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2-colourings of complete graphs

Conjecture (Lehel ‘79)

If Kn is 2-coloured, the vertices can be partitioned into a red
cycle and a blue one.

∅ , , are cycles.
The conjecture is trivial for paths:
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Lehel’s conjecture

Theorem ( Luczak, Rödl, Szemerédi ‘99)

Lehel’s conjecture holds for very large n.

Theorem (Allen ‘08)

Lehel’s conjecture holds for large n.

Theorem (Bessy, Thomassé ‘10)

Lehel’s conjecture holds for all n.
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Possible extensions

Graphs that are not complete:

complete r -partite
small α(G)

More than 2 colours
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Large minimum degree

Conjecture (Balogh, Barát, Gerbner, Gyárfás, Sárközy ‘13)

Let δ(G) ≥ 3n/4. Then if G is 2-coloured, the vertices can be
partitioned into a red cycle and a blue one.
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Results

Theorem (BBGGS ‘13)

Let δ(G) ≥ (3/4 + ε)n. If G is 2-coloured, all but εn
vertices may be partitioned into a red cycle and a blue one.

Theorem (DeBiasio, Nelsen ‘14)

Let δ(G) ≥ (3/4 + ε)n. If G is 2-coloured, the vertices may
be partitioned into a red cycle and a blue one.

Theorem (L. ‘15)

Let δ(G) ≥ 3n/4. If G is 2-coloured, the vertices may be
partitioned into a red cycle and a blue one.
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Proof ideas: monochromatic connected matchings

Lemma (BBGGS)

Let δ(G) ≥ 3n/4. If G is 2-coloured, the vertices may be
partitioned into a red connected matching and a blue one.
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Proof ideas: monochromatic connected matchings

Apply regularity lemma.
Form reduced graph.
Let M be a connected
matching.

Lemma ( Luczak ‘99)

There is a cycle in G covering almost all vertices in V (M) and
few others.
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Sketch of proof: first approximate result

Proof of BBGGS theorem:
Apply regularity lemma.
The reduced graph Γ satisfies δ(Γ) ≥ 3|Γ|/4.
Apply lemma about monochromatic connected matchings.
Find the required cycles.
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Proof ideas 2: robust graphs

Aim: use absorbing method (Rödl, Ruciński, Szemerédi ‘06).
Need: monochromatic robust graphs:

‘well connected’ graphs,
with short absorbing paths:
that can ‘absorb’ any small set of vertices.
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Sketch of second approximate result
Proof of DeBiasio and Nelsen’s theorem:

FR and FB robust,

large, covering V (G)

PR and PB absorbing paths
Apply regularity lemma
MR and MB connected matchings in Γ
CR and CB cycles extending PR and PB

Absorb remaining vertices
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Obtaining the exact result

‘Robust structure’ more complicated, e.g.

More cases arise
May need more than two robust graphs

mm

mm

But,
Robust graphs correspond to connected components in Γ
Two robust graphs may be joined by two paths,

or the structure is restricted.
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Obtaining the exact result - continued

May have δ(Γ) < 3|Γ|/4.
Using stability results,

Either the required partition into connected matchings
exists.
Or the structure is restricted.

If the latter holds, the cycle partition can be found by hand
(still hard!).

m + 1m + 1

2m
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The end

Thank you for listening!

Shoham Letzter Monochromatic cycle partitions


