Finding monotone patterns

Shoham Letzter ETH-ITS

joint with Omri Ben-Eliezer, Clément Canonne, Erik Waingarten

Mittagsseminar
December 2019

Property testing

Property testing

Aim: design fast (randomised) algorithms that determine, with probability at least 0.99 , if a given (large) object

■ has property \mathcal{P},
■ or is far from having property \mathcal{P}.

Property testing

Aim: design fast (randomised) algorithms that determine, with probability at least 0.99, if a given (large) object

■ has property \mathcal{P},
■ or is far from having property \mathcal{P}.
E.g. determine, with high probability, if a graph G is bipartite, or cannot be made bipartite by removing at most $\varepsilon|G|^{2}$ edges.

Property testing

Aim: design fast (randomised) algorithms that determine, with probability at least 0.99 , if a given (large) object

■ has property \mathcal{P},
■ or is far from having property \mathcal{P}.
E.g. determine, with high probability, if a graph G is bipartite, or cannot be made bipartite by removing at most $\varepsilon|G|^{2}$ edges.
(This can be done in time $O(1)$.)

Property testing

Aim: design fast (randomised) algorithms that determine, with probability at least 0.99 , if a given (large) object

■ has property \mathcal{P},
■ or is far from having property \mathcal{P}.
E.g. determine, with high probability, if a graph G is bipartite, or cannot be made bipartite by removing at most $\varepsilon|G|^{2}$ edges.
(This can be done in time $O(1)$.)
We consider testing with one-sided error:

Property testing

Aim: design fast (randomised) algorithms that determine, with probability at least 0.99, if a given (large) object

■ has property \mathcal{P},
■ or is far from having property \mathcal{P}.
E.g. determine, with high probability, if a graph G is bipartite, or cannot be made bipartite by removing at most $\varepsilon|G|^{2}$ edges.
(This can be done in time $O(1)$.)
We consider testing with one-sided error: if an object is far from having \mathcal{P}, provide evidence.

Testing for (1...k)-freeness

Testing for (1...k)-freeness

Fix $k \geq 2$.
■ Input. $f:[n] \rightarrow \mathbb{R}$ with $\Omega(n)$ disjoint increasing k-tuples.

Testing for (1...k)-freeness

Fix $k \geq 2$.
$■$ Input. $f:[n] \rightarrow \mathbb{R}$ with $\Omega(n)$ disjoint increasing k-tuples.
■ Aim. Find, with high probability, an increasing k-tuple.

Testing for (1...k)-freeness

Fix $k \geq 2$.
$■$ Input. $f:[n] \rightarrow \mathbb{R}$ with $\Omega(n)$ disjoint increasing k-tuples.
■ Aim. Find, with high probability, an increasing k-tuple.

Testing for (1...k)-freeness

Fix $k \geq 2$.
$■$ Input. $f:[n] \rightarrow \mathbb{R}$ with $\Omega(n)$ disjoint increasing k-tuples.
■ Aim. Find, with high probability, an increasing k-tuple.

We sometimes refer to an increasing k-tuple as a (1...k)-copy.

History

History

$\boldsymbol{k}=\mathbf{2}$: monotonicity testing (with one-sided error).

History

$\boldsymbol{k}=\mathbf{2}$: monotonicity testing (with one-sided error).
Ergün, Kannan, Kumar, Rubinfeld, Viswanathan '98. Optimal non-adaptive monotonicity testers make $\Theta(\log n)$ queries.
(non-adaptivity: queries do not depend on previous outcomes.)

History

$\boldsymbol{k}=\mathbf{2}$: monotonicity testing (with one-sided error).
Ergün, Kannan, Kumar, Rubinfeld, Viswanathan '98. Optimal non-adaptive monotonicity testers make $\Theta(\log n)$ queries.
(non-adaptivity: queries do not depend on previous outcomes.)
Fischer '09. Adaptivity does not help monotonicity testing!

History

$\boldsymbol{k}=2$: monotonicity testing (with one-sided error).
Ergün, Kannan, Kumar, Rubinfeld, Viswanathan '98. Optimal non-adaptive monotonicity testers make $\Theta(\log n)$ queries.
(non-adaptivity: queries do not depend on previous outcomes.)
Fischer '09. Adaptivity does not help monotonicity testing!
Newman, Rabinovich, Rajendraprasad, Sohler '17. For $k \geq 2$, there is a (non-adaptive) tester which makes $(\log n)^{O\left(k^{2}\right)}$ queries.

Our results

Our results

Theorem (Ben-Eliezer, Canonne, L., Waingarten)

An optimal non-adaptive algorithm for testing (1...k)-freeness makes $\Theta_{k}\left((\log n)^{\left\lfloor\log _{2} k\right\rfloor}\right)$ queries.

Our results

Theorem (Ben-Eliezer, Canonne, L., Waingarten)

An optimal non-adaptive algorithm for testing (1...k)-freeness makes $\Theta_{k}\left((\log n)^{\left\lfloor\log _{2} k\right\rfloor}\right)$ queries.

> Theorem (Ben-Eliezer, L., Waingarten)
> An optimal adaptive algorithm for testing (1...k)-freeness makes $\Theta_{k}(\log n)$ queries.

Towards a lower bound for $k=2$: binary profiles

$$
\text { For } x, y \in \mathbb{N}: \quad \boldsymbol{b}(\boldsymbol{x}, \boldsymbol{y})=\max \left\{i: \begin{array}{l}
\text { the binary representations } \\
\text { of } x \text { and } y \text { differ in } i^{\text {th }} \text { digit }
\end{array}\right\} .
$$

Towards a lower bound for $k=2$: binary profiles

For $x, y \in \mathbb{N}: \quad \boldsymbol{b}(\boldsymbol{x}, \boldsymbol{y})=\max \left\{i: \begin{array}{l}\text { the binary representations } \\ \text { of } x \text { and } y \text { differ in } i^{\text {th }} \text { digit }\end{array}\right\}$.
E.g. If $\begin{aligned} & x=11=1011_{\text {bin }} \\ & y=13=1101_{\text {bin }}\end{aligned}$,

Towards a lower bound for $k=2$: binary profiles

For $x, y \in \mathbb{N}: \quad \boldsymbol{b}(\boldsymbol{x}, \boldsymbol{y})=\max \left\{i: \begin{array}{l}\text { the binary representations } \\ \text { of } x \text { and } y \text { differ in } i^{\text {th }} \text { digit }\end{array}\right\}$.
E.g. If $\begin{aligned} & x=11=1011_{\text {bin }} \\ & y=13=1101_{\text {bin }}\end{aligned}$, then $b(x, y)=3$.

Towards a lower bound for $k=2$: binary profiles

For $x, y \in \mathbb{N}: \quad \boldsymbol{b}(\boldsymbol{x}, \boldsymbol{y})=\max \left\{i: \begin{array}{l}\text { the binary representations } \\ \text { of } x \text { and } y \text { differ in } i^{\text {th }} \text { digit }\end{array}\right\}$.
E.g. If $\begin{aligned} & x=11=1011_{\text {bin }} \\ & y=13=1101_{\text {bin }}\end{aligned}$, then $b(x, y)=3$.

For $A \subseteq \mathbb{N}: \quad b(A):=\{b(x, y): x, y \in A\}$.

Towards a lower bound for $k=2$: binary profiles

For $x, y \in \mathbb{N}: \quad \boldsymbol{b}(\boldsymbol{x}, \boldsymbol{y})=\max \left\{i: \begin{array}{l}\text { the binary representations } \\ \text { of } x \text { and } y \text { differ in } i^{\text {th }} \text { digit }\end{array}\right\}$.
E.g. If $\begin{aligned} & x=11=1011_{\text {bin }} \\ & y=13=1101_{\text {bin }}\end{aligned}$, then $b(x, y)=3$.

For $A \subseteq \mathbb{N}: \quad b(A):=\{b(x, y): x, y \in A\}$.

Claim

$|b(A)| \leq|A|-1$ for every finite $A \subseteq \mathbb{N}$.

Towards a lower bound for $k=2$: binary profiles

For $x, y \in \mathbb{N}: \quad \boldsymbol{b}(\boldsymbol{x}, \boldsymbol{y})=\max \left\{i: \begin{array}{l}\text { the binary representations } \\ \text { of } x \text { and } y \text { differ in } i^{\text {th }} \text { digit }\end{array}\right\}$.
E.g. If $\begin{aligned} & x=11=1011_{\text {bin }} \\ & y=13=1101_{\text {bin }}\end{aligned}$, then $b(x, y)=3$.

For $A \subseteq \mathbb{N}: \quad b(A):=\{b(x, y): x, y \in A\}$.

Claim

$|b(A)| \leq|A|-1$ for every finite $A \subseteq \mathbb{N}$.

Proof.

Let $i=\max b(A)$.

Towards a lower bound for $k=2$: binary profiles

For $x, y \in \mathbb{N}: \quad \boldsymbol{b}(\boldsymbol{x}, \boldsymbol{y})=\max \left\{i: \begin{array}{l}\text { the binary representations } \\ \text { of } x \text { and } y \text { differ in } i^{\text {th }} \text { digit }\end{array}\right\}$.
E.g. If $\begin{aligned} & x=11=1011_{\text {bin }} \\ & y=13=1101_{\text {bin }}\end{aligned}$, then $b(x, y)=3$.

For $A \subseteq \mathbb{N}: \quad b(A):=\{b(x, y): x, y \in A\}$.

Claim

$|b(A)| \leq|A|-1$ for every finite $A \subseteq \mathbb{N}$.

Proof.

Let $i=\max b(A)$. For $\sigma \in\{0,1\}$, define

$$
A_{\sigma}=\left\{x \in A: \text { the } i^{\text {th }} \text { digit of } x \text { in binary is } \sigma\right\} .
$$

Towards a lower bound for $k=2$: binary profiles

For $x, y \in \mathbb{N}: \quad \boldsymbol{b}(\boldsymbol{x}, \boldsymbol{y})=\max \left\{i: \begin{array}{l}\text { the binary representations } \\ \text { of } x \text { and } y \text { differ in } i^{\text {th }} \text { digit }\end{array}\right\}$.
E.g. If $\begin{aligned} & x=11=1011_{\text {bin }} \\ & y=13=1101_{\text {bin }}\end{aligned}$, then $b(x, y)=3$.

For $A \subseteq \mathbb{N}: \quad b(A):=\{b(x, y): x, y \in A\}$.

Claim

$|b(A)| \leq|A|-1$ for every finite $A \subseteq \mathbb{N}$.

Proof.

Let $i=\max b(A)$. For $\sigma \in\{0,1\}$, define

$$
\begin{aligned}
& A_{\sigma}=\left\{x \in A: \text { the } i^{\text {th }} \text { digit of } x \text { in binary is } \sigma\right\} . \\
&|b(A)| \leq\left|b\left(A_{0}\right)\right|+\left|b\left(A_{1}\right)\right|+1
\end{aligned}
$$

Towards a lower bound for $k=2$: binary profiles

For $x, y \in \mathbb{N}: \quad \boldsymbol{b}(\boldsymbol{x}, \boldsymbol{y})=\max \left\{i: \begin{array}{l}\text { the binary representations } \\ \text { of } x \text { and } y \text { differ in } i^{\text {th }} \text { digit }\end{array}\right\}$.
E.g. If $\begin{aligned} & x=11=1011_{\text {bin }} \\ & y=13=1101_{\text {bin }}\end{aligned}$, then $b(x, y)=3$.

For $A \subseteq \mathbb{N}: \quad b(A):=\{b(x, y): x, y \in A\}$.

Claim

$|b(A)| \leq|A|-1$ for every finite $A \subseteq \mathbb{N}$.

Proof.

Let $i=\max b(A)$. For $\sigma \in\{0,1\}$, define

$$
\begin{array}{r}
A_{\sigma}=\left\{x \in A: \text { the } i^{\text {th }} \text { digit of } x \text { in binary is } \sigma\right\} . \\
|b(A)| \leq\left|b\left(A_{0}\right)\right|+\left|b\left(A_{1}\right)\right|+1 \leq\left|A_{0}\right|-1+\left|A_{1}\right|-1+1
\end{array}
$$

Towards a lower bound for $k=2$: binary profiles

For $x, y \in \mathbb{N}: \quad \boldsymbol{b}(\boldsymbol{x}, \boldsymbol{y})=\max \left\{i: \begin{array}{l}\text { the binary representations } \\ \text { of } x \text { and } y \text { differ in } i^{\text {th }} \text { digit }\end{array}\right\}$.
E.g. If $\begin{aligned} & x=11=1011_{\text {bin }} \\ & y=13=1101_{\text {bin }}\end{aligned}$, then $b(x, y)=3$.

For $A \subseteq \mathbb{N}: \quad b(A):=\{b(x, y): x, y \in A\}$.

Claim

$|b(A)| \leq|A|-1$ for every finite $A \subseteq \mathbb{N}$.

Proof.

Let $i=\max b(A)$. For $\sigma \in\{0,1\}$, define

$$
\begin{gathered}
A_{\sigma}=\left\{x \in A: \text { the } i^{\text {th }} \text { digit of } x \text { in binary is } \sigma\right\} . \\
|b(A)| \leq\left|b\left(A_{0}\right)\right|+\left|b\left(A_{1}\right)\right|+1 \leq\left|A_{0}\right|-1+\left|A_{1}\right|-1+1=|A|-1 .
\end{gathered}
$$

Lower bound for $k=2$

Lower bound for $k=2$

For $i \in[\log n]$, define $f_{i}:[0, n-1] \rightarrow[0, n-1]$ by

Lower bound for $k=2$

For $i \in[\log n]$, define $f_{i}:[0, n-1] \rightarrow[0, n-1]$ by

Observation

If (x, y) is an increasing pair in f_{i}, then $b(x, y)=i$.

Lower bound for $k=2$

Lower bound for $k=2$

Choose \mathbf{f} uniformly at random from $\left\{f_{1}, \ldots, f_{\log n}\right\}$.

Lower bound for $k=2$

Choose \mathbf{f} uniformly at random from $\left\{f_{1}, \ldots, f_{\log n}\right\}$.
Let \mathbf{A} be a random subset of $[0, n-1]$ of size at most $\alpha \log n$.

Lower bound for $k=2$

Choose \mathbf{f} uniformly at random from $\left\{f_{1}, \ldots, f_{\log n}\right\}$.
Let \mathbf{A} be a random subset of $[0, n-1]$ of size at most $\alpha \log n$.
$\mathbb{P}(\mathbf{A}$ has an increasing pair w.r.t. $\mathbf{f})=$

Lower bound for $k=2$

Choose \mathbf{f} uniformly at random from $\left\{f_{1}, \ldots, f_{\log n}\right\}$.
Let \mathbf{A} be a random subset of $[0, n-1]$ of size at most $\alpha \log n$.
$\mathbb{P}(\mathbf{A}$ has an increasing pair w.r.t. $\mathbf{f})=$

$$
\sum_{A:|A| \leq \alpha \log n} \mathbb{P}(\mathbf{A}=A) \cdot \frac{1}{\log n} \cdot \sum_{i} \mathbb{1}\left\{\begin{array}{l}
A \text { has an increasing } \\
\text { pair w.r.t. } f_{i}
\end{array}\right\} \leq
$$

Lower bound for $k=2$

Choose \mathbf{f} uniformly at random from $\left\{f_{1}, \ldots, f_{\log n}\right\}$.
Let \mathbf{A} be a random subset of $[0, n-1]$ of size at most $\alpha \log n$.
$\mathbb{P}(\mathbf{A}$ has an increasing pair w.r.t. $\mathbf{f})=$

$$
\begin{aligned}
& \sum_{A:|A| \leq \alpha \log n} \mathbb{P}(\mathbf{A}=A) \cdot \frac{1}{\log n} \cdot \sum_{i} \mathbb{1}\left\{\begin{array}{l}
A \text { has an increasing } \\
\text { pair w.r.t. } f_{i}
\end{array}\right\} \leq \\
& \sum_{A:|A| \leq \alpha \log n} \mathbb{P}[\mathbf{A}=A] \cdot \frac{1}{\log n} \cdot \underbrace{\sum_{i} \mathbb{1}[i \in b(A)]}
\end{aligned}
$$

Lower bound for $k=2$

Choose \mathbf{f} uniformly at random from $\left\{f_{1}, \ldots, f_{\log n}\right\}$.
Let \mathbf{A} be a random subset of $[0, n-1]$ of size at most $\alpha \log n$.
$\mathbb{P}(\mathbf{A}$ has an increasing pair w.r.t. $\mathbf{f})=$

$$
\begin{gathered}
\sum_{A:|A| \leq \alpha \log n} \mathbb{P}(\mathbf{A}=A) \cdot \frac{1}{\log n} \cdot \sum_{i} \mathbb{1}\left\{\begin{array}{l}
A \text { has an increasing } \\
\text { pair w.r.t. } f_{i}
\end{array}\right\} \leq \\
\sum_{A:|A| \leq \alpha \log n} \mathbb{P}[\mathbf{A}=A] \cdot \frac{1}{\log n} \cdot \underbrace{\sum_{i} \mathbb{1}[i \in b(A)]}_{=} \\
=|b(A)| \leq|A| \leq \alpha \log n
\end{gathered}
$$

Lower bound for $k=2$

Choose \mathbf{f} uniformly at random from $\left\{f_{1}, \ldots, f_{\log n}\right\}$.
Let \mathbf{A} be a random subset of $[0, n-1]$ of size at most $\alpha \log n$.
$\mathbb{P}(\mathbf{A}$ has an increasing pair w.r.t. $\mathbf{f})=$

$$
\begin{gathered}
\sum_{A:|A| \leq \alpha \log n} \mathbb{P}(\mathbf{A}=A) \cdot \frac{1}{\log n} \cdot \sum_{i} \mathbb{1}\left\{\begin{array}{l}
A \text { has an increasing } \\
\text { pair w.r.t. } f_{i}
\end{array}\right\} \leq \\
\sum_{A:|A| \leq \alpha \log n} \mathbb{P}[\mathbf{A}=A] \cdot \frac{1}{\log n} \cdot \underbrace{\sum_{i} \mathbb{1}[i \in b(A)] \leq \alpha .}_{=|b(A)| \leq|A| \leq \alpha \log n}
\end{gathered}
$$

Lower bound for $k=2$

Choose \mathbf{f} uniformly at random from $\left\{f_{1}, \ldots, f_{\log n}\right\}$.
Let \mathbf{A} be a random subset of $[0, n-1]$ of size at most $\alpha \log n$.
$\mathbb{P}(\mathbf{A}$ has an increasing pair w.r.t. $\mathbf{f})=$

$$
\begin{gathered}
\sum_{A:|A| \leq \alpha \log n} \mathbb{P}(\mathbf{A}=A) \cdot \frac{1}{\log n} \cdot \sum_{i} \mathbb{1}\left\{\begin{array}{l}
A \text { has an increasing } \\
\text { pair w.r.t. } f_{i}
\end{array}\right\} \leq \\
\left.\sum_{A:|A| \leq \alpha \log n} \mathbb{P}[\mathbf{A}=A] \cdot \frac{1}{\log n} \cdot \underbrace{\sum_{i} \mathbb{1}[i \in b(A)] \leq \alpha .}_{=} \leq \alpha \right\rvert\, \leq \alpha \log n
\end{gathered}
$$

Thus, to find an increasing pair with probability at least 0.99 need at least $0.99 \log n$ queries.

Lower bound for $k=2^{\kappa}$: iterated construction

Choosing copies greedily

Choosing copies greedily

- Start with $\mathcal{F}=\emptyset$.

■ For every x, from left to right, if x still unused:
Let $y>x$ be leftmost with $f(y)>f(x)$; add (x, y) to \mathcal{F}.

Choosing copies greedily

- Start with $\mathcal{F}=\emptyset$.

■ For every x, from left to right, if x still unused:
Let $y>x$ be leftmost with $f(y)>f(x)$; add (x, y) to \mathcal{F}.

Choosing copies greedily

- Start with $\mathcal{F}=\emptyset$.

■ For every x, from left to right, if x still unused:
Let $y>x$ be leftmost with $f(y)>f(x)$; add (x, y) to \mathcal{F}.

Choosing copies greedily

- Start with $\mathcal{F}=\emptyset$.

■ For every x, from left to right, if x still unused:
Let $y>x$ be leftmost with $f(y)>f(x)$; add (x, y) to \mathcal{F}.

Choosing copies greedily

- Start with $\mathcal{F}=\emptyset$.

■ For every x, from left to right, if x still unused:
Let $y>x$ be leftmost with $f(y)>f(x)$; add (x, y) to \mathcal{F}.

Choosing copies greedily

- Start with $\mathcal{F}=\emptyset$.

■ For every x, from left to right, if x still unused:
Let $y>x$ be leftmost with $f(y)>f(x)$; add (x, y) to \mathcal{F}.

Choosing copies greedily

- Start with $\mathcal{F}=\emptyset$.

■ For every x, from left to right, if x still unused:
Let $y>x$ be leftmost with $f(y)>f(x)$; add (x, y) to \mathcal{F}.

Choosing copies greedily

- Start with $\mathcal{F}=\emptyset$.

■ For every x, from left to right, if x still unused:
Let $y>x$ be leftmost with $f(y)>f(x)$; add (x, y) to \mathcal{F}.

Choosing copies greedily

- Start with $\mathcal{F}=\emptyset$.

■ For every x, from left to right, if x still unused:
Let $y>x$ be leftmost with $f(y)>f(x)$; add (x, y) to \mathcal{F}.

Choosing copies greedily

- Start with $\mathcal{F}=\emptyset$.

■ For every x, from left to right, if x still unused:
Let $y>x$ be leftmost with $f(y)>f(x)$; add (x, y) to \mathcal{F}.

Choosing copies greedily

- Start with $\mathcal{F}=\emptyset$.

■ For every x, from left to right, if x still unused:
Let $y>x$ be leftmost with $f(y)>f(x)$; add (x, y) to \mathcal{F}.

Observation

If $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \mathcal{F}$, and $x_{1}<x_{2}, y_{1}>y_{2}$, then $f\left(y_{1}\right)>f\left(y_{2}\right)$.

Choosing copies greedily

- Start with $\mathcal{F}=\emptyset$.

■ For every x, from left to right, if x still unused:
Let $y>x$ be leftmost with $f(y)>f(x)$; add (x, y) to \mathcal{F}.

Observation

If $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \mathcal{F}$, and $x_{1}<x_{2}, y_{1}>y_{2}$, then $f\left(y_{1}\right)>f\left(y_{2}\right)$.

Choosing copies greedily

- Start with $\mathcal{F}=\emptyset$.
- For every x, from left to right, if x still unused:

Let $y>x$ be leftmost with $f(y)>f(x)$; add (x, y) to \mathcal{F}.

Observation

If $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \mathcal{F}$, and $x_{1}<x_{2}, y_{1}>y_{2}$, then $f\left(y_{1}\right)>f\left(y_{2}\right)$.

Using the greedy pairing

Using the greedy pairing

Suppose ℓ lies 'roughly in middle' of many pairs of different widths.

Using the greedy pairing

Suppose ℓ lies 'roughly in middle' of many pairs of different widths.

- If hit entries of k different-widths copies to the right of ℓ, find (1...k).

Using the greedy pairing

Suppose ℓ lies 'roughly in middle' of many pairs of different widths.

- If hit entries of k different-widths copies to the right of ℓ, find (1...k).

Using the greedy pairing

Suppose ℓ lies 'roughly in middle' of many pairs of different widths.

- If hit entries of k different-widths copies to the right of ℓ, find (1...k).
- Can be done with $O(\log n)$ queries: sample $\Theta(1)$ elements from $\left[\ell, \ell+2^{i}\right]$ for every $i \in[\log n]$.

Structure thereom

Structure thereom

$■ \Omega(n)$ many ℓ 's are 'roughly in middle' of many copies.

Structure thereom

$■ \Omega(n)$ many ℓ 's are 'roughly in middle' of many copies.

- If many of them are in middle of many copies of different widths, can find $(1 \ldots k)$ with $O(\log n)$ queries.

Structure thereom

$■ \Omega(n)$ many ℓ 's are 'roughly in middle' of many copies.
■ If many of them are in middle of many copies of different widths, can find $(1 \ldots k)$ with $O(\log n)$ queries.
■ Otherwise, can cover $\Omega(n)$ entries with disjoint 'splittable intervals'.

Structure thereom

$■ \Omega(n)$ many ℓ 's are 'roughly in middle' of many copies.

- If many of them are in middle of many copies of different widths, can find $(1 \ldots k)$ with $O(\log n)$ queries.
- Otherwise, can cover $\Omega(n)$ entries with disjoint 'splittable intervals'.

Structure thereom

$■ \Omega(n)$ many ℓ 's are 'roughly in middle' of many copies.

- If many of them are in middle of many copies of different widths, can find $(1 \ldots k)$ with $O(\log n)$ queries.
- Otherwise, can cover $\Omega(n)$ entries with disjoint 'splittable intervals'.

Finding (123) with $O(\log n)$ queries

Finding (123) with $O(\log n)$ queries

far from monotone

Finding (123) with $O(\log n)$ queries

Finding (123) with $O(\log n)$ queries

■ $\Theta(1)$ queries to find ℓ as in figure.

Finding (123) with $O(\log n)$ queries

■ $\Theta(1)$ queries to find ℓ as in figure.

Finding (123) with $O(\log n)$ queries

■ $\Theta(1)$ queries to find ℓ as in figure.

Finding (123) with $O(\log n)$ queries

- $\Theta(1)$ queries to find ℓ as in figure.
- For each $i \in[\log n]$: make $\Theta(1)$ queries in $\left[\ell-2^{i}, \ell+2^{i}\right]$.

Finding (123) with $O(\log n)$ queries

I

- $\Theta(1)$ queries to find ℓ as in figure.
- For each $i \in[\log n]$: make $\Theta(1)$ queries in $\left[\ell-2^{i}, \ell+2^{i}\right]$.

Finding (123) with $O(\log n)$ queries

- $\Theta(1)$ queries to find ℓ as in figure.
- For each $i \in[\log n]$: make $\Theta(1)$ queries in $\left[\ell-2^{i}, \ell+2^{i}\right]$.

Finding (123) with $O(\log n)$ queries

- $\Theta(1)$ queries to find ℓ as in figure.
- For each $i \in[\log n]$: make $\Theta(1)$ queries in $\left[\ell-2^{i}, \ell+2^{i}\right]$.

Finding (123) with $O(\log n)$ queries

- $\Theta(1)$ queries to find ℓ as in figure.
- For each $i \in[\log n]$: make $\Theta(1)$ queries in $\left[\ell-2^{i}, \ell+2^{i}\right]$.

Finding (123) with $O(\log n)$ queries

- $\Theta(1)$ queries to find ℓ as in figure.
- For each $i \in[\log n]$: make $\Theta(1)$ queries in $\left[\ell-2^{i}, \ell+2^{i}\right]$.

Finding (123) with $O(\log n)$ queries

■ $\Theta(1)$ queries to find ℓ as in figure.
$■$ For each $i \in[\log n]$: make $\Theta(1)$ queries in $\left[\ell-2^{i}, \ell+2^{i}\right]$.

Open problems

Open problems

- k not fixed?

Open problems

- k not fixed?
- Testing for other permutations.

Open problems

- k not fixed?
- Testing for other permutations. E.g. $\pi=(231)$.

Open problems

- k not fixed?

■ Testing for other permutations. E.g. $\pi=(231)$.

Open problems

- k not fixed?
- Testing for other permutations. E.g. $\pi=(231)$.

Open problems

- k not fixed?
- Testing for other permutations. E.g. $\pi=(231)$.

NRRS '17. If π not monotone, need $\Omega(\sqrt{n})$ non-adaptive queries.

Open problems

- k not fixed?

■ Testing for other permutations. E.g. $\pi=(231)$.

NRRS '17. If π not monotone, need $\Omega(\sqrt{n})$ non-adaptive queries.
Can π-freeness be tested adaptively in polylog n queries?

Open problems

- k not fixed?
- Testing for other permutations. E.g. $\pi=(231)$.

NRRS '17. If π not monotone, need $\Omega(\sqrt{n})$ non-adaptive queries.
Can π-freeness be tested adaptively in polylog n queries?

- Finding a π-copy (length k) in a permutation of length n :

Fox, '13. $2^{O\left(k^{2}\right)} n$.

Open problems

- k not fixed?
- Testing for other permutations. E.g. $\pi=(231)$.

NRRS '17. If π not monotone, need $\Omega(\sqrt{n})$ non-adaptive queries.
Can π-freeness be tested adaptively in polylog n queries?

- Finding a π-copy (length k) in a permutation of length n :

Fox, '13. $2^{O\left(k^{2}\right)} n$. Better algorithms?

Open problems

- k not fixed?
- Testing for other permutations. E.g. $\pi=(231)$.

NRRS '17. If π not monotone, need $\Omega(\sqrt{n})$ non-adaptive queries.
Can π-freeness be tested adaptively in polylog n queries?
■ Finding a π-copy (length k) in a permutation of length n :
Fox, '13. $2^{O\left(k^{2}\right)} n$. Better algorithms?
Thank you!!!

