Shoham Letzter joint work with Vytautas Gruslys

University of Cambridge and ETH-ITS

SIAM DM June 2018

Shoham Letzter Path partitions of regular graphs

Dirac's theorem

Theorem (Dirac 1952)

Shoham Letzter Path partitions of regular graphs

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ →

æ

Let G be a graph on $n \ge 3$ vertices with minimum degree at least n/2. Then G contains a Hamilton cycle.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Let G be a graph on $n \ge 3$ vertices with minimum degree at least n/2. Then G contains a Hamilton cycle.

Question. What if $\delta(G) < n/2$?

同 と く ヨ と く ヨ と …

Let G be a graph on $n \ge 3$ vertices with minimum degree at least n/2. Then G contains a Hamilton cycle.

Question. What if $\delta(G) < n/2$?

Let G be a graph on $n \ge 3$ vertices with minimum degree at least n/2. Then G contains a Hamilton cycle.

Question. What if $\delta(G) < n/2$?

▲ 同 ▶ ▲ 臣 ▶

Let G be a graph on $n \ge 3$ vertices with minimum degree at least n/2. Then G contains a Hamilton cycle.

Question. What if $\delta(G) < n/2$?

Answer. Need to circumvent both examples!

・ 同 ト ・ ヨ ト

Conjecture (Bollobás, Häggkvist 70's)

Shoham Letzter Path partitions of regular graphs

(4回) (4回) (4回)

Conjecture (Bollobás, Häggkvist 70's)

Let G be a **regular** t-connected graph on n vertices with degree at least n/(t+1). Then G has a Hamilton cycle.

▲□ ▶ ▲ □ ▶ ▲ □ ▶ →

Conjecture (Bollobás, Häggkvist 70's)

Let G be a **regular** t-connected graph on n vertices with degree at least n/(t+1). Then G has a Hamilton cycle.

■ Jackson ('80). *t* = 2.

・ 回 ト ・ ヨ ト ・ ヨ ト …

Conjecture (Bollobás, Häggkvist 70's)

Let G be a **regular** t-connected graph on n vertices with degree at least n/(t+1). Then G has a Hamilton cycle.

- Jackson ('80). *t* = 2.
- **Kühn, Lo, Osthus, Staden ('14).** t = 3 (and large n).

・ 同 ト ・ ヨ ト ・ ヨ ト

Conjecture (Bollobás, Häggkvist 70's)

Let G be a **regular** t-connected graph on n vertices with degree at least n/(t + 1). Then G has a Hamilton cycle.

- Jackson ('80). *t* = 2.
- **Kühn, Lo, Osthus, Staden ('14).** t = 3 (and large n).
- **Jung ('84).** false for $t \ge 4$.

Conjecture (Bollobás, Häggkvist 70's)

Let G be a **regular** t-connected graph on n vertices with degree at least n/(t + 1). Then G has a Hamilton cycle.

- Jackson ('80). *t* = 2.
- **Kühn, Lo, Osthus, Staden ('14).** t = 3 (and large n).

Jung ('84). false for $t \ge 4$.

▶ < Ξ >

Shoham Letzter Path partitions of regular graphs

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ →

æ

Theorem (Kouider, Lonc '96)

Theorem (Kouider, Lonc '96)

Theorem (Kouider, Lonc '96)

Theorem (Kouider, Lonc '96)

Theorem (Kouider, Lonc '96)

Any graph on n vertices with minimum degree at least d can be **covered** by $\lfloor \frac{n-1}{d} \rfloor$ cycles (edges and vertices allowed).

The theorem is tight.

Theorem (Kouider, Lonc '96)

Any graph on n vertices with minimum degree at least d can be **covered** by $\lfloor \frac{n-1}{d} \rfloor$ cycles (edges and vertices allowed).

The theorem is tight.

Theorem (Kouider, Lonc '96)

Any graph on n vertices with minimum degree at least d can be **covered** by $\lfloor \frac{n-1}{d} \rfloor$ cycles (edges and vertices allowed).

The theorem is tight.

Shoham Letzter Path partitions of regular graphs

回 とくほとくほど

臣

Conjecture (Magnant, Martin '09)

Let G be a d-regular graph on n vertices. Then V(G) can be partitioned into at most $\lfloor \frac{n}{d+1} \rfloor$ paths.

イロン イヨン イヨン ・ ヨン

Conjecture (Magnant, Martin '09)

Let G be a d-regular graph on n vertices. Then V(G) can be partitioned into at most $\lfloor \frac{n}{d+1} \rfloor$ paths.

The conjecture is tight:

イロン 不同 とくほど 不同 とう

Conjecture (Magnant, Martin '09)

Let G be a d-regular graph on n vertices. Then V(G) can be partitioned into at most $\lfloor \frac{n}{d+1} \rfloor$ paths.

The conjecture is tight:

• Magnant, Martin ('09). $d \leq 5$.

イロン イヨン イヨン

Conjecture (Magnant, Martin '09)

Let G be a d-regular graph on n vertices. Then V(G) can be partitioned into at most $\lfloor \frac{n}{d+1} \rfloor$ paths.

The conjecture is tight:

- **•** Magnant, Martin ('09). $d \leq 5$.
- Han ('17). If d ≥ cn then all but o(n) vertices can be covered by \[n/d+1 \] vertex-disjoint paths.

・ロト ・回ト ・ヨト ・ヨト … ヨ

Our results

Shoham Letzter Path partitions of regular graphs

æ,

同ト・モート・モート

Theorem (Gruslys, L. '18+)

▲祠 ▶ ▲ 臣 ▶ ▲ 臣 ▶

臣

Theorem (Gruslys, L. '18+)

Let G be a d-regular graph on n vertices, where $d \ge cn$ and $n \ge n_0(c)$. Then V(G) can be partitioned into at most $\lfloor \frac{n}{d+1} \rfloor$ cycles.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Theorem (Gruslys, L. '18+)

Let G be a d-regular graph on n vertices, where $d \ge cn$ and $n \ge n_0(c)$. Then V(G) can be partitioned into at most $\lfloor \frac{n}{d+1} \rfloor$ cycles.

Theorem (Gruslys, L. '18+)

Let G be a **bipartite** d-regular graph on n vertices, where $d \ge cn$ and $n \ge n_0(c)$. Then V(G) can be partitioned into at most $\lfloor \frac{n}{2d} \rfloor$ cycles.

イロト イヨト イヨト イヨト 二日

Hamiltonicity of expanders

(4回) (4回) (4回)

э

「ママ・ドレート」

Theorem (Kühn, Osthus, Treglown '10)

Let G be a d-regular graph on n vertices, where $d \ge cn$ and $n \ge n_0(c)$. Suppose that G has no sparse cuts, then G contains a Hamilton cycle.

Theorem (Kühn, Osthus, Treglown '10)

Let G be a d-regular graph on n vertices, where $d \ge cn$ and $n \ge n_0(c)$. Suppose that G has no sparse cuts, then G contains a Hamilton cycle.

The proof uses the 'absorbing technique'.

Theorem (Kühn, Osthus, Treglown '10)

Let G be a d-regular graph on n vertices, where $d \ge cn$ and $n \ge n_0(c)$. Suppose that G has no sparse cuts, then G contains a Hamilton cycle.

- The proof uses the 'absorbing technique'.
- Standard applications use Regularity Lemma.

▲御 ▶ ▲ 臣 ▶ .

A sparse cut in a graph is a partition $\{X, Y\}$ of the vertices, such that e(X, Y) = o(|X||Y|).

Theorem (Kühn, Osthus, Treglown '10)

Let G be a d-regular graph on n vertices, where $d \ge cn$ and $n \ge n_0(c)$. Suppose that G has no sparse cuts, then G contains a Hamilton cycle.

- The proof uses the 'absorbing technique'.
- Standard applications use Regularity Lemma. Here it is possible to avoid it, using an argument by Lo and Patel ('15) which uses the 'Rotation-Extension' technique.

ヘロト ヘヨト ヘヨト ヘヨト

< ロ > < 回 > < 回 > < 回 > <</p>

★ E ▶ E

 $\langle \Box \rangle \langle \Box \rangle$

< 注→ 注

< E ▶ E

-≣->

문 > 문

• we have at most $\frac{n}{2d(1+o(1))} \leq \lfloor n/2d \rfloor + 1$ clusters;

we have at most n/(2d(1+o(1))) ≤ ⌊n/2d ⌋ + 1 clusters;
 by a variant of the Hamiltonicity Theorem, every balanced subgraph of a cluster, obtained be removing o(n) vertices, is Hamiltonian;

- we have at most n/(2d(1+o(1))) ≤ ⌊n/2d⌋ + 1 clusters;
 by a variant of the Hamiltonicity Theorem, every balanced subgraph of a cluster, obtained be removing o(n) vertices, is Hamiltonian;
- such a partition was also used by KLOS.

Balancing matchings

Shoham Letzter Path partitions of regular graphs

<ロ> <四> <四> <日> <日</p>

æ

< ∃⇒

A **balancing matching** is a matching M s.t.

A balancing matching is a matching M s.t. (a) $|T_i \setminus V(M)| = |B_i \setminus V(M)|$.

A balancing matching is a matching M s.t. (a) $|T_i \setminus V(M)| = |B_i \setminus V(M)|$. (b) |M| = o(n).

A **balancing matching** is a matching M s.t. (a) $|T_i \setminus V(M)| = |B_i \setminus V(M)|$. (b) |M| = o(n).

A **balancing matching** is a matching M s.t. (a) $|T_i \setminus V(M)| = |B_i \setminus V(M)|$. (b) |M| = o(n).

Shoham Letzter Path partitions of regular graphs

프 🖌 🛪 프 🕨

New aim.

Shoham Letzter Path partitions of regular graphs

・ 回 ト ・ ヨ ト ・ ヨ ト

臣

New aim. find two edge-disjoint balancing matchings M_1 and M_2 whose union does not have cycles.

A B N A B N

New aim. find two edge-disjoint balancing matchings M_1 and M_2 whose union does not have cycles.

New aim. find two edge-disjoint balancing matchings M_1 and M_2 whose union does not have cycles.

New aim. find two edge-disjoint balancing matchings M_1 and M_2 whose union does not have cycles.

New aim. find two edge-disjoint balancing matchings M_1 and M_2 whose union does not have cycles.

New aim. find two edge-disjoint balancing matchings M_1 and M_2 whose union does not have cycles.

New aim. find two edge-disjoint balancing matchings M_1 and M_2 whose union does not have cycles.

New aim. find two edge-disjoint balancing matchings M_1 and M_2 whose union does not have cycles.

Matchings in G_{σ}

Shoham Letzter Path partitions of regular graphs

・ロト ・回ト ・ヨト ・ヨト

æ

Matchings in G_{σ}

Let σ be an ordering of V(G).

イロト イヨト イヨト イヨト

臣

Let σ be an ordering of V(G). G_{σ} is the subgraph whose edges are edges tb of G, where $t \in T$, $b \in B$ and $\sigma(t) < \sigma(b)$.

▲□ ▶ ▲ □ ▶ ▲ □ ▶ →

Matchings in G_{σ}

Let σ be an ordering of V(G). G_{σ} is the subgraph whose edges are edges tb of G, where $t \in T$, $b \in B$ and $\sigma(t) < \sigma(b)$.

• (1) • (2) • (3)

Let σ be an ordering of V(G). G_{σ} is the subgraph whose edges are edges tb of G, where $t \in T$, $b \in B$ and $\sigma(t) < \sigma(b)$.

Let σ be an ordering of V(G). G_{σ} is the subgraph whose edges are edges tb of G, where $t \in T$, $b \in B$ and $\sigma(t) < \sigma(b)$.

Let $\bar{\sigma}$ be the reverse ordering of σ .

Let σ be an ordering of V(G). G_{σ} is the subgraph whose edges are edges tb of G, where $t \in T$, $b \in B$ and $\sigma(t) < \sigma(b)$.

Let $\bar{\sigma}$ be the reverse ordering of σ . Note

•
$$G_{\bar{\sigma}} = G \setminus G_{\sigma}$$

Let σ be an ordering of V(G). G_{σ} is the subgraph whose edges are edges tb of G, where $t \in T$, $b \in B$ and $\sigma(t) < \sigma(b)$.

Let $\bar{\sigma}$ be the reverse ordering of $\sigma.$ Note

- $G_{\bar{\sigma}} = G \setminus G_{\sigma};$
- let M_1 and M_2 be matchings in G_{σ} and $G_{\bar{\sigma}}$. Then $M_1 \cup M_2$ has no cycles.

Let σ be an ordering of V(G). G_{σ} is the subgraph whose edges are edges tb of G, where $t \in T$, $b \in B$ and $\sigma(t) < \sigma(b)$.

Let $\bar{\sigma}$ be the reverse ordering of σ . Note

•
$$G_{\bar{\sigma}} = G \setminus G_{\sigma};$$

let M_1 and M_2 be matchings in G_{σ} and $G_{\bar{\sigma}}$. Then $M_1 \cup M_2$ has no cycles.

Let σ be an ordering of V(G). G_{σ} is the subgraph whose edges are edges tb of G, where $t \in T$, $b \in B$ and $\sigma(t) < \sigma(b)$.

Let $\bar{\sigma}$ be the reverse ordering of σ . Note

•
$$G_{\bar{\sigma}} = G \setminus G_{\sigma};$$

let M_1 and M_2 be matchings in G_{σ} and $G_{\bar{\sigma}}$. Then $M_1 \cup M_2$ has no cycles.

Let σ be an ordering of V(G). G_{σ} is the subgraph whose edges are edges tb of G, where $t \in T$, $b \in B$ and $\sigma(t) < \sigma(b)$.

Let $\bar{\sigma}$ be the reverse ordering of σ . Note

•
$$G_{\bar{\sigma}} = G \setminus G_{\sigma};$$

let M_1 and M_2 be matchings in G_{σ} and $G_{\bar{\sigma}}$. Then $M_1 \cup M_2$ has no cycles.

Let σ be an ordering of V(G). G_{σ} is the subgraph whose edges are edges tb of G, where $t \in T$, $b \in B$ and $\sigma(t) < \sigma(b)$.

Let $\bar{\sigma}$ be the reverse ordering of $\sigma.$ Note

•
$$G_{\bar{\sigma}} = G \setminus G_{\sigma};$$

let M_1 and M_2 be matchings in G_{σ} and $G_{\bar{\sigma}}$. Then $M_1 \cup M_2$ has no cycles.

Suffices to show.

Let σ be an ordering of V(G). G_{σ} is the subgraph whose edges are edges tb of G, where $t \in T$, $b \in B$ and $\sigma(t) < \sigma(b)$.

Let $\bar{\sigma}$ be the reverse ordering of σ . Note

•
$$G_{\bar{\sigma}} = G \setminus G_{\sigma};$$

let M_1 and M_2 be matchings in G_{σ} and $G_{\bar{\sigma}}$. Then $M_1 \cup M_2$ has no cycles.

Suffices to show. If σ is random, G_{σ} has a balancing matching with probability larger than 1/2.

Shoham Letzter Path partitions of regular graphs

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ -

Ð,

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ -

◆□ > ◆□ > ◆ □ > ◆ □ > ●

◆□ > ◆□ > ◆ □ > ◆ □ > ●

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• vertices of G receive capacity 1,

・ロト ・回ト ・ヨト

< 注→ 注

vertices of G receive capacity 1,
 b_i has capacity ^{e(B_i,T∖T_i)}/_d,

・ロト ・回ト ・ヨト

∢ ≣ ≯

vertices of G receive capacity 1,
 b_i has capacity e(B_i, T \ T_i)/d,

•
$$t_j$$
 has capacity $\frac{e(B \setminus B_i, T_i)}{d}$

イロン 不同 とくほど 不同 とう

Finding a balancing matching in G_{σ_1}

Shoham Letzter Path partitions of regular graphs

(1日) (1日) (日) (日)

Finding a balancing matching in G_{σ}

Lemma

With probability $> \frac{1}{2}$, there is a flow with value $\sum_{i \neq j} \frac{e(B_i, T_j)}{d} - \frac{9}{10}$.

イロト イヨト イヨト イヨト

크

With probability $> \frac{1}{2}$, there is a flow with value $\sum_{i \neq j} \frac{e(B_i, T_j)}{d} - \frac{9}{10}$.

view such a flow as a fractional matching;

・ 同 ト ・ ヨ ト ・ ヨ ト

With probability $> \frac{1}{2}$, there is a flow with value $\sum_{i \neq j} \frac{e(B_i, T_j)}{d} - \frac{9}{10}$.

view such a flow as a fractional matching;
 it is ⁹/₁₀-almost-balancing;

・ 回 ト ・ ヨ ト ・ ヨ ト …

With probability $> \frac{1}{2}$, there is a flow with value $\sum_{i \neq j} \frac{e(B_i, T_j)}{d} - \frac{9}{10}$.

- view such a flow as a fractional matching;
- it is ⁹/₁₀-almost-balancing;
- by weight shifting, find a ⁹/₁₀-almost-balancing integer-valued fractional matching,

イロン イヨン イヨン

With probability $> \frac{1}{2}$, there is a flow with value $\sum_{i \neq j} \frac{e(B_i, T_j)}{d} - \frac{9}{10}$.

- view such a flow as a fractional matching;
- it is ⁹/₁₀-almost-balancing;
- by weight shifting, find a ⁹/₁₀-almost-balancing integer-valued fractional matching, i.e. a balancing matching.

・ロ・ ・ 日・ ・ ヨ・ ・ 日・

2-lifts

・ロト ・回ト ・ヨト ・ヨト 三日

Let G be a graph and σ an ordering.

イロト イヨト イヨト イヨト

Let G be a graph and σ an ordering. Define $L_{\sigma}(G)$ by

Shoham Letzter Path partitions of regular graphs

イロト イヨト イヨト イヨト

Let G be a graph and σ an ordering. Define $L_{\sigma}(G)$ by $V(L_{\sigma}(G)) = \{v_0, v_1 : v \in V(G)\},$

イロン 不同 とくほど 不同 とう

Let G be a graph and σ an ordering. Define $L_{\sigma}(G)$ by

•
$$V(L_{\sigma}(G)) = \{v_0, v_1 : v \in V(G)\},$$

• $E(L_{\sigma}(G)) = \{v_0u_1 : vu \in E(G) \text{ and } \sigma(v) < \sigma(u)\}.$

イロト イヨト イヨト イヨト

Shoham Letzter Path partitions of regular graphs

イロト イヨト イヨト イヨト

partition the vertices into clusters,

回 とくほとくほど

- partition the vertices into clusters,
- distinguish almost-bipartite and far-from-bipartite clusters,

回 とう ヨン うちとう

- partition the vertices into clusters,
- distinguish almost-bipartite and far-from-bipartite clusters,
- in $L_{\sigma}(G)$, almost bipartite clusters become two clusters,

A B M A B M

- partition the vertices into clusters,
- distinguish almost-bipartite and far-from-bipartite clusters,
- in $L_{\sigma}(G)$, almost bipartite clusters become two clusters,

- partition the vertices into clusters,
- distinguish almost-bipartite and far-from-bipartite clusters,
- in $L_{\sigma}(G)$, almost bipartite clusters become two clusters,

- partition the vertices into clusters,
- distinguish almost-bipartite and far-from-bipartite clusters,
- in $L_{\sigma}(G)$, almost bipartite clusters become two clusters,

far-from-bipartite clusters become one balanced cluster,

- partition the vertices into clusters,
- distinguish almost-bipartite and far-from-bipartite clusters,
- in $L_{\sigma}(G)$, almost bipartite clusters become two clusters,

- far-from-bipartite clusters become one balanced cluster,
- show that with positive probability, L_σ(G) contains a balancing matching.

Open Problems

Shoham Letzter Path partitions of regular graphs

◆□ > ◆□ > ◆臣 > ◆臣 > ○

Let G be a d-regular graph on n vertices, where $d \ge cn$ and $n \ge n_0(c)$. Then V(G) can be partitioned into at most $\lfloor \frac{n}{d+1} \rfloor$ cycles.

イロン イヨン イヨン ・

크

Let G be a d-regular graph on n vertices, where $d \ge cn$ and $n \ge n_0(c)$. Then V(G) can be partitioned into at most $\lfloor \frac{n}{d+1} \rfloor$ cycles.

Open Problems.

・ 同 ト ・ ヨ ト ・ ヨ ト

크

Let G be a d-regular graph on n vertices, where $d \ge cn$ and $n \ge n_0(c)$. Then V(G) can be partitioned into at most $\lfloor \frac{n}{d+1} \rfloor$ cycles.

Open Problems.

■ improve the lower bound on *d*.

御 と く ヨ と く ヨ と …

Let G be a d-regular graph on n vertices, where $d \ge cn$ and $n \ge n_0(c)$. Then V(G) can be partitioned into at most $\lfloor \frac{n}{d+1} \rfloor$ cycles.

Open Problems.

• improve the lower bound on *d*. We can probably obtain the result for $d \ge \frac{n}{\log \log \log \log n}$;

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

Let G be a d-regular graph on n vertices, where $d \ge cn$ and $n \ge n_0(c)$. Then V(G) can be partitioned into at most $\lfloor \frac{n}{d+1} \rfloor$ cycles.

Open Problems.

- improve the lower bound on *d*. We can probably obtain the result for $d \ge \frac{n}{\log \log \log \log n}$;
- is there a version for regular directed graphs?

▲□ ▶ ▲ □ ▶ ▲ □ ▶ ...

Let G be a d-regular graph on n vertices, where $d \ge cn$ and $n \ge n_0(c)$. Then V(G) can be partitioned into at most $\lfloor \frac{n}{d+1} \rfloor$ cycles.

Open Problems.

- improve the lower bound on *d*. We can probably obtain the result for $d \ge \frac{n}{\log \log \log \log n}$;
- is there a version for regular directed graphs?
- directed or bipartite versions of Bollobás-Häggkvist (for 3-connected graphs).

ヘロン 人間 とくほど 人間 とう

Let G be a d-regular graph on n vertices, where $d \ge cn$ and $n \ge n_0(c)$. Then V(G) can be partitioned into at most $\lfloor \frac{n}{d+1} \rfloor$ cycles.

Open Problems.

- improve the lower bound on *d*. We can probably obtain the result for $d \ge \frac{n}{\log \log \log \log n}$;
- is there a version for regular directed graphs?
- directed or bipartite versions of Bollobás-Häggkvist (for 3-connected graphs).

Thank you for listening!

(ロ) (同) (E) (E) (E) (E)