - \sum d_H(x)^2 \right)$$

where $H =$ and $H' =$.

- Estimate $w(\cdot)$ $(\alpha \approx \frac{1}{t}, \Delta \approx \frac{1}{2t^3}, \beta \approx \frac{1}{2t})$ (we use the fact that links of any two vertices have the same weight).
- Switch edges to obtain G' and modify w (to w').
- $w'(G') w(G) \approx \frac{\Delta^2}{4} \left(\sum d_{H'}(x)^2 \sum d_H(x)^2 \right) = \frac{\Delta^2}{2},$ where H = and H' =

Let w be such that $w(G) = \lambda(G)$.

- Estimate $w(\cdot)$ $(\alpha \approx \frac{1}{t}, \Delta \approx \frac{1}{2t^3}, \beta \approx \frac{1}{2t})$ (we use the fact that links of any two vertices have the same weight).
- Switch edges to obtain G' and modify w (to w').

•
$$w'(G') - w(G) \approx \frac{\Delta^2}{4} \left(\sum d_{H'}(x)^2 - \sum d_H(x)^2 \right) = \frac{\Delta^2}{2}$$
, where $H =$ and $H' =$.

• Hence w'(G') > w(G)

Let w be such that $w(G) = \lambda(G)$.

- Estimate $w(\cdot)$ $(\alpha \approx \frac{1}{t}, \Delta \approx \frac{1}{2t^3}, \beta \approx \frac{1}{2t})$ (we use the fact that links of any two vertices have the same weight).
- Switch edges to obtain G' and modify w (to w').

•
$$w'(G') - w(G) \approx \frac{\Delta^2}{4} \left(\sum d_{H'}(x)^2 - \sum d_H(x)^2 \right) = \frac{\Delta^2}{2}$$
, where $H =$ and $H' =$.

• Hence $w'(G') > w(G) = \lambda(G)$.

- Estimate $w(\cdot)$ $(\alpha \approx \frac{1}{t}, \Delta \approx \frac{1}{2t^3}, \beta \approx \frac{1}{2t})$ (we use the fact that links of any two vertices have the same weight).
- Switch edges to obtain G' and modify w (to w').
- $w'(G') w(G) \approx \frac{\Delta^2}{4} \left(\sum d_{H'}(x)^2 \sum d_H(x)^2 \right) = \frac{\Delta^2}{2}$, where H = and H' =.
- Hence $\lambda(G') \ge w'(G') > w(G) = \lambda(G)$.

Theorem (Gruslys, L., Morrison '19+)

Suppose that G maximises λ among r-graphs with e(G) edges and

Theorem (Gruslys, L., Morrison '19+)

Suppose that G maximises λ among r-graphs with e(G) edges and

$$G = \left\{ egin{array}{l} \emph{r-tuples in } [t+1] \\ \emph{not containing } \{t,t+1\} \end{array}
ight\} \cup ig(\{t,t+1\}+Hig).$$

Theorem (Gruslys, L., Morrison '19+)

Suppose that G maximises λ among r-graphs with e(G) edges and

$$G = \left\{ egin{array}{l} \emph{r-tuples in } [t+1] \\ \emph{not containing } \{t,t+1\} \end{array}
ight\} \cup ig(\{t,t+1\}+Hig).$$

Then $\sum d_H^2(x)$ is within 1 + o(1) of the maximum of $\sum d_F^2(x)$ among (r-2)-graphs F with t-1 vertices and e(H) edges.

Theorem (Gruslys, L., Morrison '19+)

Suppose that G maximises λ among r-graphs with e(G) edges and

$$G = \left\{ egin{array}{l} \emph{r-tuples in } [t+1] \\ \emph{not containing } \{t,t+1\} \end{array}
ight\} \cup ig(\{t,t+1\}+Hig).$$

Then $\sum d_H^2(x)$ is within 1 + o(1) of the maximum of $\sum d_F^2(x)$ among (r-2)-graphs F with t-1 vertices and e(H) edges.

■ Let
$$\binom{t}{r} + \binom{t-1}{r-1} \le m \le \binom{t+1}{r}$$
, $m = \binom{t}{r} + \binom{t-1}{r-1} + s$.

Theorem (Gruslys, L., Morrison '19+)

Suppose that G maximises λ among r-graphs with e(G) edges and

$$G = \left\{ egin{array}{l} \emph{r-tuples in } [t+1] \\ \emph{not containing } \{t,t+1\} \end{array}
ight\} \cup ig(\{t,t+1\}+Hig).$$

Then $\sum d_H^2(x)$ is within 1 + o(1) of the maximum of $\sum d_F^2(x)$ among (r-2)-graphs F with t-1 vertices and e(H) edges.

■ Let
$$\binom{t}{r} + \binom{t-1}{r-1} \le m \le \binom{t+1}{r}$$
, $m = \binom{t}{r} + \binom{t-1}{r-1} + s$. Then

$$\mathcal{C}(m,r) = \left\{ \begin{array}{l} r\text{-tuples in } [t+1] \\ \text{not containing } \{t,t+1\} \end{array} \right\} \cup \left(\{t,t+1\} + \mathcal{C}(s,r-2) \right).$$

Theorem (Gruslys, L., Morrison '19+)

Suppose that G maximises λ among r-graphs with e(G) edges and

$$G = \left\{ egin{array}{l} \emph{r-tuples in } [t+1] \\ \emph{not containing } \{t,t+1\} \end{array}
ight\} \cup ig(\{t,t+1\}+Hig).$$

Then $\sum d_H^2(x)$ is within 1 + o(1) of the maximum of $\sum d_F^2(x)$ among (r-2)-graphs F with t-1 vertices and e(H) edges.

■ Let
$$\binom{t}{r} + \binom{t-1}{r-1} \le m \le \binom{t+1}{r}$$
, $m = \binom{t}{r} + \binom{t-1}{r-1} + s$. Then

$$\mathcal{C}(m,r) = \left\{ egin{aligned} r ext{-tuples in } [t+1] \ ext{not containing } \{t,t+1\} \end{array}
ight\} \cup \left(\{t,t+1\} + \mathcal{C}(s,r-2)\right).$$

Let
$$\binom{t}{r}+\binom{t-1}{r-1}\leq m\leq \binom{t+1}{r},\quad m=\binom{t}{r}+\binom{t-1}{r-1}+s.$$

Let
$$\binom{t}{r}+\binom{t-1}{r-1}\leq m\leq \binom{t+1}{r},\quad m=\binom{t}{r}+\binom{t-1}{r-1}+s.$$

We saw: if C(s, r-2) is far from maximising the sum of degrees squared, then m is a counterexample.

■ There are no such counterexamples for r = 3

Let
$$\binom{t}{r}+\binom{t-1}{r-1}\leq m\leq \binom{t+1}{r},\quad m=\binom{t}{r}+\binom{t-1}{r-1}+s.$$

We saw: if C(s, r-2) is far from maximising the sum of degrees squared, then m is a counterexample.

■ There are no such counterexamples for r = 3 (C(s, 1) is the only 1-graph with s edges).

Let
$$\binom{t}{r}+\binom{t-1}{r-1}\leq m\leq \binom{t+1}{r},\quad m=\binom{t}{r}+\binom{t-1}{r-1}+s.$$

- There are no such counterexamples for r = 3 (C(s, 1) is the only 1-graph with s edges).
- For $r \ge 4$, r is the least s for which C(s, r 2) does not maximise the sum of degrees squared.

Let
$$\binom{t}{r}+\binom{t-1}{r-1}\leq m\leq \binom{t+1}{r},\quad m=\binom{t}{r}+\binom{t-1}{r-1}+s.$$

- There are no such counterexamples for r = 3 (C(s, 1) is the only 1-graph with s edges).
- For $r \ge 4$, r is the least s for which $\mathcal{C}(s, r-2)$ does not maximise the sum of degrees squared. That's why we considered $m = \binom{t}{r} + \binom{t-1}{r-1} + r$.

Let
$$\binom{t}{r}+\binom{t-1}{r-1}\leq m\leq \binom{t+1}{r},\quad m=\binom{t}{r}+\binom{t-1}{r-1}+s.$$

- There are no such counterexamples for r = 3 (C(s, 1) is the only 1-graph with s edges).
- For $r \ge 4$, r is the least s for which $\mathcal{C}(s, r-2)$ does not maximise the sum of degrees squared. That's why we considered $m = \binom{t}{r} + \binom{t-1}{r-1} + r$.
- For $3 \le s \le r-1$ there are two maximisers: $\mathcal{C}(s,r-2)$ and the star \bigcirc .

Let
$$\binom{t}{r}+\binom{t-1}{r-1}\leq m\leq \binom{t+1}{r},\quad m=\binom{t}{r}+\binom{t-1}{r-1}+s.$$

- There are no such counterexamples for r = 3 (C(s, 1) is the only 1-graph with s edges).
- For $r \ge 4$, r is the least s for which $\mathcal{C}(s, r-2)$ does not maximise the sum of degrees squared. That's why we considered $m = \binom{t}{r} + \binom{t-1}{r-1} + r$.
- For $3 \le s \le r-1$ there are two maximisers: $\mathcal{C}(s,r-2)$ and the star \bigcirc . We do not know which yields larger λ .

Is it true that if $\binom{t}{r} + \binom{t-1}{r-1} \le m \le \binom{t+1}{r}$ then there is a maximiser G of λ with m edges such that

$$G = \left\{ \begin{array}{l} r\text{-tuples in } [t+1] \\ \text{not containing } \{t,t+1\} \end{array} \right\} \cup (\{t,t+1\}+H)?$$

Is it true that if $\binom{t}{r} + \binom{t-1}{r-1} \le m \le \binom{t+1}{r}$ then there is a maximiser G of λ with m edges such that

$$G = \left\{ \begin{array}{l} r ext{-tuples in } [t+1] \\ ext{not containing } \{t,t+1\} \end{array}
ight\} \cup (\{t,t+1\}+H)?$$

Is it true that if $\binom{t}{r} + \binom{t-1}{r-1} \le m \le \binom{t+1}{r}$ then there is a maximiser G of λ with m edges such that

$$G = \left\{ \begin{array}{l} r\text{-tuples in } [t+1] \\ \text{not containing } \{t,t+1\} \end{array} \right\} \cup (\{t,t+1\}+H)?$$

We can prove this for almost every such m.

• Is it true that if G is a maximiser of λ and has the above form then H maximises sum of degrees?

Is it true that if $\binom{t}{r} + \binom{t-1}{r-1} \le m \le \binom{t+1}{r}$ then there is a maximiser G of λ with m edges such that

$$G = \left\{ \begin{array}{l} r\text{-tuples in } [t+1] \\ \text{not containing } \{t,t+1\} \end{array} \right\} \cup (\{t,t+1\}+H)?$$

We can prove this for almost every such m.

• Is it true that if G is a maximiser of λ and has the above form then H maximises sum of degrees?

We know that H asymptotically maximises.

Is it true that if $\binom{t}{r} + \binom{t-1}{r-1} \le m \le \binom{t+1}{r}$ then there is a maximiser G of λ with m edges such that

$$G = \left\{ \begin{array}{l} r\text{-tuples in } [t+1] \\ \text{not containing } \{t,t+1\} \end{array} \right\} \cup (\{t,t+1\}+H)?$$

- Is it true that if G is a maximiser of λ and has the above form then H maximises sum of degrees?
 We know that H asymptotically maximises.
- What is $\max\{\sum d_H(x)^2: H\subseteq [t]^{(r)}, e(H)=m\}$?

Is it true that if $\binom{t}{r} + \binom{t-1}{r-1} \le m \le \binom{t+1}{r}$ then there is a maximiser G of λ with m edges such that

$$G = \left\{ \begin{array}{l} r\text{-tuples in } [t+1] \\ ext{not containing } \{t,t+1\} \end{array}
ight\} \cup (\{t,t+1\}+H)?$$

- Is it true that if G is a maximiser of λ and has the above form then H maximises sum of degrees?
 We know that H asymptotically maximises.
- What is $\max\{\sum d_H(x)^2: H\subseteq [t]^{(r)}, e(H)=m\}$? For r=2, either a lex or colex graph maximises (**Ahlswede**, **Katona ('78)**).

Is it true that if $\binom{t}{r} + \binom{t-1}{r-1} \le m \le \binom{t+1}{r}$ then there is a maximiser G of λ with m edges such that

$$G = \left\{ \begin{array}{l} r\text{-tuples in } [t+1] \\ \text{not containing } \{t,t+1\} \end{array} \right\} \cup (\{t,t+1\}+H)?$$

- Is it true that if G is a maximiser of λ and has the above form then H maximises sum of degrees?
 We know that H asymptotically maximises.
- What is $\max\{\sum d_H(x)^2: H\subseteq [t]^{(r)}, e(H)=m\}$? For r=2, either a lex or colex graph maximises (**Ahlswede**, **Katona ('78)**). For r=3, this is not the case.

Is it true that if $\binom{t}{r} + \binom{t-1}{r-1} \le m \le \binom{t+1}{r}$ then there is a maximiser G of λ with m edges such that

$$G = \left\{ \begin{array}{l} r\text{-tuples in } [t+1] \\ ext{not containing } \{t,t+1\} \end{array}
ight\} \cup (\{t,t+1\}+H)?$$

We can prove this for almost every such m.

- Is it true that if G is a maximiser of λ and has the above form then H maximises sum of degrees?
 We know that H asymptotically maximises.
- What is $\max\{\sum d_H(x)^2: H\subseteq [t]^{(r)}, e(H)=m\}$? For r=2, either a lex or colex graph maximises (**Ahlswede**, **Katona ('78)**). For r=3, this is not the case.

Thank you for your attention!!!