Monochromatic cycle partitions

Shoham Letzter
University of Cambridge

SIAM Conference on Discrete Mathematics June 2016

Monochromatic cycle partitions

Monochromatic cycle partitions

Monochromatic cycle partitions

Monochromatic cycle partitions

2-colourings of complete graphs

Conjecture (Lehel '79)

2-colourings of complete graphs

Conjecture (Lehel '79)

If K_{n} is 2-coloured,

2-colourings of complete graphs

Conjecture (Lehel '79)

If K_{n} is 2-coloured, the vertices can be partitioned into a red cycle and a blue one.

2-colourings of complete graphs

Conjecture (Lehel '79)

If K_{n} is 2-coloured, the vertices can be partitioned into a red cycle and a blue one.
$■ \emptyset$,

2-colourings of complete graphs

Conjecture (Lehel '79)

If K_{n} is 2-coloured, the vertices can be partitioned into a red cycle and a blue one.
$■ \emptyset, \quad \bullet$,

2-colourings of complete graphs

Conjecture (Lehel '79)

If K_{n} is 2-coloured, the vertices can be partitioned into a red cycle and a blue one.
$■ \emptyset, \quad \bullet$,

2-colourings of complete graphs

Conjecture (Lehel '79)

If K_{n} is 2-coloured, the vertices can be partitioned into a red cycle and a blue one.
$■ \emptyset, \quad \bullet \quad \bullet$ are cycles.

2-colourings of complete graphs

Conjecture (Lehel '79)

If K_{n} is 2-coloured, the vertices can be partitioned into a red cycle and a blue one.
$■ \emptyset, \quad \bullet, \quad$ are cycles.

- The conjecture is trivial for paths:

2-colourings of complete graphs

Conjecture (Lehel '79)

If K_{n} is 2-coloured, the vertices can be partitioned into a red cycle and a blue one.
$\square \emptyset, \bullet, \quad \bullet$ are cycles.

- The conjecture is trivial for paths:

2-colourings of complete graphs

Conjecture (Lehel '79)

If K_{n} is 2-coloured, the vertices can be partitioned into a red cycle and a blue one.
$■ \emptyset, \quad \bullet, \quad$ are cycles.

- The conjecture is trivial for paths:

2-colourings of complete graphs

Conjecture (Lehel '79)

If K_{n} is 2-coloured, the vertices can be partitioned into a red cycle and a blue one.
$■ \emptyset, \quad \bullet, \quad$ are cycles.

- The conjecture is trivial for paths:

2-colourings of complete graphs

Conjecture (Lehel '79)

If K_{n} is 2-coloured, the vertices can be partitioned into a red cycle and a blue one.
$\square \emptyset, \bullet, \quad \bullet$ are cycles.
■ The conjecture is trivial for paths:

2-colourings of complete graphs

Conjecture (Lehel '79)

If K_{n} is 2-coloured, the vertices can be partitioned into a red cycle and a blue one.
$\square \emptyset, \bullet, \quad \bullet$ are cycles.

- The conjecture is trivial for paths:

2-colourings of complete graphs

Conjecture (Lehel '79)

If K_{n} is 2-coloured, the vertices can be partitioned into a red cycle and a blue one.
$\square \emptyset, \bullet, \quad \bullet$ are cycles.

- The conjecture is trivial for paths:

Lehel's conjecture

Lehel's conjecture

Theorem (Łuczak, Rödl, Szemerédi ‘99)

Lehel's conjecture

Theorem (Łuczak, Rödl, Szemerédi '99)
Lehel's conjecture holds for very large \boldsymbol{n}.

Lehel's conjecture

Theorem (Łuczak, Rödl, Szemerédi '99)
Lehel's conjecture holds for very large \boldsymbol{n}.
Theorem (Allen '08)

Lehel's conjecture

Theorem (Łuczak, Rödl, Szemerédi '99)
Lehel's conjecture holds for very large \boldsymbol{n}.
Theorem (Allen '08)
Lehel's conjecture holds for large \boldsymbol{n}.

Lehel's conjecture

Theorem (Łuczak, Rödl, Szemerédi '99)
Lehel's conjecture holds for very large \boldsymbol{n}.
Theorem (Allen '08)
Lehel's conjecture holds for large \boldsymbol{n}.
Theorem (Bessy, Thomassé '10)

Lehel's conjecture

Theorem (Łuczak, Rödl, Szemerédi '99)
Lehel's conjecture holds for very large \boldsymbol{n}.

Theorem (Allen '08)

Lehel's conjecture holds for large \boldsymbol{n}.

Theorem (Bessy, Thomassé '10)

Lehel's conjecture holds for all \boldsymbol{n}.

Possible extensions

Possible extensions

■ Graphs that are not complete:

Possible extensions

■ Graphs that are not complete:

- complete r-partite

Possible extensions

■ Graphs that are not complete:

- complete r-partite
- small $\alpha(G)$

Possible extensions

■ Graphs that are not complete:

- complete r-partite
- small $\alpha(G)$
- large $\delta(G)$

Possible extensions

■ Graphs that are not complete:

- complete r-partite
- small $\alpha(G)$
- large $\delta(G)$

■ More than 2 colours

Possible extensions

- Graphs that are not complete:
- complete r-partite
- small $\alpha(G)$
- large $\delta(G)$

■ More than 2 colours

Large minimum degree

Large minimum degree

Conjecture (Balogh, Barát, Gerbner, Gyárfás, Sárközy '13)

Large minimum degree

Conjecture (Balogh, Barát, Gerbner, Gyárfás, Sárközy '13)
Let $\delta(G) \geq 3 n / 4$.

Large minimum degree

Conjecture (Balogh, Barát, Gerbner, Gyárfás, Sárközy '13)

Let $\delta(G) \geq 3 n / 4$. Then if G is 2 -coloured,

Large minimum degree

Conjecture (Balogh, Barát, Gerbner, Gyárfás, Sárközy '13)

Let $\delta(G) \geq 3 n / 4$. Then if G is 2 -coloured, the vertices can be partitioned into a red cycle and a blue one.

Large minimum degree

Conjecture (Balogh, Barát, Gerbner, Gyárfás, Sárközy '13)

Let $\delta(G) \geq 3 n / 4$. Then if G is 2 -coloured, the vertices can be partitioned into a red cycle and a blue one.

Large minimum degree

Conjecture (Balogh, Barát, Gerbner, Gyárfás, Sárközy '13)

Let $\delta(G) \geq 3 n / 4$. Then if G is 2 -coloured, the vertices can be partitioned into a red cycle and a blue one.

Large minimum degree

Conjecture (Balogh, Barát, Gerbner, Gyárfás, Sárközy '13)

Let $\delta(G) \geq 3 n / 4$. Then if G is 2 -coloured, the vertices can be partitioned into a red cycle and a blue one.

Large minimum degree

Conjecture (Balogh, Barát, Gerbner, Gyárfás, Sárközy '13)

Let $\delta(G) \geq 3 n / 4$. Then if G is 2 -coloured, the vertices can be partitioned into a red cycle and a blue one.

Large minimum degree

Conjecture (Balogh, Barát, Gerbner, Gyárfás, Sárközy '13)

Let $\delta(G) \geq 3 n / 4$. Then if G is 2 -coloured, the vertices can be partitioned into a red cycle and a blue one.

Large minimum degree

Conjecture (Balogh, Barát, Gerbner, Gyárfás, Sárközy '13)

Let $\delta(G) \geq 3 n / 4$. Then if G is 2 -coloured, the vertices can be partitioned into a red cycle and a blue one.

Large minimum degree

Conjecture (Balogh, Barát, Gerbner, Gyárfás, Sárközy '13)

Let $\delta(G) \geq 3 n / 4$. Then if G is 2 -coloured, the vertices can be partitioned into a red cycle and a blue one.

Large minimum degree

Conjecture (Balogh, Barát, Gerbner, Gyárfás, Sárközy '13)

Let $\delta(G) \geq 3 n / 4$. Then if G is 2 -coloured, the vertices can be partitioned into a red cycle and a blue one.

Large minimum degree

Conjecture (Balogh, Barát, Gerbner, Gyárfás, Sárközy '13)

Let $\delta(G) \geq 3 n / 4$. Then if G is 2 -coloured, the vertices can be partitioned into a red cycle and a blue one.

Large minimum degree

Conjecture (Balogh, Barát, Gerbner, Gyárfás, Sárközy '13)

Let $\delta(G) \geq 3 n / 4$. Then if G is 2 -coloured, the vertices can be partitioned into a red cycle and a blue one.

Results

Results

Theorem (BBGGS '13)

Results

Theorem (BBGGS '13)
 Let $\delta(G) \geq(3 / 4+\varepsilon) n$.

Results

Theorem (BBGGS '13)
 Let $\boldsymbol{\delta}(\boldsymbol{G}) \geq(3 / 4+\varepsilon) n$. If G is 2-coloured,

Results

Theorem (BBGGS '13)

Let $\delta(G) \geq(3 / 4+\varepsilon) n$. If G is 2 -coloured, all but εn vertices may be partitioned into a red cycle and a blue one.

Results

Theorem (BBGGS '13)

Let $\delta(G) \geq(3 / 4+\varepsilon) n$. If G is 2-coloured, all but εn vertices may be partitioned into a red cycle and a blue one.

Theorem (DeBiasio, Nelsen '14)

Results

Theorem (BBGGS '13)

Let $\delta(G) \geq(3 / 4+\varepsilon) n$. If G is 2 -coloured, all but εn vertices may be partitioned into a red cycle and a blue one.

Theorem (DeBiasio, Nelsen '14)
Let $\delta(G) \geq(3 / 4+\varepsilon) n$.

Results

Theorem (BBGGS '13)

Let $\delta(G) \geq(3 / 4+\varepsilon) n$. If G is 2 -coloured, all but εn vertices may be partitioned into a red cycle and a blue one.

Theorem (DeBiasio, Nelsen '14)
Let $\delta(G) \geq(3 / 4+\varepsilon) n$. If G is 2 -coloured,

Results

Theorem (BBGGS '13)

Let $\delta(G) \geq(3 / 4+\varepsilon) n$. If G is 2 -coloured, all but εn vertices may be partitioned into a red cycle and a blue one.

Theorem (DeBiasio, Nelsen '14)
Let $\boldsymbol{\delta}(\boldsymbol{G}) \geq(3 / 4+\varepsilon) n$. If G is 2 -coloured, the vertices may be partitioned into a red cycle and a blue one.

Results

Theorem (BBGGS '13)

Let $\delta(G) \geq(3 / 4+\varepsilon) n$. If G is 2 -coloured, all but εn vertices may be partitioned into a red cycle and a blue one.

Theorem (DeBiasio, Nelsen '14)
Let $\boldsymbol{\delta}(\boldsymbol{G}) \geq(3 / 4+\varepsilon) n$. If G is 2 -coloured, the vertices may be partitioned into a red cycle and a blue one.

Theorem (L. '15)

Results

Theorem (BBGGS '13)

Let $\delta(G) \geq(3 / 4+\varepsilon) n$. If G is 2 -coloured, all but εn vertices may be partitioned into a red cycle and a blue one.

Theorem (DeBiasio, Nelsen '14)
Let $\boldsymbol{\delta}(\boldsymbol{G}) \geq(3 / 4+\varepsilon) n$. If G is 2 -coloured, the vertices may be partitioned into a red cycle and a blue one.

Theorem (L. '15)

Let $\delta(G) \geq 3 n / 4$.

Results

Theorem (BBGGS '13)

Let $\delta(G) \geq(3 / 4+\varepsilon) n$. If G is 2 -coloured, all but εn vertices may be partitioned into a red cycle and a blue one.

Theorem (DeBiasio, Nelsen '14)
Let $\boldsymbol{\delta}(\boldsymbol{G}) \geq(3 / 4+\varepsilon) n$. If G is 2 -coloured, the vertices may be partitioned into a red cycle and a blue one.

Theorem (L. '15)

Let $\delta(G) \geq 3 n / 4$. If G is 2 -coloured,

Results

Theorem (BBGGS '13)

Let $\delta(G) \geq(3 / 4+\varepsilon) n$. If G is 2 -coloured, all but εn vertices may be partitioned into a red cycle and a blue one.

Theorem (DeBiasio, Nelsen '14)
Let $\boldsymbol{\delta}(\boldsymbol{G}) \geq(3 / 4+\varepsilon) n$. If G is 2 -coloured, the vertices may be partitioned into a red cycle and a blue one.

Theorem (L. '15)

Let $\delta(G) \geq 3 n / 4$. If G is 2 -coloured, the vertices may be partitioned into a red cycle and a blue one.

Proof ideas: monochromatic connected matchings

Lemma (BBGGS)

Proof ideas: monochromatic connected matchings

Lemma (BBGGS)

Let $\delta(G) \geq 3 n / 4$.

Proof ideas: monochromatic connected matchings

Lemma (BBGGS)

Let $\delta(G) \geq 3 n / 4$. If G is 2 -coloured,

Proof ideas: monochromatic connected matchings

Lemma (BBGGS)

Let $\delta(G) \geq 3 n / 4$. If G is 2 -coloured, the vertices may be partitioned into a red connected matching and a blue one.

Proof ideas: monochromatic connected matchings

Lemma (BBGGS)

Let $\delta(G) \geq 3 n / 4$. If G is 2 -coloured, the vertices may be partitioned into a red connected matching and a blue one.

Proof ideas: monochromatic connected matchings

Proof ideas: monochromatic connected matchings

■ Apply regularity lemma.

Proof ideas: monochromatic connected matchings

■ Apply regularity lemma.
■ Form reduced graph.

Proof ideas: monochromatic connected matchings

■ Apply regularity lemma.
■ Form reduced graph.

- Let M be a connected matching.

Proof ideas: monochromatic connected matchings

■ Apply regularity lemma.

- Form reduced graph.
- Let M be a connected matching.

Lemma (Łuczak '99)

There is a cycle in G covering almost all vertices in $V(M)$ and few others.

Proof ideas: monochromatic connected matchings

- Apply regularity lemma.
- Form reduced graph.

■ Let M be a connected matching.

Lemma (Łuczak '99)

There is a cycle in G covering almost all vertices in $V(M)$ and few others.

Proof ideas: monochromatic connected matchings

- Apply regularity lemma.
- Form reduced graph.

■ Let M be a connected matching.

Lemma (Łuczak '99)

There is a cycle in G covering almost all vertices in $V(M)$ and few others.

Proof ideas: monochromatic connected matchings

- Apply regularity lemma.
- Form reduced graph.

■ Let M be a connected matching.

Lemma (Łuczak '99)

There is a cycle in G covering almost all vertices in $V(M)$ and few others.

Proof ideas: monochromatic connected matchings

- Apply regularity lemma.
- Form reduced graph.
- Let M be a connected matching.

Lemma (Łuczak '99)

There is a cycle in G covering almost all vertices in $V(M)$ and few others.

Sketch of proof: first approximate result

Sketch of proof: first approximate result

Proof of BBGGS theorem:

Sketch of proof: first approximate result

Proof of BBGGS theorem:

■ Apply regularity lemma.

Sketch of proof: first approximate result

Proof of BBGGS theorem:

- Apply regularity lemma.

■ The reduced graph Γ satisfies $\delta(\Gamma) \geq 3|\Gamma| / 4$.

Sketch of proof: first approximate result

Proof of BBGGS theorem:

- Apply regularity lemma.
- The reduced graph Γ satisfies $\delta(\Gamma) \geq 3|\Gamma| / 4$.
- Apply lemma about monochromatic connected matchings.

Sketch of proof: first approximate result

Proof of BBGGS theorem:

- Apply regularity lemma.

■ The reduced graph Γ satisfies $\delta(\Gamma) \geq 3|\Gamma| / 4$.
■ Apply lemma about monochromatic connected matchings.
■ Find the required cycles.

Proof ideas 2: robust graphs

Proof ideas 2: robust graphs

Aim: use absorbing method (Rödl, Ruciński, Szemerédi '06).

Proof ideas 2: robust graphs

Aim: use absorbing method (Rödl, Ruciński, Szemerédi ‘06). Need: monochromatic robust graphs:

Proof ideas 2: robust graphs

Aim: use absorbing method (Rödl, Ruciński, Szemerédi '06). Need: monochromatic robust graphs:

Proof ideas 2: robust graphs

Aim: use absorbing method (Rödl, Ruciński, Szemerédi '06). Need: monochromatic robust graphs:

Proof ideas 2: robust graphs

Aim: use absorbing method (Rödl, Ruciński, Szemerédi '06). Need: monochromatic robust graphs:

- 'well connected' graphs,

Proof ideas 2: robust graphs

Aim: use absorbing method (Rödl, Ruciński, Szemerédi '06). Need: monochromatic robust graphs:

- 'well connected' graphs,
- with short absorbing paths:

Proof ideas 2: robust graphs

Aim: use absorbing method (Rödl, Ruciński, Szemerédi '06). Need: monochromatic robust graphs:

- 'well connected' graphs,
- with short absorbing paths:

Proof ideas 2: robust graphs

Aim: use absorbing method (Rödl, Ruciński, Szemerédi '06). Need: monochromatic robust graphs:

- 'well connected' graphs,
- with short absorbing paths: that can 'absorb' any small set of vertices.

Proof ideas 2: robust graphs

Aim: use absorbing method (Rödl, Ruciński, Szemerédi '06). Need: monochromatic robust graphs:

- 'well connected' graphs,
- with short absorbing paths: that can 'absorb' any small set of vertices.

Proof ideas 2: robust graphs

Aim: use absorbing method (Rödl, Ruciński, Szemerédi '06). Need: monochromatic robust graphs:

■ 'well connected' graphs,

- with short absorbing paths: that can 'absorb' any small set of vertices.

Proof ideas 2: robust graphs

Aim: use absorbing method (Rödl, Ruciński, Szemerédi '06). Need: monochromatic robust graphs:

■ 'well connected' graphs,

- with short absorbing paths: that can 'absorb' any small set of vertices.

Sketch of second approximate result

Proof of DeBiasio and Nelsen's theorem:

Sketch of second approximate result

Proof of DeBiasio and Nelsen's theorem:

- F_{R} and F_{B} robust,

Sketch of second approximate result

Proof of DeBiasio and Nelsen's theorem:

■ F_{R} and F_{B} robust, large,

Sketch of second approximate result

Proof of DeBiasio and Nelsen's theorem:

■ F_{R} and F_{B} robust, large, covering $V(G)$

Sketch of second approximate result

Proof of DeBiasio and Nelsen's theorem:

■ F_{R} and F_{B} robust, large, covering $V(G)$

Sketch of second approximate result

Proof of DeBiasio and Nelsen's theorem:

■ F_{R} and F_{B} robust, large, covering $V(G)$

Sketch of second approximate result

Proof of DeBiasio and Nelsen's theorem:

- F_{R} and F_{B} robust, large, covering $V(G)$
- P_{R} and P_{B} absorbing paths

Sketch of second approximate result

Proof of DeBiasio and Nelsen's theorem:

- F_{R} and F_{B} robust, large, covering $V(G)$
- P_{R} and P_{B} absorbing paths

Sketch of second approximate result

Proof of DeBiasio and Nelsen's theorem:

- F_{R} and F_{B} robust, large, covering $V(G)$
- P_{R} and P_{B} absorbing paths

Sketch of second approximate result

Proof of DeBiasio and Nelsen's theorem:

- F_{R} and F_{B} robust, large, covering $V(G)$
- P_{R} and P_{B} absorbing paths

■ Apply regularity lemma

Sketch of second approximate result

Proof of DeBiasio and Nelsen's theorem:

- F_{R} and F_{B} robust, large, covering $V(G)$
- P_{R} and P_{B} absorbing paths

■ Apply regularity lemma

Sketch of second approximate result

Proof of DeBiasio and Nelsen's theorem:

- F_{R} and F_{B} robust, large, covering $V(G)$
- P_{R} and P_{B} absorbing paths
- Apply regularity lemma

Sketch of second approximate result

Proof of DeBiasio and Nelsen's theorem:

- F_{R} and F_{B} robust, large, covering $V(G)$
- P_{R} and P_{B} absorbing paths
- Apply regularity lemma
- M_{R} and M_{B} connected matchings in 「

Sketch of second approximate result

Proof of DeBiasio and Nelsen's theorem:

- F_{R} and F_{B} robust, large, covering $V(G)$
- P_{R} and P_{B} absorbing paths
- Apply regularity lemma
- M_{R} and M_{B} connected matchings in 「

Sketch of second approximate result

Proof of DeBiasio and Nelsen's theorem:

- F_{R} and F_{B} robust, large, covering $V(G)$
- P_{R} and P_{B} absorbing paths
- Apply regularity lemma
- M_{R} and M_{B} connected matchings in 「

Sketch of second approximate result

Proof of DeBiasio and Nelsen's theorem:

- F_{R} and F_{B} robust, large, covering $V(G)$
- P_{R} and P_{B} absorbing paths
- Apply regularity lemma
- M_{R} and M_{B} connected matchings in Γ
- C_{R} and C_{B} cycles extending P_{R} and P_{B}

Sketch of second approximate result

Proof of DeBiasio and Nelsen's theorem:

- F_{R} and F_{B} robust, large, covering $V(G)$
- P_{R} and P_{B} absorbing paths
- Apply regularity lemma
- M_{R} and M_{B} connected matchings in Γ
- C_{R} and C_{B} cycles extending P_{R} and P_{B}

Sketch of second approximate result

Proof of DeBiasio and Nelsen's theorem:

- F_{R} and F_{B} robust, large, covering $V(G)$
- P_{R} and P_{B} absorbing paths
- Apply regularity lemma
- M_{R} and M_{B} connected matchings in Γ
- C_{R} and C_{B} cycles extending P_{R} and P_{B}

Sketch of second approximate result

Proof of DeBiasio and Nelsen's theorem:

- F_{R} and F_{B} robust, large, covering $V(G)$
- P_{R} and P_{B} absorbing paths
- Apply regularity lemma
- M_{R} and M_{B} connected matchings in Γ
- C_{R} and C_{B} cycles extending P_{R} and P_{B}

Sketch of second approximate result

Proof of DeBiasio and Nelsen's theorem:

- F_{R} and F_{B} robust, large, covering $V(G)$
- P_{R} and P_{B} absorbing paths
- Apply regularity lemma
- M_{R} and M_{B} connected matchings in Γ
- C_{R} and C_{B} cycles extending P_{R} and P_{B}

Sketch of second approximate result

Proof of DeBiasio and Nelsen's theorem:

- F_{R} and F_{B} robust, large, covering $V(G)$
- P_{R} and P_{B} absorbing paths
- Apply regularity lemma
- M_{R} and M_{B} connected matchings in Γ
- C_{R} and C_{B} cycles extending P_{R} and P_{B}

■ Absorb remaining vertices

Sketch of second approximate result

Proof of DeBiasio and Nelsen's theorem:

■ F_{R} and F_{B} robust, large, covering $V(G)$

- P_{R} and P_{B} absorbing paths
- Apply regularity lemma
- M_{R} and M_{B} connected matchings in Γ
- C_{R} and C_{B} cycles extending P_{R} and P_{B}

■ Absorb remaining vertices

Sketch of second approximate result

Proof of DeBiasio and Nelsen's theorem:

■ F_{R} and F_{B} robust, large, covering $V(G)$

- P_{R} and P_{B} absorbing paths
- Apply regularity lemma
- M_{R} and M_{B} connected matchings in Γ
- C_{R} and C_{B} cycles extending P_{R} and P_{B}
- Absorb remaining vertices

Obtaining the exact result

Obtaining the exact result

'Robust structure' more complicated,

Obtaining the exact result

'Robust structure' more complicated, e.g.

- More cases arise

Obtaining the exact result

'Robust structure' more complicated, e.g.

- More cases arise

■ May need more than two robust graphs

Obtaining the exact result

'Robust structure' more complicated, e.g.

- More cases arise

■ May need more than two robust graphs

Obtaining the exact result

'Robust structure' more complicated, e.g.

- More cases arise

■ May need more than two robust graphs But,

Obtaining the exact result

'Robust structure' more complicated, e.g.

- More cases arise

■ May need more than two robust graphs But,

■ Robust graphs correspond to connected components in 「

Obtaining the exact result

'Robust structure' more complicated, e.g.

- More cases arise

■ May need more than two robust graphs But,

■ Robust graphs correspond to connected components in 「
■ Two robust graphs may be joined by two paths,

Obtaining the exact result

'Robust structure' more complicated, e.g.

- More cases arise

■ May need more than two robust graphs

But,

■ Robust graphs correspond to connected components in Γ
■ Two robust graphs may be joined by two paths,

Obtaining the exact result

'Robust structure' more complicated, e.g.

- More cases arise

■ May need more than two robust graphs

But,

■ Robust graphs correspond to connected components in 「
■ Two robust graphs may be joined by two paths,

Obtaining the exact result

'Robust structure' more complicated, e.g.

- More cases arise

■ May need more than two robust graphs

But,

■ Robust graphs correspond to connected components in Γ

- Two robust graphs may be joined by two paths, or the structure is restricted.

Obtaining the exact result - continued

Obtaining the exact result - continued

May have $\delta(\Gamma)<3|\Gamma| / 4$.

Obtaining the exact result - continued

May have $\delta(\Gamma)<3|\Gamma| / 4$.
Using stability results,

Obtaining the exact result - continued

May have $\delta(\Gamma)<3|\Gamma| / 4$.
Using stability results,
■ Either the required partition into connected matchings exists.

Obtaining the exact result - continued

May have $\delta(\Gamma)<3|\Gamma| / 4$.
Using stability results,
■ Either the required partition into connected matchings exists.

■ Or the structure is restricted.

Obtaining the exact result - continued

May have $\delta(\Gamma)<3|\Gamma| / 4$.
Using stability results,
■ Either the required partition into connected matchings exists.

■ Or the structure is restricted.
If the latter holds, the cycle partition can be found by hand

Obtaining the exact result - continued

May have $\delta(\Gamma)<3|\Gamma| / 4$.
Using stability results,
■ Either the required partition into connected matchings exists.

- Or the structure is restricted.

If the latter holds, the cycle partition can be found by hand

Obtaining the exact result - continued

May have $\delta(\Gamma)<3|\Gamma| / 4$.
Using stability results,
■ Either the required partition into connected matchings exists.

- Or the structure is restricted.

If the latter holds, the cycle partition can be found by hand (still hard!).

The end

Thank you for listening!

