Path partitions of regular graphs

Shoham Letzter
joint work with Vytautas Gruslys
University of Cambridge and ETH-ITS

SIAM DM
June 2018

Dirac's theorem

Theorem (Dirac 1952)

Dirac's theorem

Theorem (Dirac 1952)
Let G be a graph on $n \geq 3$ vertices with minimum degree at least $n / 2$. Then G contains a Hamilton cycle.

Dirac's theorem

Theorem (Dirac 1952)

Let G be a graph on $n \geq 3$ vertices with minimum degree at least $n / 2$. Then G contains a Hamilton cycle.

Question. What if $\delta(G)<n / 2$?

Dirac's theorem

Theorem (Dirac 1952)

Let G be a graph on $n \geq 3$ vertices with minimum degree at least $n / 2$. Then G contains a Hamilton cycle.

Question. What if $\delta(G)<n / 2$?

Dirac's theorem

Theorem (Dirac 1952)

Let G be a graph on $n \geq 3$ vertices with minimum degree at least $n / 2$. Then G contains a Hamilton cycle.

Question. What if $\delta(G)<n / 2$?

Dirac's theorem

Theorem (Dirac 1952)

Let G be a graph on $n \geq 3$ vertices with minimum degree at least $n / 2$. Then G contains a Hamilton cycle.

Question. What if $\delta(G)<n / 2$?

Answer. Need to circumvent both examples!

Bollobás and Häggkvist's Conjecture

Conjecture (Bollobás, Häggkvist 70's)

Bollobás and Häggkvist's Conjecture

Conjecture (Bollobás, Häggkvist 70's)

Let G be a regular t-connected graph on n vertices with degree at least $n /(t+1)$. Then G has a Hamilton cycle.

Bollobás and Häggkvist's Conjecture

Conjecture (Bollobás, Häggkvist 70's)

Let G be a regular t-connected graph on n vertices with degree at least $n /(t+1)$. Then G has a Hamilton cycle.

■ Jackson ('80). $t=2$.

Bollobás and Häggkvist's Conjecture

Conjecture (Bollobás, Häggkvist 70's)

Let G be a regular t-connected graph on n vertices with degree at least $n /(t+1)$. Then G has a Hamilton cycle.

■ Jackson ('80). $t=2$.
■ Kühn, Lo, Osthus, Staden ('14). $t=3$ (and large n).

Bollobás and Häggkvist's Conjecture

Conjecture (Bollobás, Häggkvist 70's)

Let G be a regular t-connected graph on n vertices with degree at least $n /(t+1)$. Then G has a Hamilton cycle.

■ Jackson ('80). $t=2$.
■ Kühn, Lo, Osthus, Staden ('14). $t=3$ (and large n).
■ Jung ('84). false for $t \geq 4$.

Bollobás and Häggkvist's Conjecture

Conjecture (Bollobás, Häggkvist 70's)

Let G be a regular t-connected graph on n vertices with degree at least $n /(t+1)$. Then G has a Hamilton cycle.

■ Jackson ('80). $t=2$.
■ Kühn, Lo, Osthus, Staden ('14). $t=3$ (and large n).

- Jung ('84). false for $t \geq 4$.

Allowing more cycles

Allowing more cycles

Theorem (Kouider, Lonc '96)

Any graph on n vertices with minimum degree at least d can be covered by $\left\lfloor\frac{n-1}{d}\right\rfloor$ cycles (edges and vertices allowed).

Allowing more cycles

Theorem (Kouider, Lonc '96)

Any graph on n vertices with minimum degree at least d can be covered by $\left\lfloor\frac{n-1}{d}\right\rfloor$ cycles (edges and vertices allowed).

Allowing more cycles

Theorem (Kouider, Lonc '96)

Any graph on n vertices with minimum degree at least d can be covered by $\left\lfloor\frac{n-1}{d}\right\rfloor$ cycles (edges and vertices allowed).

Allowing more cycles

Theorem (Kouider, Lonc '96)

Any graph on n vertices with minimum degree at least d can be covered by $\left\lfloor\frac{n-1}{d}\right\rfloor$ cycles (edges and vertices allowed).

Allowing more cycles

Theorem (Kouider, Lonc '96)

Any graph on n vertices with minimum degree at least d can be covered by $\left\lfloor\frac{n-1}{d}\right\rfloor$ cycles (edges and vertices allowed).

The theorem is tight.

Allowing more cycles

Theorem (Kouider, Lonc '96)

Any graph on n vertices with minimum degree at least d can be covered by $\left\lfloor\frac{n-1}{d}\right\rfloor$ cycles (edges and vertices allowed).

The theorem is tight.

Allowing more cycles

Theorem (Kouider, Lonc '96)

Any graph on n vertices with minimum degree at least d can be covered by $\left\lfloor\frac{n-1}{d}\right\rfloor$ cycles (edges and vertices allowed).

The theorem is tight.

Shoham Letzter
Path partitions of regular graphs

Path partitions of regular graphs

Path partitions of regular graphs

Conjecture (Magnant, Martin '09)
Let G be a d-regular graph on n vertices. Then $V(G)$ can be partitioned into at most $\left\lfloor\frac{n}{d+1}\right\rfloor$ paths.

Path partitions of regular graphs

Conjecture (Magnant, Martin '09)
Let G be a d-regular graph on n vertices. Then $V(G)$ can be partitioned into at most $\left\lfloor\frac{n}{d+1}\right\rfloor$ paths.

- The conjecture is tight:

$$
\left\lfloor\frac{n}{d+1}\right\rfloor-1
$$

Path partitions of regular graphs

Conjecture (Magnant, Martin '09)
Let G be a d-regular graph on n vertices. Then $V(G)$ can be partitioned into at most $\left\lfloor\frac{n}{d+1}\right\rfloor$ paths.

- The conjecture is tight:

$$
\left\lfloor\frac{n}{d+1}\right\rfloor-1
$$

■ Magnant, Martin ('09). $d \leq 5$.

Path partitions of regular graphs

Conjecture (Magnant, Martin '09)

Let G be a d-regular graph on n vertices. Then $V(G)$ can be partitioned into at most $\left\lfloor\frac{n}{d+1}\right\rfloor$ paths.

- The conjecture is tight:

$$
\left\lfloor\frac{n}{d+1}\right\rfloor-1
$$

- Magnant, Martin ('09). $d \leq 5$.
- Han ('17). If $d \geq c n$ then all but $o(n)$ vertices can be covered by $\left\lfloor\frac{n}{d+1}\right\rfloor$ vertex-disjoint paths.

Our results

Our results

We prove Magnant and Martin's conjecture for dense graphs.

Our results

We prove Magnant and Martin's conjecture for dense graphs.

Theorem (Gruslys, L. '18+)

Our results

We prove Magnant and Martin's conjecture for dense graphs.

Theorem (Gruslys, L. '18+)

Let G be a d-regular graph on n vertices, where $d \geq c n$ and $n \geq n_{0}(c)$. Then $V(G)$ can be partitioned into at most $\left\lfloor\frac{n}{d+1}\right\rfloor$ cycles.

Our results

We prove Magnant and Martin's conjecture for dense graphs.

Theorem (Gruslys, L. '18+)

Let G be a d-regular graph on n vertices, where $d \geq c n$ and $n \geq n_{0}(c)$. Then $V(G)$ can be partitioned into at most $\left\lfloor\frac{n}{d+1}\right\rfloor$ cycles.

Theorem (Gruslys, L. '18+)

Let G be a bipartite d-regular graph on n vertices, where $d \geq c n$ and $n \geq n_{0}(c)$. Then $V(G)$ can be partitioned into at most $\left\lfloor\frac{n}{2 d}\right\rfloor$ cycles.

Hamiltonicity of expanders

Hamiltonicity of expanders

A sparse cut in a graph is a partition $\{X, Y\}$ of the vertices, such that $e(X, Y)=o(|X||Y|)$.

Hamiltonicity of expanders

A sparse cut in a graph is a partition $\{X, Y\}$ of the vertices, such that $e(X, Y)=o(|X||Y|)$.

Theorem (Kühn, Osthus, Treglown '10)
Let G be a d-regular graph on n vertices, where $d \geq c n$ and $n \geq n_{0}(c)$. Suppose that G has no sparse cuts, then G contains a Hamilton cycle.

Hamiltonicity of expanders

A sparse cut in a graph is a partition $\{X, Y\}$ of the vertices, such that $e(X, Y)=o(|X||Y|)$.

Theorem (Kühn, Osthus, Treglown '10)

Let G be a d-regular graph on n vertices, where $d \geq c n$ and $n \geq n_{0}(c)$. Suppose that G has no sparse cuts, then G contains a Hamilton cycle.

- The proof uses the 'absorbing technique'.

Hamiltonicity of expanders

A sparse cut in a graph is a partition $\{X, Y\}$ of the vertices, such that $e(X, Y)=o(|X||Y|)$.

Theorem (Kühn, Osthus, Treglown '10)

Let G be a d-regular graph on n vertices, where $d \geq c n$ and $n \geq n_{0}(c)$. Suppose that G has no sparse cuts, then G contains a Hamilton cycle.

- The proof uses the 'absorbing technique'.

■ Standard applications use Regularity Lemma.

Hamiltonicity of expanders

A sparse cut in a graph is a partition $\{X, Y\}$ of the vertices, such that $e(X, Y)=o(|X||Y|)$.

Theorem (Kühn, Osthus, Treglown '10)

Let G be a d-regular graph on n vertices, where $d \geq c n$ and $n \geq n_{0}(c)$. Suppose that G has no sparse cuts, then G contains a Hamilton cycle.

- The proof uses the 'absorbing technique'.
- Standard applications use Regularity Lemma. Here it is possible to avoid it, using an argument by Lo and Patel ('15) which uses the 'Rotation-Extension' technique.

Partition vertices into clusters

T
 B

Partition vertices into clusters

■ we have at most $\frac{n}{2 d(1+o(1))} \leq\lfloor n / 2 d\rfloor+1$ clusters;

Partition vertices into clusters

■ we have at most $\frac{n}{2 d(1+o(1))} \leq\lfloor n / 2 d\rfloor+1$ clusters;

- by a variant of the Hamiltonicity Theorem, every balanced subgraph of a cluster, obtained be removing $o(n)$ vertices, is Hamiltonian;

Partition vertices into clusters

■ we have at most $\frac{n}{2 d(1+o(1))} \leq\lfloor n / 2 d\rfloor+1$ clusters;

- by a variant of the Hamiltonicity Theorem, every balanced subgraph of a cluster, obtained be removing $o(n)$ vertices, is Hamiltonian;
■ such a partition was also used by KLOS.

Balancing matchings

Balancing matchings

Denote the vertices of the i-th cluster by $B_{i} \cup T_{i}$.

Balancing matchings

Denote the vertices of the i-th cluster by $B_{i} \cup T_{i}$.

A balancing matching is a matching M s.t.

Balancing matchings

Denote the vertices of the i-th cluster by $B_{i} \cup T_{i}$.

A balancing matching is a matching M s.t.
(a) $\left|T_{i} \backslash V(M)\right|=\left|B_{i} \backslash V(M)\right|$.

Balancing matchings

Denote the vertices of the i-th cluster by $B_{i} \cup T_{i}$.

A balancing matching is a matching M s.t.
(a) $\left|T_{i} \backslash V(M)\right|=\left|B_{i} \backslash V(M)\right|$.
(b) $|M|=o(n)$.

Balancing matchings

Denote the vertices of the i-th cluster by $B_{i} \cup T_{i}$.

A balancing matching is a matching M s.t.
(a) $\left|T_{i} \backslash V(M)\right|=\left|B_{i} \backslash V(M)\right|$.
(b) $|M|=o(n)$.

Balancing matchings

Denote the vertices of the i-th cluster by $B_{i} \cup T_{i}$.

A balancing matching is a matching M s.t.
(a) $\left|T_{i} \backslash V(M)\right|=\left|B_{i} \backslash V(M)\right|$.
(b) $|M|=o(n)$.

Combining two balancing matchings

Combining two balancing matchings

New aim.

Combining two balancing matchings

New aim. find two edge-disjoint balancing matchings M_{1} and M_{2} whose union does not have cycles.

Combining two balancing matchings

New aim. find two edge-disjoint balancing matchings M_{1} and M_{2} whose union does not have cycles.

Combining two balancing matchings

New aim. find two edge-disjoint balancing matchings M_{1} and M_{2} whose union does not have cycles.

Combining two balancing matchings

New aim. find two edge-disjoint balancing matchings M_{1} and M_{2} whose union does not have cycles.

Combining two balancing matchings

New aim. find two edge-disjoint balancing matchings M_{1} and M_{2} whose union does not have cycles.

Combining two balancing matchings

New aim. find two edge-disjoint balancing matchings M_{1} and M_{2} whose union does not have cycles.

Combining two balancing matchings

New aim. find two edge-disjoint balancing matchings M_{1} and M_{2} whose union does not have cycles.

Combining two balancing matchings

New aim. find two edge-disjoint balancing matchings M_{1} and M_{2} whose union does not have cycles.

It is easy to find one balancing matching.

Combining two balancing matchings

New aim. find two edge-disjoint balancing matchings M_{1} and M_{2} whose union does not have cycles.

It is easy to find one balancing matching.

Combining two balancing matchings

New aim. find two edge-disjoint balancing matchings M_{1} and M_{2} whose union does not have cycles.

It is easy to find one balancing matching.

Combining two balancing matchings

New aim. find two edge-disjoint balancing matchings M_{1} and M_{2} whose union does not have cycles.

It is easy to find one balancing matching.

Combining two balancing matchings

New aim. find two edge-disjoint balancing matchings M_{1} and M_{2} whose union does not have cycles.

It is easy to find one balancing matching.

Combining two balancing matchings

New aim. find two edge-disjoint balancing matchings M_{1} and M_{2} whose union does not have cycles.

It is easy to find one balancing matching.

Combining two balancing matchings

New aim. find two edge-disjoint balancing matchings M_{1} and M_{2} whose union does not have cycles.

It is easy to find one balancing matching.

Matchings in G_{σ}

Matchings in G_{σ}

Let σ be an ordering of $V(G)$.

Matchings in G_{σ}

Let σ be an ordering of $V(G) . G_{\sigma}$ is the subgraph whose edges are edges $t b$ of G, where $t \in T, b \in B$ and $\sigma(t)<\sigma(b)$.

Matchings in G_{σ}

Let σ be an ordering of $V(G) . G_{\sigma}$ is the subgraph whose edges are edges $t b$ of G, where $t \in T, b \in B$ and $\sigma(t)<\sigma(b)$.

Matchings in G_{σ}

Let σ be an ordering of $V(G) . G_{\sigma}$ is the subgraph whose edges are edges $t b$ of G, where $t \in T, b \in B$ and $\sigma(t)<\sigma(b)$.

Matchings in G_{σ}

Let σ be an ordering of $V(G) . G_{\sigma}$ is the subgraph whose edges are edges $t b$ of G, where $t \in T, b \in B$ and $\sigma(t)<\sigma(b)$.

Let $\bar{\sigma}$ be the reverse ordering of σ.

Matchings in G_{σ}

Let σ be an ordering of $V(G) . G_{\sigma}$ is the subgraph whose edges are edges $t b$ of G, where $t \in T, b \in B$ and $\sigma(t)<\sigma(b)$.

Let $\bar{\sigma}$ be the reverse ordering of σ. Note
■ $G_{\bar{\sigma}}=G \backslash G_{\sigma}$;

Matchings in G_{σ}

Let σ be an ordering of $V(G) . G_{\sigma}$ is the subgraph whose edges are edges $t b$ of G, where $t \in T, b \in B$ and $\sigma(t)<\sigma(b)$.

Let $\bar{\sigma}$ be the reverse ordering of σ. Note
■ $G_{\bar{\sigma}}=G \backslash G_{\sigma}$;
■ let M_{1} and M_{2} be matchings in G_{σ} and $G_{\bar{\sigma}}$. Then $M_{1} \cup M_{2}$ has no cycles.

Matchings in G_{σ}

Let σ be an ordering of $V(G) . G_{\sigma}$ is the subgraph whose edges are edges $t b$ of G, where $t \in T, b \in B$ and $\sigma(t)<\sigma(b)$.

Let $\bar{\sigma}$ be the reverse ordering of σ. Note
■ $G_{\bar{\sigma}}=G \backslash G_{\sigma}$;
■ let M_{1} and M_{2} be matchings in G_{σ} and $G_{\bar{\sigma}}$. Then $M_{1} \cup M_{2}$ has no cycles.

Matchings in G_{σ}

Let σ be an ordering of $V(G) . G_{\sigma}$ is the subgraph whose edges are edges $t b$ of G, where $t \in T, b \in B$ and $\sigma(t)<\sigma(b)$.

Let $\bar{\sigma}$ be the reverse ordering of σ. Note
■ $G_{\bar{\sigma}}=G \backslash G_{\sigma}$;
■ let M_{1} and M_{2} be matchings in G_{σ} and $G_{\bar{\sigma}}$. Then $M_{1} \cup M_{2}$ has no cycles.

Matchings in G_{σ}

Let σ be an ordering of $V(G) . G_{\sigma}$ is the subgraph whose edges are edges $t b$ of G, where $t \in T, b \in B$ and $\sigma(t)<\sigma(b)$.

Let $\bar{\sigma}$ be the reverse ordering of σ. Note
■ $G_{\bar{\sigma}}=G \backslash G_{\sigma}$;
■ let M_{1} and M_{2} be matchings in G_{σ} and $G_{\bar{\sigma}}$. Then $M_{1} \cup M_{2}$ has no cycles.

Matchings in G_{σ}

Let σ be an ordering of $V(G) . G_{\sigma}$ is the subgraph whose edges are edges $t b$ of G, where $t \in T, b \in B$ and $\sigma(t)<\sigma(b)$.

Let $\bar{\sigma}$ be the reverse ordering of σ. Note
■ $G_{\bar{\sigma}}=G \backslash G_{\sigma}$;
■ let M_{1} and M_{2} be matchings in G_{σ} and $G_{\bar{\sigma}}$. Then $M_{1} \cup M_{2}$ has no cycles.

Suffices to show.

Matchings in G_{σ}

Let σ be an ordering of $V(G) . G_{\sigma}$ is the subgraph whose edges are edges $t b$ of G, where $t \in T, b \in B$ and $\sigma(t)<\sigma(b)$.

Let $\bar{\sigma}$ be the reverse ordering of σ. Note
■ $G_{\bar{\sigma}}=G \backslash G_{\sigma}$;
■ let M_{1} and M_{2} be matchings in G_{σ} and $G_{\bar{\sigma}}$. Then $M_{1} \cup M_{2}$ has no cycles.
Suffices to show. If σ is random, G_{σ} has a balancing matching with probability larger than $1 / 2$.

A flow network

A flow network

A flow network

A flow network

A flow network

A flow network

A flow network

■ vertices of G receive capacity 1 ,

A flow network

- vertices of G receive capacity 1 ,
- b_{i} has capacity $\frac{e\left(B_{i}, T \backslash T_{i}\right)}{d}$,

A flow network

- vertices of G receive capacity 1 ,
- b_{i} has capacity $\frac{e\left(B_{i}, T \backslash T_{i}\right)}{d}$,
- t_{j} has capacity $\frac{e\left(B \backslash B_{i}, T_{i}\right)}{d}$.

Finding a balancing matching in G_{σ}

Finding a balancing matching in G_{σ}

Lemma

With probability $>\frac{1}{2}$, there is a flow with value $\sum_{i \neq j} \frac{e\left(B_{i}, T_{j}\right)}{d}-\frac{9}{10}$.

Finding a balancing matching in G_{σ}

Lemma

With probability $>\frac{1}{2}$, there is a flow with value $\sum_{i \neq j} \frac{e\left(B_{i}, T_{j}\right)}{d}-\frac{9}{10}$.

- view such a flow as a fractional matching;

Finding a balancing matching in G_{σ}

Lemma

With probability $>\frac{1}{2}$, there is a flow with value $\sum_{i \neq j} \frac{e\left(B_{i}, T_{j}\right)}{d}-\frac{9}{10}$.

■ view such a flow as a fractional matching;

- it is $\frac{9}{10}$-almost-balancing;

Finding a balancing matching in G_{σ}

Lemma

With probability $>\frac{1}{2}$, there is a flow with value $\sum_{i \neq j} \frac{e\left(B_{i}, T_{j}\right)}{d}-\frac{9}{10}$.

■ view such a flow as a fractional matching;

- it is $\frac{9}{10}$-almost-balancing;

■ by weight shifting, find a $\frac{9}{10}$-almost-balancing integer-valued fractional matching,

Finding a balancing matching in G_{σ}

Lemma

With probability $>\frac{1}{2}$, there is a flow with value $\sum_{i \neq j} \frac{e\left(B_{i}, T_{j}\right)}{d}-\frac{9}{10}$.

■ view such a flow as a fractional matching;

- it is $\frac{9}{10}$-almost-balancing;

■ by weight shifting, find a $\frac{9}{10}$-almost-balancing integer-valued fractional matching, i.e. a balancing matching.

2-lifts

2-lifts

Let G be a graph and σ an ordering.

G

2-lifts

Let G be a graph and σ an ordering. Define $L_{\sigma}(G)$ by

$$
L_{\sigma}(G)
$$

2-lifts

Let G be a graph and σ an ordering. Define $L_{\sigma}(G)$ by
■ $V\left(L_{\sigma}(G)\right)=\left\{v_{0}, v_{1}: v \in V(G)\right\}$,

$$
L_{\sigma}(G)
$$

2-lifts

Let G be a graph and σ an ordering. Define $L_{\sigma}(G)$ by

- $V\left(L_{\sigma}(G)\right)=\left\{v_{0}, v_{1}: v \in V(G)\right\}$,
- $E\left(L_{\sigma}(G)\right)=\left\{v_{0} u_{1}: v u \in E(G)\right.$ and $\left.\sigma(v)<\sigma(u)\right\}$.

Proof for non-bipartite graphs

Proof for non-bipartite graphs

- partition the vertices into clusters,

Proof for non-bipartite graphs

- partition the vertices into clusters,

■ distinguish almost-bipartite and far-from-bipartite clusters,

Proof for non-bipartite graphs

- partition the vertices into clusters,

■ distinguish almost-bipartite and far-from-bipartite clusters,

- in $L_{\sigma}(G)$, almost bipartite clusters become two clusters,

Proof for non-bipartite graphs

- partition the vertices into clusters,

■ distinguish almost-bipartite and far-from-bipartite clusters,

- in $L_{\sigma}(G)$, almost bipartite clusters become two clusters,

Proof for non-bipartite graphs

- partition the vertices into clusters,

■ distinguish almost-bipartite and far-from-bipartite clusters,

- in $L_{\sigma}(G)$, almost bipartite clusters become two clusters,

Proof for non-bipartite graphs

- partition the vertices into clusters,

■ distinguish almost-bipartite and far-from-bipartite clusters,
■ in $L_{\sigma}(G)$, almost bipartite clusters become two clusters,

■ far-from-bipartite clusters become one balanced cluster,

Proof for non-bipartite graphs

- partition the vertices into clusters,

■ distinguish almost-bipartite and far-from-bipartite clusters,
■ in $L_{\sigma}(G)$, almost bipartite clusters become two clusters,

■ far-from-bipartite clusters become one balanced cluster,

- show that with positive probability, $L_{\sigma}(G)$ contains a balancing matching.

Open Problems

Open Problems

Theorem (Gruslys, L. '17+)

Let G be a d-regular graph on n vertices, where $d \geq c n$ and $n \geq n_{0}(c)$. Then $V(G)$ can be partitioned into at most $\left\lfloor\frac{n}{d+1}\right\rfloor$ cycles.

Open Problems

Theorem (Gruslys, L. '17+)

Let G be a d-regular graph on n vertices, where $d \geq c n$ and $n \geq n_{0}(c)$. Then $V(G)$ can be partitioned into at most $\left\lfloor\frac{n}{d+1}\right\rfloor$ cycles.

Open Problems.

Open Problems

Theorem (Gruslys, L. '17+)

Let G be a d-regular graph on n vertices, where $d \geq c n$ and $n \geq n_{0}(c)$. Then $V(G)$ can be partitioned into at most $\left\lfloor\frac{n}{d+1}\right\rfloor$ cycles.

Open Problems.
■ improve the lower bound on d.

Open Problems

Theorem (Gruslys, L. '17+)

Let G be a d-regular graph on n vertices, where $d \geq c n$ and $n \geq n_{0}(c)$. Then $V(G)$ can be partitioned into at most $\left\lfloor\frac{n}{d+1}\right\rfloor$ cycles.

Open Problems.

- improve the lower bound on d. We can probably obtain the result for $d \geq \frac{n}{\log \log \log \log n}$;

Open Problems

Theorem (Gruslys, L. '17+)

Let G be a d-regular graph on n vertices, where $d \geq c n$ and $n \geq n_{0}(c)$. Then $V(G)$ can be partitioned into at most $\left\lfloor\frac{n}{d+1}\right\rfloor$ cycles.

Open Problems.

- improve the lower bound on d. We can probably obtain the result for $d \geq \frac{n}{\log \log \log \log n}$;
■ is there a version for regular directed graphs?

Open Problems

Theorem (Gruslys, L. '17+)

Let G be a d-regular graph on n vertices, where $d \geq c n$ and $n \geq n_{0}(c)$. Then $V(G)$ can be partitioned into at most $\left\lfloor\frac{n}{d+1}\right\rfloor$ cycles.

Open Problems.

- improve the lower bound on d. We can probably obtain the result for $d \geq \frac{n}{\log \log \log \log n}$;
■ is there a version for regular directed graphs?
■ directed or bipartite versions of Bollobás-Häggkvist (for 3-connected graphs).

Open Problems

Theorem (Gruslys, L. '17+)

Let G be a d-regular graph on n vertices, where $d \geq c n$ and $n \geq n_{0}(c)$. Then $V(G)$ can be partitioned into at most $\left\lfloor\frac{n}{d+1}\right\rfloor$ cycles.

Open Problems.

- improve the lower bound on d. We can probably obtain the result for $d \geq \frac{n}{\log \log \log \log n}$;
■ is there a version for regular directed graphs?
■ directed or bipartite versions of Bollobás-Häggkvist (for 3-connected graphs).

Thank you for listening!

