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Dirac’s theorem

Theorem (Dirac 1952)

Let G be a graph on n Ø 3 vertices with minimum degree at
least n/2. Then G contains a Hamilton cycle.

Question. What if ”(G) < n/2?

Á n+1
2 Ë

Â n≠1
2 Ê

Â n≠1
2 Ê Á n≠1

2 Ë

Answer. Need to circumvent both examples!
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Bollobás and Häggkvist’s Conjecture
Conjecture (Bollobás, Häggkvist 70’s)

Let G be a regular t-connected graph on n vertices with
degree at least n/(t + 1). Then G has a Hamilton cycle.

Jackson (’80). t = 2.
Kühn, Lo, Osthus, Staden (’14). t = 3 (and large n).
Jung (’84). false for t Ø 4.

n+3
4

n+3
4

n≠1
4

n≠5
4
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Let G be a regular t-connected graph on n vertices with
degree at least n/(t + 1). Then G has a Hamilton cycle.

Jackson (’80). t = 2.
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Allowing more cycles

Theorem (Kouider, Lonc ’96)

Any graph on n vertices with minimum degree at least d can

be covered by Ân≠1

d Ê cycles (edges and vertices allowed).

The theorem is tight.

d or d +1

Â n≠1

d Ê

d

n ≠ d
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Path partitions of regular graphs

Conjecture (Magnant, Martin ’09)

Let G be a d-regular graph on n vertices. Then V (G) can be

partitioned into at most Â n
d+1Ê paths.

The conjecture is tight:

Kd+1 d-regular

Â n
d+1 Ê ≠ 1

Magnant, Martin (’09). d Æ 5.

Han (’17). If d Ø cn then all but o(n) vertices can be

covered by Â n
d+1Ê vertex-disjoint paths.
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Our results

We prove Magnant and Martin’s conjecture for dense graphs.

Theorem (Gruslys, L. ’18+)

Let G be a d-regular graph on n vertices, where d Ø cn and

n Ø n0(c). Then V (G) can be partitioned into at most Â n
d+1

Ê
cycles.

Theorem (Gruslys, L. ’18+)

Let G be a bipartite d-regular graph on n vertices, where

d Ø cn and n Ø n0(c). Then V (G) can be partitioned into at

most Â n
2d Ê cycles.
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Hamiltonicity of expanders

A sparse cut in a graph is a partition {X , Y } of the vertices,
such that e(X , Y ) = o(|X ||Y |).

Theorem (Kühn, Osthus, Treglown ’10)
Let G be a d-regular graph on n vertices, where d Ø cn and
n Ø n0(c). Suppose that G has no sparse cuts, then G
contains a Hamilton cycle.

The proof uses the ‘absorbing technique’.
Standard applications use Regularity Lemma.

Here it is
possible to avoid it, using an argument by Lo and Patel
(’15) which uses the ‘Rotation-Extension’ technique.
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Theorem (Kühn, Osthus, Treglown ’10)
Let G be a d-regular graph on n vertices, where d Ø cn and
n Ø n0(c). Suppose that G has no sparse cuts, then G
contains a Hamilton cycle.

The proof uses the ‘absorbing technique’.
Standard applications use Regularity Lemma. Here it is
possible to avoid it, using an argument by Lo and Patel
(’15) which uses the ‘Rotation-Extension’ technique.

Shoham Letzter Path partitions of regular graphs



Partition vertices into clusters

(1 + o(1))d Æ

(1 + o(1))d Æ

o(n2) edges

T

B

we have at most n

2d(1+o(1)) Æ Ân/2dÊ + 1 clusters;
by a variant of the Hamiltonicity Theorem, every
balanced subgraph of a cluster, obtained be removing
o(n) vertices, is Hamiltonian;
such a partition was also used by KLOS.
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Balancing matchings

Denote the vertices of the i-th cluster by Bi fi Ti .

T1

B1

T2

B2

T3

B3

T4

B4

A balancing matching is a matching M s.t.

(a) |Ti \ V (M)| = |Bi \ V (M)|.
(b) |M| = o(n).
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Combining two balancing matchings

New aim. find two edge-disjoint balancing matchings M1 and

M2 whose union does not have cycles.

It is easy to find one balancing matching.
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Matchings in G‡

Let ‡ be an ordering of V (G). G‡ is the subgraph whose edges

are edges tb of G , where t œ T , b œ B and ‡(t) < ‡(b).

Let ‡̄ be the reverse ordering of ‡. Note

G‡̄ = G \ G‡;

let M1 and M2 be matchings in G‡ and G‡̄. Then

M1 fi M2 has no cycles.

Su�ces to show. If ‡ is random, G‡ has a balancing

matching with probability larger than 1/2.
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Finding a balancing matching in G‡

Lemma

With probability > 1
2 , there is a flow with value

q
i ”=j

e(Bi ,Tj )
d ≠ 9

10 .

view such a flow as a fractional matching;

it is

9
10-almost-balancing;

by weight shifting, find a

9
10 -almost-balancing

integer-valued fractional matching,

i.e. a balancing

matching.
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2-lifts

Let G be a graph and ‡ an ordering. Define L‡(G) by

V (L‡(G)) = {v0, v1 : v œ V (G)},

E (L‡(G)) = {v0u1 : vu œ E (G) and ‡(v) < ‡(u)}.

G

L‡(G)
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Proof for non-bipartite graphs

partition the vertices into clusters,

distinguish almost-bipartite and far-from-bipartite

clusters,

in L‡(G), almost bipartite clusters become two clusters,

far-from-bipartite clusters become one balanced cluster,

show that with positive probability, L‡(G) contains a

balancing matching.
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Open Problems

Theorem (Gruslys, L. ’17+)
Let G be a d-regular graph on n vertices, where d Ø cn and

n Ø n

0

(c). Then V (G) can be partitioned into at most Â n
d+1

Ê
cycles.

Open Problems.
improve the lower bound on d .

We can probably obtain
the result for d Ø n

log log log log n ;

is there a version for regular directed graphs?
directed or bipartite versions of Bollobás-Häggkvist (for
3-connected graphs).

Thank you for listening!
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