Monochromatic triangle packings in red-blue graphs

Shoham Letzter

UCL

joint with Vytautas Gruslys

Probabilistic and Extremal Combinatorics DMV Jahrestagung

September 2020

Question. What is the minimum number of monochromatic triangles among red-blue colourings of K_n ?

Question. What is the minimum number of monochromatic triangles among red-blue colourings of K_n ?

Goodman '59 answered this question precisely. The answer is $n^3/24 + O(n^2)$.

Question. What is the minimum number of monochromatic triangles among red-blue colourings of K_n ?

Goodman '59 answered this question precisely. The answer is $n^3/24 + O(n^2)$.

Question. How many pairwise **edge-disjoint** mono triangles are there guaranteed to be in a red-blue K_n ?

Question. How many pairwise **edge-disjoint** mono triangles are there guaranteed to be in a red-blue K_n ?

Conjecture (Erdős (with Faudree and Ordman) '97)

Every red-blue K_n has $\frac{n^2}{12} + o(n^2)$ edge-disjoint mono triangles.

Question. How many pairwise **edge-disjoint** mono triangles are there guaranteed to be in a red-blue K_n ?

Conjecture (Erdős (with Faudree and Ordman) '97)

Every red-blue K_n has $\frac{n^2}{12} + o(n^2)$ edge-disjoint mono triangles.

The conjecture is tight:

Question. How many pairwise **edge-disjoint** mono triangles are there guaranteed to be in a red-blue K_n ?

Conjecture (Erdős (with Faudree and Ordman) '97)

Every red-blue K_n has $\frac{n^2}{12} + o(n^2)$ edge-disjoint mono triangles.

The conjecture is tight:

Erdős–Faudree–Gould–Jacobson–Lehel '01. Every red-blue K_n has $\frac{3n^2}{55} + o(n^2)$ edge-disjoint mono triangles.

Question. How many pairwise **edge-disjoint** mono triangles are there guaranteed to be in a red-blue K_n ?

Conjecture (Erdős (with Faudree and Ordman) '97)

Every red-blue K_n has $\frac{n^2}{12} + o(n^2)$ edge-disjoint mono triangles.

The conjecture is tight:

- **Erdős–Faudree–Gould–Jacobson–Lehel '01.** Every red-blue K_n has $\frac{3n^2}{55} + o(n^2)$ edge-disjoint mono triangles.
- Keevash–Sudakov '04. Every red-blue K_n has $\frac{n^2}{12.89} + o(n^2)$ edge-disjoint mono triangles.

Disjoint triangles in co-triangle-free graphs

Alon-Linial '04. What if one of the colours is triangle-free?

Alon–Linial '04. What if one of the colours is triangle-free? Does every *n*-vertex co-triangle-free graph *G* have $\gtrsim \frac{n^2}{12}$ edge-disjoint triangles?

Alon–Linial '04. What if one of the colours is triangle-free? Does every *n*-vertex co-triangle-free graph *G* have $\geq \frac{n^2}{12}$ edge-disjoint triangles?

Yuster '07. Yes, if $e(G) \le 0.2501n^2$ or $e(G) \ge 0.375n^2$.

Alon–Linial '04. What if one of the colours is triangle-free? Does every *n*-vertex co-triangle-free graph *G* have $\geq \frac{n^2}{12}$ edge-disjoint triangles?

- **Yuster '07.** Yes, if $e(G) \le 0.2501n^2$ or $e(G) \ge 0.375n^2$.
- **Tyomkyn '20.** Yes!

Alon–Linial '04. What if one of the colours is triangle-free? Does every *n*-vertex co-triangle-free graph *G* have $\geq \frac{n^2}{12}$ edge-disjoint triangles?

- **Yuster '07.** Yes, if $e(G) \le 0.2501n^2$ or $e(G) \ge 0.375n^2$.
- **Tyomkyn '20.** Yes!

Moreover, a **stability** result holds: either \overline{G} is εn^2 -close to bipartite, or G has $\geq \frac{n^2}{12} + \delta n^2$ edge-disjoint triangles.

Our results

Theorem (Gruslys–L. '20+)

Every red-blue K_n has $\frac{n^2}{12} + o(n^2)$ edge-disjoint mono triangles.

Theorem (Gruslys–L. '20+)

Every red-blue K_n has $\frac{n^2}{12} + o(n^2)$ edge-disjoint mono triangles.

Theorem (Gruslys–L. '20+)

For every $\varepsilon > 0$ there is $\delta > 0$ s.t. in every red-blue K_n ,

- either one of the colours is εn^2 -close to bipartite,
- or there are $\geq \frac{n^2}{12} + \delta n^2$ edge-disjoint mono triangles.

Fractional △-packings

A **fractional** \triangle -**packing** in *G* is a function $\omega : \{\text{triangles in } G\} \rightarrow [0, 1] \text{ s.t. for every edge } xy:$

$$\omega(xy) := \sum_{z: xyz \text{ is a triangle}} \omega(xyz) \le 1.$$

A **fractional** \triangle -**packing** in *G* is a function $\omega : \{ \text{triangles in } G \} \rightarrow [0, 1] \text{ s.t. for every edge } xy:$

$$\omega(xy) := \sum_{x, y \in x} \omega(xyz) \le 1.$$

z: xyz is a triangle

A **fractional** \triangle -**packing** in *G* is a function $\omega : \{ \text{triangles in } G \} \rightarrow [0, 1] \text{ s.t. for every edge } xy:$

$$\omega(xy) := \sum_{x \in A} \omega(xyz) \leq 1.$$

z: xyz is a triangle

$$\nu(G) = \max \begin{cases} 3 \sum_{xyz \text{ is a triangle}} \omega(xyz) : & \omega \text{ a fractional} \\ \triangle \text{-packing} \end{cases}$$

A **fractional** \triangle -**packing** in *G* is a function $\omega : \{ \text{triangles in } G \} \rightarrow [0, 1] \text{ s.t. for every edge } xy:$

$$\omega(xy) := \sum_{x \in A} \omega(xyz) \leq 1.$$

z: xyz is a triangle

$$\nu(G) = \max \left\{ 3 \sum_{xyz \text{ is a triangle}} \omega(xyz) : \begin{array}{c} \omega \text{ a fractional} \\ \triangle \text{-packing} \end{array} \right\}$$
$$= \max \left\{ \sum_{xy \in E(G)} \omega(xy) : \begin{array}{c} \omega \text{ a fractional} \\ \triangle \text{-packing} \end{array} \right\}.$$

A **fractional** \triangle -**packing** in *G* is a function $\omega : \{ \text{triangles in } G \} \rightarrow [0, 1] \text{ s.t. for every edge } xy:$

$$\omega(xy) := \sum_{x \in A} \omega(xyz) \leq 1.$$

z: xyz is a triangle

$$\nu(G) = \max \left\{ 3 \sum_{xyz \text{ is a triangle}} \omega(xyz) : \begin{array}{c} \omega \text{ a fractional} \\ \triangle \text{-packing} \end{array} \right\}$$
$$= \max \left\{ \sum_{xy \in E(G)} \omega(xy) : \begin{array}{c} \omega \text{ a fractional} \\ \triangle \text{-packing} \end{array} \right\}.$$

$$\bullet \nu (\textcircled{r}) = 3 \cdot 5 \cdot 1/2.$$

A **fractional** \triangle -**packing** in *G* is a function $\omega : \{ \text{triangles in } G \} \rightarrow [0, 1] \text{ s.t. for every edge } xy:$

$$\omega(xy) := \sum_{x \in A} \omega(xyz) \leq 1.$$

z: xyz is a triangle

$$\nu(G) = \max \left\{ 3 \sum_{xyz \text{ is a triangle}} \omega(xyz) : \begin{array}{c} \omega \text{ a fractional} \\ \triangle \text{-packing} \end{array} \right\}$$
$$= \max \left\{ \sum_{xy \in E(G)} \omega(xy) : \begin{array}{c} \omega \text{ a fractional} \\ \triangle \text{-packing} \end{array} \right\}.$$

•
$$\nu(\bigtriangleup) = 3 \cdot 5 \cdot 1/2.$$

• $\nu(K_n) = \binom{n}{2}$ for $n \neq 2.$

A mono fractional \triangle -packing in a red-blue graph G is a fractional \triangle -packing ω such that $\omega(xyz)$ is 0 unless xyz is a mono triangle.

A mono fractional \triangle -packing in a red-blue graph G is a fractional \triangle -packing ω such that $\omega(xyz)$ is 0 unless xyz is a mono triangle.

$$u_{\sf mono}({\sf G}) = \max \left\{ 3 \sum_{xyz} \omega(xyz) : egin{array}{c} \omega \ is \ a \ mono \end{array}
ight\} \ fractional \ riangle -packing \end{array}
ight\}$$

A mono fractional \triangle -packing in a red-blue graph G is a fractional \triangle -packing ω such that $\omega(xyz)$ is 0 unless xyz is a mono triangle.

$$\nu_{\text{mono}}(G) = \max \left\{ 3 \sum_{xyz} \omega(xyz) : \begin{array}{l} \omega \text{ is a mono} \\ \text{fractional } \triangle \text{-packing} \end{array} \right\}$$
$$= \nu(G_{\text{red}}) + \nu(G_{\text{blue}}).$$

A mono fractional \triangle -packing in a red-blue graph G is a fractional \triangle -packing ω such that $\omega(xyz)$ is 0 unless xyz is a mono triangle.

$$u_{mono}(G) = \max \left\{ 3 \sum_{xyz} \omega(xyz) : \begin{array}{l} \omega \text{ is a mono} \\ fractional \bigtriangleup -packing \end{array} \right\}$$

$$= \nu(G_{red}) + \nu(G_{blue}).$$

•
$$\nu_{\text{mono}}\left(\bigcup_{\lfloor n/2 \rfloor \atop \lfloor n/2 \rfloor}\right) = \binom{\lceil n/2 \rceil}{2} + \binom{\lfloor n/2 \rfloor}{2} = \lfloor \frac{(n-1)^2}{4} \rfloor.$$

A mono fractional \triangle -packing in a red-blue graph G is a fractional \triangle -packing ω such that $\omega(xyz)$ is 0 unless xyz is a mono triangle.

$$u_{mono}(G) = \max \left\{ 3 \sum_{xyz} \omega(xyz) : \begin{array}{l} \omega \text{ is a mono} \\ fractional \bigtriangleup -packing \end{array} \right\}$$

$$= \nu(G_{red}) + \nu(G_{blue}).$$

•
$$\nu_{\text{mono}}\left(\bigcup_{\lfloor n/2 \rfloor \ [n/2]}\right) = {\binom{\lceil n/2 \rceil}{2}} + {\binom{\lfloor n/2 \rfloor}{2}} = \lfloor \frac{(n-1)^2}{4} \rfloor.$$

Theorem (Gruslys-L. '20)

Let G be a red-blue K_n , with $n \ge 22$. Then $\nu_{\text{mono}}(G) \ge \lfloor \frac{(n-1)^2}{4} \rfloor$, with equality iff $G = \bigcirc$.

|n/2|

Theorem (Gruslys–L. '20)

Let G be a red-blue K_n , with $n \ge 22$. Then $\nu_{mono}(G) \ge \lfloor \frac{(n-1)^2}{4} \rfloor$, with equality iff $G = \square$

A pentagon blow-up is

|n/2|

 $\left[n/2\right]$

Theorem (Gruslys–L. '20)

|n/2|

Theorem (Gruslys-L. '20)

■ Haxell-Rödl '01. Packing number ≈ fractional packing number.

|n/2|

Theorem (Gruslys–L. '20)

■ Haxell-Rödl '01. Packing number \approx fractional packing number. Hence: every red-blue K_n has $\approx \frac{n^2}{12}$ edge-disjoint mono triangles.

|n/2|

Almost extremal examples

Aim.
$$\nu_{\text{mono}}(G) \ge \lfloor \frac{(n-1)^2}{4} \rfloor$$
 for every red-blue K_n .

Almost extremal examples

Aim.
$$\nu_{\text{mono}}(G) \ge \lfloor \frac{(n-1)^2}{4} \rfloor$$
 for every red-blue K_n .

Proposition (Keevash–Sudakov '04)

Let G be a red-blue K_{n+1} . If $\nu_{mono}(G) \leq \alpha n(n+1)$
Aim.
$$\nu_{mono}(G) \ge \lfloor \frac{(n-1)^2}{4} \rfloor$$
 for every red-blue K_n .

Proposition (Keevash–Sudakov '04)

Let G be a red-blue K_{n+1} . If $\nu_{mono}(G) \le \alpha n(n+1)$ then $\nu_{mono}(G \setminus u) \le \alpha n(n-1)$ for some vertex u.

Aim.
$$\nu_{\text{mono}}(G) \ge \lfloor \frac{(n-1)^2}{4} \rfloor$$
 for every red-blue K_n .

Proposition (Keevash–Sudakov '04)

Let G be a red-blue K_{n+1} . If $\nu_{mono}(G) \leq \alpha n(n+1)$ then $\nu_{mono}(G \setminus u) \leq \alpha n(n-1)$ for some vertex u.

Theorem (Gruslys–L. '20+)

Let G be a red-blue K_n , where $n \ge 26$. If $\nu_{mono}(G) \le \frac{n(n-1)}{4}$, then one of the colours is n/8-close to bipartite.

Aim.
$$\nu_{\text{mono}}(G) \ge \lfloor \frac{(n-1)^2}{4} \rfloor$$
 for every red-blue K_n .

Proposition (Keevash–Sudakov '04)

Let G be a red-blue K_{n+1} . If $\nu_{mono}(G) \leq \alpha n(n+1)$ then $\nu_{mono}(G \setminus u) \leq \alpha n(n-1)$ for some vertex u.

Theorem (Gruslys–L. '20+)

Let G be a red-blue K_n , where $n \ge 26$. If $\nu_{mono}(G) \le \frac{n(n-1)}{4}$, then one of the colours is n/8-close to bipartite.

This proves a conjecture of **Tyomkyn** ('20).

Aim.
$$\nu_{\text{mono}}(G) \ge \lfloor \frac{(n-1)^2}{4} \rfloor$$
 for every red-blue K_n .

Proposition (Keevash–Sudakov '04)

Let G be a red-blue K_{n+1} . If $\nu_{mono}(G) \leq \alpha n(n+1)$ then $\nu_{mono}(G \setminus u) \leq \alpha n(n-1)$ for some vertex u.

Theorem (Gruslys–L. '20+)

Let G be a red-blue K_n , where $n \ge 26$. If $\nu_{mono}(G) \le \frac{n(n-1)}{4}$, then one of the colours is n/8-close to bipartite.

This proves a conjecture of **Tyomkyn** ('20).

• Suppose G red-blue K_{n+1} and $\nu_{mono}(G) \leq \frac{n(n+1)}{4}$.

- Suppose G red-blue K_{n+1} and $\nu_{mono}(G) \leq \frac{n(n+1)}{4}$.
- By proposition, $\nu_{mono}(G \setminus u) \leq \frac{n(n-1)}{4}$ for some vertex u.

- Suppose G red-blue K_{n+1} and $\nu_{mono}(G) \leq \frac{n(n+1)}{4}$.
- By proposition, $\nu_{mono}(G \setminus u) \leq \frac{n(n-1)}{4}$ for some vertex u.
- By induction, wlog the blue graph in $H := G \setminus u$ is n/8-close to bipartite.

- Suppose G red-blue K_{n+1} and $\nu_{mono}(G) \leq \frac{n(n+1)}{4}$.
- By proposition, $\nu_{mono}(G \setminus u) \leq \frac{n(n-1)}{4}$ for some vertex u.
- By induction, wlog the blue graph in $H := G \setminus u$ is n/8-close to bipartite.
- Aim: the blue graph in G is (n+1)/8-close to bipartite.

- Suppose G red-blue K_{n+1} and $\nu_{mono}(G) \leq \frac{n(n+1)}{4}$.
- By proposition, $\nu_{mono}(G \setminus u) \leq \frac{n(n-1)}{4}$ for some vertex u.
- By induction, wlog the blue graph in $H := G \setminus u$ is n/8-close to bipartite.
- Aim: the blue graph in G is (n+1)/8-close to bipartite.

Aim. cover blue edges in X_1, X_2 by disjoint blue cross triangles.

Many edge-disjoint mono cross-triangles.

- Many edge-disjoint mono cross-triangles.
- Remaining red graphs in X_1 , X_2 almost complete.

- Many edge-disjoint mono cross-triangles.
- Remaining red graphs in X_1 , X_2 almost complete. They have **fractional** \triangle -**decompositions**.

- Many edge-disjoint mono cross-triangles.
- Remaining red graphs in X_1 , X_2 almost complete. They have **fractional** \triangle -**decompositions**.
- \exists mono fractional \triangle -packing covering $> \frac{n(n-1)}{4}$ edges.

Aim. find a blue matching in $H[B_1, B_2]$ that covers B_1 .

Many disjoint red cross triangles.

Aim. find a blue matching in $H[B_1, B_2]$ that covers B_1 .

Many disjoint red cross triangles.

- Many disjoint red cross triangles.
- Many disjoint mono triangles containing *u*.

- Many disjoint red cross triangles.
- Many disjoint mono triangles containing *u*.
- Remaining red graphs in X_1 , X_2 have \triangle -decompositions.

- Many disjoint red cross triangles.
- Many disjoint mono triangles containing *u*.
- Remaining red graphs in X_1 , X_2 have \triangle -decompositions.
- \exists mono fractional \triangle -packing covering $> \frac{n(n+1)}{4}$ edges.

Aim. $\leq (n+1)/8$ blue edges in $X'_1 := X_1 \cup \{u\}$ and X_2 .

Aim. $\leq (n+1)/8$ blue edges in $X'_1 := X_1 \cup \{u\}$ and X_2 .

• There is a blue matching M in $H[B_1, B_2]$ covering B_1 .

Aim. $\leq (n+1)/8$ blue edges in $X'_1 := X_1 \cup \{u\}$ and X_2 .

- There is a blue matching M in $H[B_1, B_2]$ covering B_1 .
- Cover blue edges in X_1 , X_2 by disjoint blue cross-triangles.

Aim. $\leq (n+1)/8$ blue edges in $X'_1 := X_1 \cup \{u\}$ and X_2 .

- There is a blue matching M in $H[B_1, B_2]$ covering B_1 .
- Cover blue edges in X_1 , X_2 by disjoint blue cross-triangles.
- red graphs in X'_1 , X_2 have fractional \triangle -decompositions.

Aim. $\leq (n+1)/8$ blue edges in $X'_1 := X_1 \cup \{u\}$ and X_2 .

• There is a blue matching M in $H[B_1, B_2]$ covering B_1 .

- Cover blue edges in X_1 , X_2 by disjoint blue cross-triangles.
- red graphs in X'_1 , X_2 have fractional \triangle -decompositions.
- > (n+1)/8 blue edges in X'_1 , $X_2 \Rightarrow \nu_{mono}(G) > \frac{n(n+1)}{4}$.

Remarks about the proof

We used:

Theorem (Gruslys–L. '20)

Let F be an n-vertex graph with $\geq \binom{n}{2} - (n-4)$ edges, and $n \neq 6$. Then F has a fractional \triangle -decomposition.

We used:

Theorem (Gruslys–L. '20)

Let F be an n-vertex graph with $\geq {n \choose 2} - (n-4)$ edges, and $n \neq 6$. Then F has a fractional \triangle -decomposition.

• For induction base, by computer search: if G is a red-blue K_{17} with $\nu_{mono}(G) \leq \frac{17 \cdot 16}{4}$,
We used:

Theorem (Gruslys–L. '20)

Let F be an n-vertex graph with $\geq {n \choose 2} - (n-4)$ edges, and $n \neq 6$. Then F has a fractional \triangle -decomposition.

For induction base, by computer search: if G is a red-blue K_{17} with $\nu_{mono}(G) \leq \frac{17 \cdot 16}{4}$, either one of the colours is 2-close to bipartite,

We used:

Theorem (Gruslys–L. '20)

Let F be an n-vertex graph with $\geq {n \choose 2} - (n-4)$ edges, and $n \neq 6$. Then F has a fractional \triangle -decomposition.

• For induction base, by computer search: if G is a red-blue K_{17} with $\nu_{mono}(G) \leq \frac{17 \cdot 16}{4}$, either one of the colours is 2-close to bipartite, or G is close to a pentagon blow-up.

Open problems

Exactly how many edge-disjoint mono triangles are there guaranteed to be in a red-blue K_n ?

- **Exactly** how many edge-disjoint mono triangles are there guaranteed to be in a red-blue *K_n*?
- How many edge-disjoint mono H-copies are there guaranteed to be in an r-coloured K_n?

- Exactly how many edge-disjoint mono triangles are there guaranteed to be in a red-blue K_n?
- How many edge-disjoint mono H-copies are there guaranteed to be in an r-coloured K_n ?
- **Jacobson '01** conjectured: every red-blue K_n has $\approx n^2/20$ edge-disjoint mono triangles of **same colour**.

Tight for balanced pentagon blow-ups with same number of blue and red edges in blobs.

- Exactly how many edge-disjoint mono triangles are there guaranteed to be in a red-blue K_n?
- How many edge-disjoint mono H-copies are there guaranteed to be in an r-coloured K_n ?
- **Jacobson '01** conjectured: every red-blue K_n has $\approx n^2/20$ edge-disjoint mono triangles of **same colour**.

Tight for balanced pentagon blow-ups with same number of blue and red edges in blobs.

Thank you for listening!!!